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Overview

• Real-time Systems and Synchronous Data-flow Languages

• Synchronous Kahn Process Networks

• Introducing logical time: clocks

• Checking synchrony with a dedicated type system: the clock calculus

• Relaxed synchrony through buffer communication

• Clock enveloppes and a relaxed clock calculus
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Real-time Systems

Focus on systems which continuously interact with each others.

• with a physical environment (e.g., fly-by-wire command, control-engine)

• or other digital devices (e.g., phone, TV boxes)

Real time is always related to the environment and is not an absolute notion. To ensure

safety, think of “what is the worst case” ?

The environment is often not precisely known: most systems run in closed-loop

+/−

disturbance

controlled outputerrordesired input
controller plant

environmentcontroller

How can we program those systems, focusing first on the functionality , abstracting some

implementation details?
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The need for High-level Programming Languages

Conciliate three notions:

• a formal (and computable) model of time

– express deadlines, simultaneous events, etc.

• parallelism to describe complex systems from simpler ones

– control at the same time rolling and pitching

– closed-loop systems (the controller and the plant run in parallel)

• statically guaranty safety properties

– determinism , dead-lock freedom

– execution in bounded time and memory

Safety is important:

• critical systems: fly-by-wire, braking, airbags, etc.

• properties must be guaranteed statically: “dynamic” = “too late”

• build the language on a strong mathematical basis to simplify verification/validation tasks

Conference ISOR’08, Algier, November 5, 2008, page 4/44



Synchronous Data-flow Languages

Invented in the 80’s to model/program critical embedded software.

The idea of Lustre:

• directly write equations over sequences as executable specifications

• provide a compiler and static analysis tools to generate code

E.g, the linear filter defined by:

Y0 = bX0 , ∀n Yn+1 = aYn + bXn+1

is programmed by writting the equation:

Y = (0 -> a * pre(Y)) + b * X

that is, we write invariants
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An example of a SCADE specification
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Kahn Process Networks [IFIP 74]

Kahn answered the following question: What is the semantics of a set of sequential

processes communicating through FIFOs (e.g., Unix pipe, sockets)?

P

R

Q
x y z

tr

• message-based asynchronous communication (send/wait ) through FIFOs

• reliable channels, bounded communication delays

• waiting on a single channel only. The program:

if (A is present) or (B is present) then ...

is forbidden
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Semantics

Domain:

• V ∞ = V ∗ + V ω , set of finite and infinite sequences of elements in V .

• V ∞ contains the empty sequence ǫ (bottom element)

• prefix order≤p: for all x ∈ V ∞, ǫ ≤p x and for all v ∈ V, x, y ∈ V ∞, x ≤p y iff

v.x ≤p v.y

• (V ∞,≤p, ǫ) is a CPO.

Kahn Principle:

• a channel = an history of values X = x1, ..., xn, ... ∈ V ∞

• a process = a function from an history of inputs to an history of outputs

• causality : a process is a continuous function (f(∪∞i=0(xi)) = ∪∞i=0(f(xi)))
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Interest/Weakness of the model

(+): Simple semantics: a process defines a function (a deterministic system); composition

is functional composition; Kleene’s fix-point theorem gives meaning to feedback loops

(+): Modularity: a network defines a continuous function; closed by composition and

feedback

(+): Time invariance: no explicit time; semantics is invariant through slow-down/speed-up

(+): Distributed asynchronous execution: no need for a centralised scheduler

x = x0 x1 x2 x3 x4 x5 ...

f(x) = y0 y1 y2 y3 y4 y5 ...

f(x) = y0 y1 y2 y3 y4 y5 ...

A natural model for video streaming applications (TV boxes): Sally (Philips NatLabs),

StreamIt (MIT), Xstream (ST-micro) and restricted models à la SDF (Ptolemy)
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A Small Data-flow Kernel

Consider a small language kernel with basic data-flow primitives

e ::= e fby e | op(e, ..., e) | x | i

| merge e e e | e when e

| λx.e | e(e) | rec x.e

op ::= + | − | not | ...

• functions (λx.e), application (e(e)), fix-point (rec x.e)

• constant i and variables (x)

• data-flow primitives: x fby y is the initialized delay; op(e1, ..., en) the point-wise

application; sampling operators (when/merge ).
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Data-flow Primitives

x x0 x1 x2 x3 x4 x5

y y0 y1 y2 y3 y4 y5

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 x5 + y5

x fby y x0 y0 y1 y2 y3 y4

h 1 0 1 0 1 0

x when h x0 x2 x4

z z0 z1 z2

merge h x z x0 z0 x2 z1 x4 z3

Sampling:

• if h is a boolean sequence , x when h produces a sub-sequence of x

• merge h x z combines two sub-sequences
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Kahn Semantics

Define a stream semantics for each data-flow primitive. E.g., if x 7→ s1 and y 7→ s2 then

the value of x + y is +# (s1, s2)

i# = i.i#

+# (s1, s2) = ǫ if s1 = ǫ or s2 = ǫ

+# (x.s1, y.s2) = (x + y).+# (s1, s2)

ǫ fby# y = ǫ

(x.s1) fby
# s2 = x.s2
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s1 when
# s2 = ǫ if s1 = ǫ or s2 = ǫ

x.s when# 1.c = x.(s when# c)

x.s when# 0.c = s when# c

merge# c s1 s2 = ǫ if si = ǫ

merge# 1.c x.s1 s2 = x.merge# c s1 s2

merge# 0.c s1 y.s2 = y.merge# c s1 s2

Property: Data-flow operators are continuous functions; a program is a continous functions

Derived operators:

• if c then x else y = merge c (x when c) (x when not c)

Final remark: Up to syntactic details, we can write most Lustre programs.
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Synchronisation Issues

What happen when streams are sampled and composed together?

-

- odd -

&

-

-

If x = (xi)i∈IN then odd(x) = (x2i)i∈IN and x&odd(x) = (xi&x2i)i∈IN .

Execution with unbounded FIFOs!

Remarks:

• These programs must be detected and rejected

• each operator is finite-memory through the composition is not: all the complexity (here

synchronisation) is hidden in the communication channels

• The Kahn semantics is unable to deal with time, e.g., specify that two event arrive at the

same time
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Synchronous Streams

complete the set of values with an explicit absent value abs . A signal s is a stream.

s : (V abs)∞

Clock: the clock of a stream x is a boolean stream indicating the instant where x is present

IB = {0, 1}

CLOCK = IB∞

clock ǫ = ǫ

clock (abs .x) = 0.clock x

clock (v.x) = 1.clock x

Clocked Streams:

ClStream(V, cl) = {s|s ∈ (V abs)∞ ∧ clock s ≤p cl}
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Data-flow Primitives

Constant generator:

i#(ǫ) = ǫ

i#(1.cl) = i.i#(cl)

i#(0.cl) = abs .i#(cl)

Pointwise application:

Arguments must be synchronous, i.e., they should have the same clock

+# (s1, s2) = ǫ if si = ǫ

+# (abs .s1, abs .s2) = abs.+# (s1, s2)

+# (v1.s1, v2.s2) = (v1 + v2).+
# (s1, s2)
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Partial Definitions

As such, these functions are not total. What does it mean when one element is present and

the other is absent?

Restrict the domain:

(+) : ∀cl : CLOCK.ClStream(int, cl)×ClStream(int, cl)→ ClStream(int, cl)

that is (+) is a function which expect two integer inputs with the same clock cl and return

an output with the same clock cl.

These extra conditions are types : programs which do not conform to these constraints are

rejected.

Remark: Regular types and clock types can be specified separately:

• (+) : int× int→ int ← its type signature

• (+) :: ∀cl.cl × cl→ cl ← its clock signature

In the sequel, we only write the clock signature.
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Delays

ǫ fby# s = ǫ

(abs .s1) fby
# (abs .s2) = abs.(s1 fby

# s2)

(v.s1) fby
# (w.s2) = v.(fby1

# w s1 s2)

fby1
# v ǫ s = ǫ

fby1
# v (abs .s1) (abs .s2) = abs.(fby1

# v s1 s2)

fby1
# v (w.s1) (v′.s2) = v.(fby1

# v′ s1 s2)

As a consequence:

fby : ∀cl.cl × cl→ cl
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Sampling

s1 when
# s2 = ǫ if s1 = ǫ or s2 = ǫ

(abs .s) when# (abs .c) = abs .s when# c

(v.s) when# (1.c) = v.s when# c

(v.s) when# (0.c) = abs .x when# c

merge c s1 s2 = ǫ if one of the si = ǫ

merge (abs.c) (abs .s1) (abs .s2) = abs .merge c s1 s2

merge (1.c) (v.s1) (abs .s2) = v.merge c s1 s2

merge (0.c) (abs .s1) (v.s2) = v.merge c s1 s2
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Examples

base = (1) 1 1 1 1 1 1 1 1 1 1 1 1 ...

x x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ...

h = (10) 1 0 1 0 1 0 1 0 1 0 1 0 ...

y = x when h x0 x2 x4 x6 x8 x10 x11 ...

h′ = (100) 1 0 0 1 0 0 1 ...

z = y when h′ x0 x6 x11 ...

k k0 k1 k2 k3 ...

merge h′ z k x0 k0 k1 x6 k2 k3 ...
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Sampling and Clocks

• in x when# y, x and y must have the same clock cl

• the clock of x when# c is noted cl on c: it means that c moves at the pace cl

s on c = ǫ if s = ǫ or c = ǫ

(1.cl) on (1.c) = 1.cl on c

(1.cl) on (0.c) = 0.cl on c

(0.cl) on (abs .c) = 0.cl on c

We get:

when : ∀cl.∀x : cl.∀c : cl.cl on c

merge : ∀cl.∀c : cl.∀x : cl on c.∀y : cl on not c.cl

Fo any clock cl, if the first input x has clock cl and the second input c has clock cl then

x when c has clock cl on c.
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Checking Synchrony

The previous programs is now statically rejected by the compiler.

-

- odd -

&

-

-

This is essentially a typing problem :

let odd x = x when half

let non_synchronous x = x & (odd x)

ˆˆˆˆˆˆˆ

This expression has clock ’a on half,

but is used with clock ’a

In synchronous languages, we only consider clock equality
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From pure synchrony to N -synchrony

• The comparison of clocks is limited to clock equality, i.e., “two streams are synchronous

or not”

• What about comparing streams which are not exactly synchronous but “not far”?

• How to account for possible “gittering” in the system as found in video applications?

• How to model execution time?
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A typical example: the Downscaler

high definition (HD) → standard definition (SD)

1920× 1080 pixels 720× 480

horizontal filter: number of pixels in a line from 1920 pixels downto 720 pixels,

vertical filter: number of lines from 1080 downto 480

hf vf

reorder

HD input SD output

Real-Time Constraints

the input and output processes: 30Hz.

HD pixels arrive at 30× 1920× 1080 = 62, 208, 000Hz

SD pixels at 30× 720× 480 = 10, 368, 000Hz (6 times slower)
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But too restrictive for our video applications

?

t+

w
h

e
n

w
h

e
n

y

z

x

0 1

1 10 0

?

• streams must be synchronous when composed (y+z is rejected by the clock calculus)

z

y

• adding buffer code (by hand) is feasible but hard and error-prone

• can we compute it automatically and obtain regular synchronous code?

we need a relaxed model of synchrony and relaxed clock calcul us
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N -Synchronous Kahn Networks

• propose a programming model based on a relaxed notion of synchrony

• yet compilable to some synchronous code

• allows to compose programs as soon as they can be made synchronous through the

insertion of a bounded buffer

z

buff[1]

1 1 1 1 1 1 1 1

1 1 1 1 11 1 1

0 0 0 0 0 0

0 00 0 0 0 0

y

• based on the use of infinite ultimately periodic clocks

• a precedence relation between clocks ck1 <: ck2
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Infinite Ultimately Periodic Clocks

Introduce Q2 as the set of infinite periodic binary words. Coincides with rational 2-adic

numbers

(01) = 01 01 01 01 01 01 01 01 01 . . .

0(1101) = 0 1101 1101 1101 1101 1101 1101 1101 . . .

• 1 stands for the presence of an event

• 0 for its absence

Definition:

w ::= u(v) where u ∈ (0 + 1)∗ and v ∈ (0 + 1)+
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Causality order and Synchronisability

Precedence relation: w1 � w2

• “1s from w1 arrive before 1s from w2”

• � is a partial order which abstracts the causality order between streams

• (Q2,�,⊔,⊓) is a lattice

Synchronisability:

Two infinite periodic binary words w and w′ are synchronisable, noted w ⊲⊳ w′ iff it exists

d ∈ N such that w � 0dw′ and d′ ∈ N such that w′ � 0d′w.

1. 11(01) and (10) are synchronisable

2. (010) and (10) are not synchronisable since there are too much reads or too much

writes (infinite buffers)

Subsumption (sub-typing): w1 <: w2 ⇐⇒ w1 ⊲⊳ w2 ∧ w1 � w2
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Clocks represented graphically
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[w1]6
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Notations:

w[i] : element at index i

[w]j : position of the jth 1

Ow(i): number of 1s seen in w

until index i.

buffer size(w1, w2) = maxi∈N(Ow1
(i)−Ow2

(i))

precedence w1 � w2 ⇔ ∀i, Ow1
(i) ≥ Ow2

(i)

synchronizability w1 ⊲⊳ w2 ⇔ ∃b1, b2 ∈ Z, ∀i, b1 ≤ Ow1
(i)−Ow2

(i) ≤ b2
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Multi-sampled Systems (clock sampling)

c ::= w | c on w w ∈ (0 + 1)ω

c on w denotes a subsampled clock.

c on w is the clock obtained in advancing in w at the pace of clock c. E.g.,

1(10) on (01) = (0100).

base 1 1 1 1 1 1 1 1 1 1 ... (1)

p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

base on p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

p2 0 1 0 1 0 1 ... (01)

(base on p1) on p2 0 1 0 0 0 1 0 0 0 1 ... (0100)
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Computing with Periodic Clocks

In the case of infinite periodic binary words, precedence relation, synchronizability, equality

can be decided in bounded time

Synchronizability: Two infinite periodic binary words u(v) and u′(v′) are synchronizable,

noted u(v) ⊲⊳ u′(v′) iff they have the same rate, i.e.,
|v|1
|v′|1

= |v|
|v′| .

Equality: Let w = u(v) and w′ = u′(v′). We can always write w = a(b) and

w′ = a′(b′) with |a| = |a′| = max(|u|, |u′|) and |b| = |b′| = lcm(|v|, |v′|)

Delays and Buffers: can be computed practically after normalisation

The set of infinite periodic binary words is closed by sampling (on ), delaying (pre ) and

point-wise application of a boolean operation

w ::= u(v)

c ::= w | c on w | not c | pre (c) | . . .
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From Pure-Synchrony to N -Synchrony

Pure-Synchrony:

• Synchrony can be checked using standard type system

• only need clock equality (and clocks are not necessarily periodic)

H ⊢ e1 : ck H ⊢ e2 : ck

H ⊢ op(e1, e2) : ck

N-Synchrony:

• extend the basic clock calculus with a sub-typing rule :

H ⊢ e : ck on w w <: w′

(SUB)

H ⊢ e : ck on w′

• defines the synchronisation points where buffer code should be inserted
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Going further: what about non periodic systems?

• Introducing clock relations gives more flexibility with as much guaranties as in

synchronous model. No deadlocks, no buffer overflows.

• Subtyping relation can be checked provided clocks are periodic.

• Computing with exact period is unfeasible in practice. E.g.,

(10100100) on 03600(1) on (101001001) =

09600(104107107102)

• Motivations:

1. dealing with long patterns in periodic clocks. Avoid exact computation.

2. specify/model jittering, i.e., how to deal with “almost periodic” clocks ? For instance

α on w with w = 00.( (10) + (01) )∗

(e.g. w = 00 01 10 01 01 10 01 10 . . . )

Idea: Manipulate sets of clocks instead of clocks. Transform the synchronisation problem

into a linear problem with rational numbers.
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Clock abstraction (work in progress)

concr
((

b0, b1, r
)) def
⇔







w, ∀i ≥ 1,
w[i] = 1 =⇒ Ow(i− 1) < r × i + b1

∧ w[i] = 0 =⇒ Ow(i− 1)≥ r × i + b0






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• Initial sets of 1s are well abstracted.
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• Clocks with a nul rate can be abstracted.
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Properties

Definition 1 (earlya, latea). Let a =
(

b0, b1, r
)

be a clock enveloppe.

earlya = ⊓{w, ∀i ≥ 1, w[i] = 1 =⇒ Ow(i− 1) < r × i + b1}

latea = ⊔{w, ∀i ≥ 1, w[i] = 0 =⇒ Ow(i− 1) ≥ r × i + b0}

Proposition 1 (bounds of the enveloppe).

∀w ∈ concr(a), (earlya � w) ∧ (w � latea).

Proposition 2 (Empty concretisation). ∀a, concr(a) = ∅⇔ earlya � latea.

Proposition 3 (Early and Late binary words).

∀i, Oearlya
(i) = max(0,min(i, ⌈r × i + b1⌉))

Olatea
(i) = max(0,min(i, ⌈r × i + b0⌉)

Proposition 4 (Non-empty enveloppe).

∀a =
(

b0, b1, r
)

, b0 ≤ b1 =⇒ concr(a) 6= ∅.

Proposition 5 (Perfect Periodic Clock). |concr
(

b0, b1, r
)

| = 1.
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Clock enveloppes as circuits (i.e., automata)

Given (b0, b1, r), write a generator/acceptor of clocks within an enveloppe: this is indeed a

synchronous circuit (here written in Lucid Synchrone syntax)

<: , * : , etc. are the classical operation lifted to rational.

type rat = { num: int; den: int }

let norm ({ num = n; den = l }, i, j) =

if i >= l && j >= n then (i - l, j - n) else (i, j)

let node check((b0, b1, r), clk) = ok where

rec i, j = (1,0) fby norm(r, i+1, if clk then j + 1 else j)

and ok = if clk

then (rat_of_int j) <: r * : (rat_of_int i) +: b1

else (rat_of_int j) >=: r * : (rat_of_int i) +: b0

We only need integer arithmetic. In the same way, we can implement a generator, which

either non-deterministically produce a clock within an enveloppe or the early or late bounds.
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Abstract Operators: not
∼and on

∼

Replace exact computation with not and on by abstract ones.

not
∼

((

b0, b1, r
))

=
(

−b1,−b0, 1− r
)

Property: a = not
∼
not

∼ a

If b01 ≤ 0 and b02 ≤ 0:

(

b01, b
1
1, r1

)

on
∼

(

b02, b
1
2, r2

)

=
(

b012, b
1
12, r12

)

with: r12 = r1 × r2, b012 = b01 × r2 + b02, b112 = b11 × r2 + b12

Abstraction of a sampled clock:

We are able to abstract a composed clock without computing the associated binary word.

abs(not w)
def
⇔ not

∼ abs(w)

abs(c1 on c2)
def
⇔ abs(c1) on

∼ abs(c2)

Proposition: Those operations are correct, i.e., c ∈ concr(abs(c))
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Abstract Relations: ⊲⊳
∼,�∼, <:

∼

If the abstract relation is verified, the concrete one is verified on all elements of the

respective conretization sets

(

b01, b
1
1, r1

)

⊲⊳∼
(

b02, b
1
2, r2

)

⇔ r1 = r2

Proposition: abs(c1) ⊲⊳∼ abs(c2)⇔ c1 ⊲⊳ c2

Checking precedence is checking an arithmetic inequality

b01 ≥ b12 =⇒ a1 �
∼ a2

Proposition: abs(c1) �
∼ abs(c2)⇒ c1 � c2

a1 <:∼ a2 ⇔ a1 ⊲⊳∼ a2 ∧ a1 �
∼ a2

=⇒ Subtyping can be checked in constant time.
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Modelizing Execution Time

Instants
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2
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2
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i.e.

α on∼
(

0, 0, 1
2

)

→ α on∼ (−3,−1, 1) on∼
(

0, 0, 1
2

)

f must be executed every 2 cycles and that its computation takes between one and three

cycles

Composed twice: f o f :: ∀α.α on∼
(

0, 0, 1
2

)

→ α on∼
(

−6
2
,−2

2
, 1

2

)

Conference ISOR’08, Algier, November 5, 2008, page 41/44



Modelizing Several Reads (or writes) at the Same Instant
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Conclusion

• Synchronous data-flow as a sub-set of Kahn Process Networks

• Synchrony means the existence of a common time scale between two communicating

processes

• Checking synchrony is mainly a typing problem

• Relaxing synchrony to model a larger class of systems, yet ensuring bounded buffering

communication

• algebraic properties on clock sequences (e.g., synchronization, clock enveloppes) have

been formalized and proof in the proof assistant Coq (5000 lines)

• We are currently developping a new language to incorporate those clocks
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