
Synchrony and Clocks in Kahn Process Networks a

Marc Pouzet

Univ. Paris-Sud 11

IUF

ISOR 2008, Algier

November 5, 2008

aJoint work with Albert Cohen, Florence Plateau, Louis Mandel

Conference ISOR’08, Algier, November 5, 2008, page 1/44

Overview

• Real-time Systems and Synchronous Data-flow Languages

• Synchronous Kahn Process Networks

• Introducing logical time: clocks

• Checking synchrony with a dedicated type system: the clock calculus

• Relaxed synchrony through buffer communication

• Clock enveloppes and a relaxed clock calculus

Conference ISOR’08, Algier, November 5, 2008, page 2/44

Real-time Systems

Focus on systems which continuously interact with each others.

• with a physical environment (e.g., fly-by-wire command, control-engine)

• or other digital devices (e.g., phone, TV boxes)

Real time is always related to the environment and is not an absolute notion. To ensure

safety, think of “what is the worst case” ?

The environment is often not precisely known: most systems run in closed-loop

+/−

disturbance

controlled outputerrordesired input
controller plant

environmentcontroller

How can we program those systems, focusing first on the functionality , abstracting some

implementation details?

Conference ISOR’08, Algier, November 5, 2008, page 3/44

The need for High-level Programming Languages

Conciliate three notions:

• a formal (and computable) model of time

– express deadlines, simultaneous events, etc.

• parallelism to describe complex systems from simpler ones

– control at the same time rolling and pitching

– closed-loop systems (the controller and the plant run in parallel)

• statically guaranty safety properties

– determinism , dead-lock freedom

– execution in bounded time and memory

Safety is important:

• critical systems: fly-by-wire, braking, airbags, etc.

• properties must be guaranteed statically: “dynamic” = “too late”

• build the language on a strong mathematical basis to simplify verification/validation tasks

Conference ISOR’08, Algier, November 5, 2008, page 4/44

Synchronous Data-flow Languages

Invented in the 80’s to model/program critical embedded software.

The idea of Lustre:

• directly write equations over sequences as executable specifications

• provide a compiler and static analysis tools to generate code

E.g, the linear filter defined by:

Y0 = bX0 , ∀n Yn+1 = aYn + bXn+1

is programmed by writting the equation:

Y = (0 -> a * pre(Y)) + b * X

that is, we write invariants

Conference ISOR’08, Algier, November 5, 2008, page 5/44

An example of a SCADE specification

Conference ISOR’08, Algier, November 5, 2008, page 6/44

Kahn Process Networks [IFIP 74]

Kahn answered the following question: What is the semantics of a set of sequential

processes communicating through FIFOs (e.g., Unix pipe, sockets)?

P

R

Q
x y z

tr

• message-based asynchronous communication (send/wait) through FIFOs

• reliable channels, bounded communication delays

• waiting on a single channel only. The program:

if (A is present) or (B is present) then ...

is forbidden

Conference ISOR’08, Algier, November 5, 2008, page 7/44

Semantics

Domain:

• V ∞ = V ∗ + V ω , set of finite and infinite sequences of elements in V .

• V ∞ contains the empty sequence ǫ (bottom element)

• prefix order≤p: for all x ∈ V ∞, ǫ ≤p x and for all v ∈ V, x, y ∈ V ∞, x ≤p y iff

v.x ≤p v.y

• (V ∞,≤p, ǫ) is a CPO.

Kahn Principle:

• a channel = an history of values X = x1, ..., xn, ... ∈ V ∞

• a process = a function from an history of inputs to an history of outputs

• causality : a process is a continuous function (f(∪∞i=0(xi)) = ∪∞i=0(f(xi)))

Conference ISOR’08, Algier, November 5, 2008, page 8/44

Interest/Weakness of the model

(+): Simple semantics: a process defines a function (a deterministic system); composition

is functional composition; Kleene’s fix-point theorem gives meaning to feedback loops

(+): Modularity: a network defines a continuous function; closed by composition and

feedback

(+): Time invariance: no explicit time; semantics is invariant through slow-down/speed-up

(+): Distributed asynchronous execution: no need for a centralised scheduler

x = x0 x1 x2 x3 x4 x5 ...

f(x) = y0 y1 y2 y3 y4 y5 ...

f(x) = y0 y1 y2 y3 y4 y5 ...

A natural model for video streaming applications (TV boxes): Sally (Philips NatLabs),

StreamIt (MIT), Xstream (ST-micro) and restricted models à la SDF (Ptolemy)

Conference ISOR’08, Algier, November 5, 2008, page 9/44

A Small Data-flow Kernel

Consider a small language kernel with basic data-flow primitives

e ::= e fby e | op(e, ..., e) | x | i

| merge e e e | e when e

| λx.e | e(e) | rec x.e

op ::= + | − | not | ...

• functions (λx.e), application (e(e)), fix-point (rec x.e)

• constant i and variables (x)

• data-flow primitives: x fby y is the initialized delay; op(e1, ..., en) the point-wise

application; sampling operators (when/merge).

Conference ISOR’08, Algier, November 5, 2008, page 10/44

Data-flow Primitives

x x0 x1 x2 x3 x4 x5

y y0 y1 y2 y3 y4 y5

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 x5 + y5

x fby y x0 y0 y1 y2 y3 y4

h 1 0 1 0 1 0

x when h x0 x2 x4

z z0 z1 z2

merge h x z x0 z0 x2 z1 x4 z3

Sampling:

• if h is a boolean sequence , x when h produces a sub-sequence of x

• merge h x z combines two sub-sequences

Conference ISOR’08, Algier, November 5, 2008, page 11/44

Kahn Semantics

Define a stream semantics for each data-flow primitive. E.g., if x 7→ s1 and y 7→ s2 then

the value of x + y is +# (s1, s2)

i# = i.i#

+# (s1, s2) = ǫ if s1 = ǫ or s2 = ǫ

+# (x.s1, y.s2) = (x + y).+# (s1, s2)

ǫ fby# y = ǫ

(x.s1) fby
s2 = x.s2

Conference ISOR’08, Algier, November 5, 2008, page 12/44

s1 when
s2 = ǫ if s1 = ǫ or s2 = ǫ

x.s when# 1.c = x.(s when# c)

x.s when# 0.c = s when# c

merge# c s1 s2 = ǫ if si = ǫ

merge# 1.c x.s1 s2 = x.merge# c s1 s2

merge# 0.c s1 y.s2 = y.merge# c s1 s2

Property: Data-flow operators are continuous functions; a program is a continous functions

Derived operators:

• if c then x else y = merge c (x when c) (x when not c)

Final remark: Up to syntactic details, we can write most Lustre programs.

Conference ISOR’08, Algier, November 5, 2008, page 13/44

Synchronisation Issues

What happen when streams are sampled and composed together?

-

- odd -

&

-

-

If x = (xi)i∈IN then odd(x) = (x2i)i∈IN and x&odd(x) = (xi&x2i)i∈IN .

Execution with unbounded FIFOs!

Remarks:

• These programs must be detected and rejected

• each operator is finite-memory through the composition is not: all the complexity (here

synchronisation) is hidden in the communication channels

• The Kahn semantics is unable to deal with time, e.g., specify that two event arrive at the

same time

Conference ISOR’08, Algier, November 5, 2008, page 14/44

Synchronous Streams

complete the set of values with an explicit absent value abs . A signal s is a stream.

s : (V abs)∞

Clock: the clock of a stream x is a boolean stream indicating the instant where x is present

IB = {0, 1}

CLOCK = IB∞

clock ǫ = ǫ

clock (abs .x) = 0.clock x

clock (v.x) = 1.clock x

Clocked Streams:

ClStream(V, cl) = {s|s ∈ (V abs)∞ ∧ clock s ≤p cl}

Conference ISOR’08, Algier, November 5, 2008, page 15/44

Data-flow Primitives

Constant generator:

i#(ǫ) = ǫ

i#(1.cl) = i.i#(cl)

i#(0.cl) = abs .i#(cl)

Pointwise application:

Arguments must be synchronous, i.e., they should have the same clock

+# (s1, s2) = ǫ if si = ǫ

+# (abs .s1, abs .s2) = abs.+# (s1, s2)

+# (v1.s1, v2.s2) = (v1 + v2).+
(s1, s2)

Conference ISOR’08, Algier, November 5, 2008, page 16/44

Partial Definitions

As such, these functions are not total. What does it mean when one element is present and

the other is absent?

Restrict the domain:

(+) : ∀cl : CLOCK.ClStream(int, cl)×ClStream(int, cl)→ ClStream(int, cl)

that is (+) is a function which expect two integer inputs with the same clock cl and return

an output with the same clock cl.

These extra conditions are types : programs which do not conform to these constraints are

rejected.

Remark: Regular types and clock types can be specified separately:

• (+) : int× int→ int ← its type signature

• (+) :: ∀cl.cl × cl→ cl ← its clock signature

In the sequel, we only write the clock signature.

Conference ISOR’08, Algier, November 5, 2008, page 17/44

Delays

ǫ fby# s = ǫ

(abs .s1) fby
(abs .s2) = abs.(s1 fby

s2)

(v.s1) fby
(w.s2) = v.(fby1

w s1 s2)

fby1
v ǫ s = ǫ

fby1
v (abs .s1) (abs .s2) = abs.(fby1

v s1 s2)

fby1
v (w.s1) (v′.s2) = v.(fby1

v′ s1 s2)

As a consequence:

fby : ∀cl.cl × cl→ cl

Conference ISOR’08, Algier, November 5, 2008, page 18/44

Sampling

s1 when
s2 = ǫ if s1 = ǫ or s2 = ǫ

(abs .s) when# (abs .c) = abs .s when# c

(v.s) when# (1.c) = v.s when# c

(v.s) when# (0.c) = abs .x when# c

merge c s1 s2 = ǫ if one of the si = ǫ

merge (abs.c) (abs .s1) (abs .s2) = abs .merge c s1 s2

merge (1.c) (v.s1) (abs .s2) = v.merge c s1 s2

merge (0.c) (abs .s1) (v.s2) = v.merge c s1 s2

Conference ISOR’08, Algier, November 5, 2008, page 19/44

Examples

base = (1) 1 1 1 1 1 1 1 1 1 1 1 1 ...

x x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ...

h = (10) 1 0 1 0 1 0 1 0 1 0 1 0 ...

y = x when h x0 x2 x4 x6 x8 x10 x11 ...

h′ = (100) 1 0 0 1 0 0 1 ...

z = y when h′ x0 x6 x11 ...

k k0 k1 k2 k3 ...

merge h′ z k x0 k0 k1 x6 k2 k3 ...

Conference ISOR’08, Algier, November 5, 2008, page 20/44

Sampling and Clocks

• in x when# y, x and y must have the same clock cl

• the clock of x when# c is noted cl on c: it means that c moves at the pace cl

s on c = ǫ if s = ǫ or c = ǫ

(1.cl) on (1.c) = 1.cl on c

(1.cl) on (0.c) = 0.cl on c

(0.cl) on (abs .c) = 0.cl on c

We get:

when : ∀cl.∀x : cl.∀c : cl.cl on c

merge : ∀cl.∀c : cl.∀x : cl on c.∀y : cl on not c.cl

Fo any clock cl, if the first input x has clock cl and the second input c has clock cl then

x when c has clock cl on c.

Conference ISOR’08, Algier, November 5, 2008, page 21/44

Checking Synchrony

The previous programs is now statically rejected by the compiler.

-

- odd -

&

-

-

This is essentially a typing problem :

let odd x = x when half

let non_synchronous x = x & (odd x)

ˆˆˆˆˆˆˆ

This expression has clock ’a on half,

but is used with clock ’a

In synchronous languages, we only consider clock equality

Conference ISOR’08, Algier, November 5, 2008, page 22/44

From pure synchrony to N -synchrony

• The comparison of clocks is limited to clock equality, i.e., “two streams are synchronous

or not”

• What about comparing streams which are not exactly synchronous but “not far”?

• How to account for possible “gittering” in the system as found in video applications?

• How to model execution time?

Conference ISOR’08, Algier, November 5, 2008, page 23/44

A typical example: the Downscaler

high definition (HD) → standard definition (SD)

1920× 1080 pixels 720× 480

horizontal filter: number of pixels in a line from 1920 pixels downto 720 pixels,

vertical filter: number of lines from 1080 downto 480

hf vf

reorder

HD input SD output

Real-Time Constraints

the input and output processes: 30Hz.

HD pixels arrive at 30× 1920× 1080 = 62, 208, 000Hz

SD pixels at 30× 720× 480 = 10, 368, 000Hz (6 times slower)

Conference ISOR’08, Algier, November 5, 2008, page 24/44

But too restrictive for our video applications

?

t+

w
h

e
n

w
h

e
n

y

z

x

0 1

1 10 0

?

• streams must be synchronous when composed (y+z is rejected by the clock calculus)

z

y

• adding buffer code (by hand) is feasible but hard and error-prone

• can we compute it automatically and obtain regular synchronous code?

we need a relaxed model of synchrony and relaxed clock calcul us

Conference ISOR’08, Algier, November 5, 2008, page 25/44

N -Synchronous Kahn Networks

• propose a programming model based on a relaxed notion of synchrony

• yet compilable to some synchronous code

• allows to compose programs as soon as they can be made synchronous through the

insertion of a bounded buffer

z

buff[1]

1 1 1 1 1 1 1 1

1 1 1 1 11 1 1

0 0 0 0 0 0

0 00 0 0 0 0

y

• based on the use of infinite ultimately periodic clocks

• a precedence relation between clocks ck1 <: ck2

Conference ISOR’08, Algier, November 5, 2008, page 26/44

Infinite Ultimately Periodic Clocks

Introduce Q2 as the set of infinite periodic binary words. Coincides with rational 2-adic

numbers

(01) = 01 01 01 01 01 01 01 01 01 . . .

0(1101) = 0 1101 1101 1101 1101 1101 1101 1101 . . .

• 1 stands for the presence of an event

• 0 for its absence

Definition:

w ::= u(v) where u ∈ (0 + 1)∗ and v ∈ (0 + 1)+

Conference ISOR’08, Algier, November 5, 2008, page 27/44

Causality order and Synchronisability

Precedence relation: w1 � w2

• “1s from w1 arrive before 1s from w2”

• � is a partial order which abstracts the causality order between streams

• (Q2,�,⊔,⊓) is a lattice

Synchronisability:

Two infinite periodic binary words w and w′ are synchronisable, noted w ⊲⊳ w′ iff it exists

d ∈ N such that w � 0dw′ and d′ ∈ N such that w′ � 0d′w.

1. 11(01) and (10) are synchronisable

2. (010) and (10) are not synchronisable since there are too much reads or too much

writes (infinite buffers)

Subsumption (sub-typing): w1 <: w2 ⇐⇒ w1 ⊲⊳ w2 ∧ w1 � w2

Conference ISOR’08, Algier, November 5, 2008, page 28/44

Clocks represented graphically

Instants

N
u
m

b
er

of
on

es

20191817161514131211109876543210

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

Ow3

[w1]6

|w1[1..8]|1

w1

Notations:

w[i] : element at index i

[w]j : position of the jth 1

Ow(i): number of 1s seen in w

until index i.

buffer size(w1, w2) = maxi∈N(Ow1
(i)−Ow2

(i))

precedence w1 � w2 ⇔ ∀i, Ow1
(i) ≥ Ow2

(i)

synchronizability w1 ⊲⊳ w2 ⇔ ∃b1, b2 ∈ Z, ∀i, b1 ≤ Ow1
(i)−Ow2

(i) ≤ b2

Conference ISOR’08, Algier, November 5, 2008, page 29/44

Multi-sampled Systems (clock sampling)

c ::= w | c on w w ∈ (0 + 1)ω

c on w denotes a subsampled clock.

c on w is the clock obtained in advancing in w at the pace of clock c. E.g.,

1(10) on (01) = (0100).

base 1 1 1 1 1 1 1 1 1 1 ... (1)

p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

base on p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

p2 0 1 0 1 0 1 ... (01)

(base on p1) on p2 0 1 0 0 0 1 0 0 0 1 ... (0100)

Conference ISOR’08, Algier, November 5, 2008, page 30/44

Computing with Periodic Clocks

In the case of infinite periodic binary words, precedence relation, synchronizability, equality

can be decided in bounded time

Synchronizability: Two infinite periodic binary words u(v) and u′(v′) are synchronizable,

noted u(v) ⊲⊳ u′(v′) iff they have the same rate, i.e.,
|v|1
|v′|1

= |v|
|v′| .

Equality: Let w = u(v) and w′ = u′(v′). We can always write w = a(b) and

w′ = a′(b′) with |a| = |a′| = max(|u|, |u′|) and |b| = |b′| = lcm(|v|, |v′|)

Delays and Buffers: can be computed practically after normalisation

The set of infinite periodic binary words is closed by sampling (on), delaying (pre) and

point-wise application of a boolean operation

w ::= u(v)

c ::= w | c on w | not c | pre (c) | . . .

Conference ISOR’08, Algier, November 5, 2008, page 31/44

From Pure-Synchrony to N -Synchrony

Pure-Synchrony:

• Synchrony can be checked using standard type system

• only need clock equality (and clocks are not necessarily periodic)

H ⊢ e1 : ck H ⊢ e2 : ck

H ⊢ op(e1, e2) : ck

N-Synchrony:

• extend the basic clock calculus with a sub-typing rule :

H ⊢ e : ck on w w <: w′

(SUB)

H ⊢ e : ck on w′

• defines the synchronisation points where buffer code should be inserted

Conference ISOR’08, Algier, November 5, 2008, page 32/44

Going further: what about non periodic systems?

• Introducing clock relations gives more flexibility with as much guaranties as in

synchronous model. No deadlocks, no buffer overflows.

• Subtyping relation can be checked provided clocks are periodic.

• Computing with exact period is unfeasible in practice. E.g.,

(10100100) on 03600(1) on (101001001) =

09600(104107107102)

• Motivations:

1. dealing with long patterns in periodic clocks. Avoid exact computation.

2. specify/model jittering, i.e., how to deal with “almost periodic” clocks ? For instance

α on w with w = 00.((10) + (01))∗

(e.g. w = 00 01 10 01 01 10 01 10 . . .)

Idea: Manipulate sets of clocks instead of clocks. Transform the synchronisation problem

into a linear problem with rational numbers.

Conference ISOR’08, Algier, November 5, 2008, page 33/44

Clock abstraction (work in progress)

concr
((

b0, b1, r
)) def
⇔







w, ∀i ≥ 1,
w[i] = 1 =⇒ Ow(i− 1) < r × i + b1

∧ w[i] = 0 =⇒ Ow(i− 1)≥ r × i + b0







Instants

N
u
m

b
er

of
on

es

1211109876543210

7

6

5

4

3

2

1

0

Ow1

Ow2

w1 : (0, 0, 3
5
) and w2 : (−9

5
,−7

5
, 3

5
)

Conference ISOR’08, Algier, November 5, 2008, page 34/44

• Initial sets of 1s are well abstracted.

Instants

N
u
m

b
er

of
on

es

20191817161514131211109876543210

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Ow4

Conference ISOR’08, Algier, November 5, 2008, page 35/44

• Clocks with a nul rate can be abstracted.

Instants

N
u
m

b
er

of
on

es

20191817161514131211109876543210

9

8

7

6

5

4

3

2

1

0

Ow5

Conference ISOR’08, Algier, November 5, 2008, page 36/44

Properties

Definition 1 (earlya, latea). Let a =
(

b0, b1, r
)

be a clock enveloppe.

earlya = ⊓{w, ∀i ≥ 1, w[i] = 1 =⇒ Ow(i− 1) < r × i + b1}

latea = ⊔{w, ∀i ≥ 1, w[i] = 0 =⇒ Ow(i− 1) ≥ r × i + b0}

Proposition 1 (bounds of the enveloppe).

∀w ∈ concr(a), (earlya � w) ∧ (w � latea).

Proposition 2 (Empty concretisation). ∀a, concr(a) = ∅⇔ earlya � latea.

Proposition 3 (Early and Late binary words).

∀i, Oearlya
(i) = max(0,min(i, ⌈r × i + b1⌉))

Olatea
(i) = max(0,min(i, ⌈r × i + b0⌉)

Proposition 4 (Non-empty enveloppe).

∀a =
(

b0, b1, r
)

, b0 ≤ b1 =⇒ concr(a) 6= ∅.

Proposition 5 (Perfect Periodic Clock). |concr
(

b0, b1, r
)

| = 1.

Conference ISOR’08, Algier, November 5, 2008, page 37/44

Clock enveloppes as circuits (i.e., automata)

Given (b0, b1, r), write a generator/acceptor of clocks within an enveloppe: this is indeed a

synchronous circuit (here written in Lucid Synchrone syntax)

<: , * : , etc. are the classical operation lifted to rational.

type rat = { num: int; den: int }

let norm ({ num = n; den = l }, i, j) =

if i >= l && j >= n then (i - l, j - n) else (i, j)

let node check((b0, b1, r), clk) = ok where

rec i, j = (1,0) fby norm(r, i+1, if clk then j + 1 else j)

and ok = if clk

then (rat_of_int j) <: r * : (rat_of_int i) +: b1

else (rat_of_int j) >=: r * : (rat_of_int i) +: b0

We only need integer arithmetic. In the same way, we can implement a generator, which

either non-deterministically produce a clock within an enveloppe or the early or late bounds.

Conference ISOR’08, Algier, November 5, 2008, page 38/44

Abstract Operators: not
∼and on

∼

Replace exact computation with not and on by abstract ones.

not
∼

((

b0, b1, r
))

=
(

−b1,−b0, 1− r
)

Property: a = not
∼
not

∼ a

If b01 ≤ 0 and b02 ≤ 0:

(

b01, b
1
1, r1

)

on
∼

(

b02, b
1
2, r2

)

=
(

b012, b
1
12, r12

)

with: r12 = r1 × r2, b012 = b01 × r2 + b02, b112 = b11 × r2 + b12

Abstraction of a sampled clock:

We are able to abstract a composed clock without computing the associated binary word.

abs(not w)
def
⇔ not

∼ abs(w)

abs(c1 on c2)
def
⇔ abs(c1) on

∼ abs(c2)

Proposition: Those operations are correct, i.e., c ∈ concr(abs(c))

Conference ISOR’08, Algier, November 5, 2008, page 39/44

Abstract Relations: ⊲⊳
∼,�∼, <:

∼

If the abstract relation is verified, the concrete one is verified on all elements of the

respective conretization sets

(

b01, b
1
1, r1

)

⊲⊳∼
(

b02, b
1
2, r2

)

⇔ r1 = r2

Proposition: abs(c1) ⊲⊳∼ abs(c2)⇔ c1 ⊲⊳ c2

Checking precedence is checking an arithmetic inequality

b01 ≥ b12 =⇒ a1 �
∼ a2

Proposition: abs(c1) �
∼ abs(c2)⇒ c1 � c2

a1 <:∼ a2 ⇔ a1 ⊲⊳∼ a2 ∧ a1 �
∼ a2

=⇒ Subtyping can be checked in constant time.

Conference ISOR’08, Algier, November 5, 2008, page 40/44

Modelizing Execution Time

Instants

N
u
m

b
er

of
on

es

1211109876543210

7

6

5

4

3

2

1

0

f :: ∀α.α on∼
(

0, 0, 1
2

)

→ α on∼
(

−3
2
,−1

2
, 1

2

)

i.e.

α on∼
(

0, 0, 1
2

)

→ α on∼ (−3,−1, 1) on∼
(

0, 0, 1
2

)

f must be executed every 2 cycles and that its computation takes between one and three

cycles

Composed twice: f o f :: ∀α.α on∼
(

0, 0, 1
2

)

→ α on∼
(

−6
2
,−2

2
, 1

2

)

Conference ISOR’08, Algier, November 5, 2008, page 41/44

Modelizing Several Reads (or writes) at the Same Instant

Instants

N
u
m

b
er

of
on

es

1211109876543210

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Conference ISOR’08, Algier, November 5, 2008, page 42/44

Conclusion

• Synchronous data-flow as a sub-set of Kahn Process Networks

• Synchrony means the existence of a common time scale between two communicating

processes

• Checking synchrony is mainly a typing problem

• Relaxing synchrony to model a larger class of systems, yet ensuring bounded buffering

communication

• algebraic properties on clock sequences (e.g., synchronization, clock enveloppes) have

been formalized and proof in the proof assistant Coq (5000 lines)

• We are currently developping a new language to incorporate those clocks

Conference ISOR’08, Algier, November 5, 2008, page 43/44

References

[1] Paul Caspi and Marc Pouzet. Synchronous Kahn Networks. In ACM SIGPLAN

International Conference on Functional Programming, Philadelphia, Pensylvania, May

1996.

[2] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence Plateau, and

Marc Pouzet. N -Synchronous Kahn Networks: a Relaxed Model of Synchrony for

Real-Time Systems. In ACM International Conference on Principles of Programming

Languages (POPL’06), Charleston, South Carolina, USA, January 2006.

[3] Albert Cohen, Louis Mandel, Florence Plateau, and Marc Pouzet. Abstraction of Clocks

in Synchronous Data-flow Systems. In The Sixth ASIAN Symposium on Programming

Languages and Systems (APLAS), Bangalore, India, December 2008.

[4] Marc Pouzet. Lucid Synchrone, version 3. Tutorial and reference manual. Université

Paris-Sud, LRI, April 2006. Distribution available at:

www.lri.fr/ ∼pouzet/luci d-synchrone .

Conference ISOR’08, Algier, November 5, 2008, page 44/44

