
Mixing Signals and Modes in Synchronous
Data-flow Systems

Jean-Louis Colaço

Esterel-Technologies

France

Grégoire Hamon

The MathWorks

USA

Marc Pouzet

Université Paris-Sud 11

France

EMSOFT
Oct. 23th, 2006

1

Designing Mixed Systems

Data dominated Systems: continuous and sampled systems, block-diagram
formalisms, data-flow equations
↪→ Simulation tools: Simulink, etc.
↪→ Programming languages: SCADE/Lustre, Signal, etc.

Control dominated systems: transition systems, event-driven systems, Finite
State Machine formalisms, signal emission and testing
↪→ StateFlow, StateCharts
↪→ SyncCharts, Argos, Esterel, etc.

What about mixed systems?

• most systems are a mix of the two kinds: systems have “modes”

• each mode is a big control law, naturally described as data-flow equations

• a control part switching these modes and naturally described by a FSM

2

Traditional Approaches: linking mechanisms

• two (or more) specific languages: one for data-flow and one for control-flow

• “linking” mechanism. A sequential system is more or less represented as a pair:

– a transition function f : S × I → O × S

– an initial memory M0 : S

• agree on a common representation and add some glue code

• this is provided in most academic and industrial tools

• PtolemyII, Simulink + StateFlow, SCADE + Esterel Studio SSM, etc.

3

An example: the Cruise Control (SCADE V4.2)

4

Observations

• automata can only appear at the leaves of the data-flow model

• forces the programmer to make decisions at the very beginning of the design
(what is the good methodology?)

• the control structure is not explicit and hidden in boolean values: nothing
indicate that modes are exclusive

• what is the semantics of the whole?

• code certification (to meet avionic constraints)?

• efficiency/simplicity of the code?

• how to exploit this information for program analysis and verification tools?

Can we provide a finer integration of both styles
inside a unique language?

5

Extending Synchronous Data-flow with Automata

[EMSOFT05]

Basis

• Mode-Automata by Maraninchi & Rémond [ESOP98, SCP03]

• SignalGTI (Rutten [EuroMicro95] and Lucid Synchrone V2 (Hamon & Pouzet
[PPDP00, SLAP04])

Proposal

• extend a basic clocked calculus (SCADE/Lustre) with automata constructions

• base it on a translation semantics into well clocked programs; gives both the
semantics and the compilation method

Two implementations

• Lucid Synchrone language and compiler

• ReLuC compiler of SCADE at Esterel-Technologies; the basis of SCADE V6
(released in summer 2007)

6

The Cruise Control with SCADE 6

7

Semantic principles

• only one set of equations is executed during a reaction

• two kinds of transitions: Weak delayed (“until”) or Strong (“unless”)

• both can be “by history” (H* in UML) or not (if not, both the SSM and the
data-flow in the target state are reseted

• at most one strong transition followed by a weak transition can be fired during
a reaction

• at every instant:

– what is the current active state?

– execute the corresponding set of equations

– what is the next state?

• forbids arbitrary long state traversal, simplifies program analysis, better
generated code

8

An example: the Franc/Euro converter

eu = v/6.55957;

c

cc

v fr

eu

EuroFranc

fr = v; fr = v*6.55957;

eu = v;

in Lucid Synchrone syntax:

let node converter v c = (euro, fr) where

automaton

Franc -> do fr = v and eur = v / 6.55957

until c then Euro

| Euro -> do fr = v * 6.55957 and eu = v

until c then Franc

end

Remark: fr and eur are shared flow but with only one definition at a time

9

Strong vs Weak pre-emption

Two types of transitions can be considered

let node converter v c = (euro, fr) where

automaton

Franc -> do fr = v and eur = v / 6.55957

unless c then Euro

| Euro -> do fr = v * 6.55957 and eu = v

unless c then Franc

end

• until means that the escape condition is executed after the body has been
executed

• unless means that the escape condition is executed before and determines the
active state of the reaction

10

Equations and Expressions in States

• every state defines the current value of a shared flow

• a flow must be defined only once per cycle

• the Lustre “pre” is local to its upper state (pre e gives the previous value of e,
the last time e was alive)

• the substitution principle of Lustre is still true at a given hierarchy ⇒
data-flow diagrams make sense!

• the notation last x gives access to the latest value of x in its scope (Mode
Automata in the Maraninchi & Rémond sense)

• an absent definition for a shared flow x is implicitly complemented (i.e.,
x = last x)

11

Mode Automata, a simple example

x = 0 1 2 3 4 5 4 3 2 1 0 −1 −2 −3 −4 −5 −4 −3 −2 −1 0 ...

Up Down

x = last x − 1x = 0 −> last x + 1

H

H
x = 5

x = −5

let node two_modes () = x where

rec automaton

Up -> do x = 0 -> last x + 1

until x = 5 continue Down

| Down -> do x = last x - 1

until x = -5 continue Up

end

Remark: replacing until by unless would lead to a causality error!
12

Implicit completion of absent definitions

let node modes up down init = o where

automaton

Init -> do o = init then Up

| Up -> do automaton

Up -> do o = last o + 1 unless down

| Down -> do o = last o - 1 unless up

end

unless up & down then Silent

| Silent -> do then Up

end

• do ... then Up is a short-cut for do ... until true then Up

• the absent equation for x in the state Silent is implicitly x = last x

13

Translation semantics

• use clocks to give a precise semantics: we know how to compile clocked
data-flow programs efficiently (cf. Lucid Synhrone and ReLuC compilers)

• give a translation semantics into the basic data-flow language

• type and clock preserving source-to-source transformation

– T : ClockedBasicCalculus + Automata → ClockedBasicCalculus

– H ` e : ty iff H ` T (e) : ty

– H ` e : cl iff H ` T (e) : cl

Several steps

• compilation of the automaton construction into the control structures (case
statements)

• compilation of the reset construction between equations into the basic reset

• elimination of shared memory last x

14

New questions and extensions

A more direct semantics

• the translation semantics is good for compilation but...

• can we define a more “direct” semantics which expresses how the program
reacts?

• we introduce a logical reaction semantics

Further extensions

• can we go further in closing the gap between synchronous data-flow and
imperative formalisms?

• Parameterized State Machines: this provides a way to pass local
information between two states without interfering with the rest of the code

• Valued Signals: these are events tagged with values as found in Esterel and
provide an alternative to regular flows when programming control-dominated
systems

15

Parameterized State Machines

• it is often necessary to communicate values between two states upon taking a
transition

• e.g., a setup state communicate initialization values to a run state

Setup Run
cond/x<−...

• can we provide a safe mechanism to communicate values between two states?

• without interfering with the rest of the automaton, i.e.,

• without relying on global shared variables (and imperative modifications) in
states nor transitions?

Parameterized states:

• states can be Parameterized by initial values which can be used in turn in the
target automaton

• preserves all the properties of the basic automata
16

A typical example

several modes of normal execution and a failure mode which needs some contextual
information

let node controller in1 in2 = out where

automaton

| State1 ->

do out = f (in1, in2)

until (out > 10) then State2

until (in2 = 0) then Fail_safe(1, 0)

| State2 ->

let rec x = 0 -> (pre x) + 1 in

do out = g (in1,x)

until (out > 1000) then Fail_safe(2, x)

| Fail_safe(error_code, resume_after) ->

let rec

resume = resume_after -> (pre resume) - 1 in

do out = if (error_code = 1) then 0

else 1000

until (resume <= 0) then State2

end
17

Parameterized states vs global modifications on transitions

Is all that useful?

• expressiveness? every parameterized state machine can be programmed with
regular state machines using global shared flows

• efficiency? depends on the program and code-generator (though parameters
only need local memory and are not all alive at the same time)

But this is bad!

• who is still using global shared variables to pass parameters to a function in a
general-purpose language?

• passing this information through shared memory would mean having global
shared variables to hold it

• they would receive meaningless values during normal execution and be set on
the transition itself

• this breaks locality, modularity principles and is error-prone

• making sure that all such variables are set correctly before being use is not
trivial

18

Parameterized states

• we want the language to provides a safer way to pass local information

• complementary to global shared variables and do not replace them

• keep the communication between two states local without interfering with the
rest of the automaton

• do not raise initialization problems

• reminiscent to continuation passing style (in functional programming)

• yet, we provide the same compilation techniques (and properties) as in the case
of unparameterized state machines (initialization analysis, causality, type and
clocks)

19

Example (encoding Mealy machines)

• reduces the need to have equations on transitions

• adding equations on transitions is feasible but make the model awfully
complicated

cn/on

c1/o1

S

T1

Tn

automaton

...

| S(v) -> do o = v unless c1 then T1(o1)

...

unless cn then Tn(on)

...

end

20

Valued Signals and Signal Pattern Matching

• in a control structure (e.g., automaton), every shared flow must have a value at
every instant

• if an equation for x is missing, it keeps implicitly its last value (i.e.,
x = last x is added)

• how to talk about absent value? If x is not produced, we want it to be absent

• in imperative formalisms (e.g., Esterel), an event is present if it is explicitly
emitted and considered absent otherwise

• can we provide a simple way to achieve the same in the context of data-flow
programming?

21

An example

let node vend drink cost v = (o1, o2) where

match v >= cost with

true ->

do emit o1 = drink

and o2 = v - cost

done

| false ->

do o2 = v done

end

• o2 is a regular flow which has a value in every branch

• o1 is only emitted when (v >= cost) and is supposed to be absent otherwise

22

Accessing the value of a valued signal

• the value of a signal is the one which is emitted during the reaction

• what is the value in case where no value is emitted?

• Esterel: keeps the last computed value (i.e., implicitly complement the value
with a register)

emit S(?A + 1)

this is unsafe and raises initialization problems: what is the value if it has
never been emitted?

• need extra methodology development rules (e.g., Dassault Aviation) to guard
every access by a test for presence

present A then ... emit S(?A + 1) ...

can we provide a programming construct reminiscent to pattern matching and
which forbid the access to a signal which is not emitted?

23

Signal pattern matching

• a pattern-matching construct testing the presence of valued signals and
accessing their content

• a block structure and only present value can be accessed

let node sum x y = o where

present

| x(v) & y(w) -> do emit o = v + w done

| x(v1) -> do emit o = v1 done

| y(v2) -> do emit o = v2 done

| _ -> do done

end

24

The N-buffer

let node buffer n default push pop = o where

rec last a = Array.make n default

and ...

and present

push(v) & pop () & (last nb = 0) -> do emit o = v done

| push(v) & pop () ->

do a = array (last a) (last top) v

and bot = (last bot + 1) mod n

and top = (last top + 1) mod n

and emit o = get a (last bot) done

| push(v) & (last nb < n)->

do a = array (last a) (last top) v

and top = (last top + 1) mod n

and nb = last nb + 1 done

| pop () & (last nb > 0) ->

do nb = (last nb - 1) mod n

and bot = (last bot + 1) mod n

and emit o = get (last a) (last bot) done

end

25

Signals vs clocked streams

• in control structures, an absent definition for x is implicitly completed with an
equation x = last x

• this means that we need a memory to keep the value of last x

• signals are thus intrinsically more efficient: no memory is needed. x is absent if
nothing defines x

Is all that useful?

• signals already exist in synchronous data-flow: we have clocks!

• a signal is a flow which is present from time to time with a particular clock

• ask a lot for a compiler (and even the user).

• we need full dependent types here (the clock of x must keep the control
information defining the instant where x is emitted)

• can we rely on more modest (but safe) mechanism while keeping the philosophy
of the basic language?

26

Signals as existential types

let node sum x y = o where

present

| x(v) & y(w) -> do emit o = v + w done

| x(v1) -> do emit o = v1 done

| y(v2) -> do emit o = v2 done

| _ -> do done

end

• o is partially defined and should have clock ck on (?x∧?y)∨?x∨?y if x and y are
themselves on clock ck

• giving it the existential type Σ(c : ck).ck on c, that is, “exists c on clock ck such
that the result is on clock ck on c is a correct abstraction

27

Signals as Existential Types

Clock type of a signal: a dependent pair ck sig = Σ(c : ck).ck on c made of:

• a boolean sequence c which is itself on clock type ck

• a sequence sampled on c, that is, with clock type ck on c

The flow is boxed with its presence information

• this is a restriction compared to what can provide a synchronous data-flow
language equipped with a powerful clock calculus

• but this is the way Esterel valued signal are implemented!

• reminiscent to the constraints in Lustre to return the clock of a sampled
stream

Clock verification (and inference) only need modest techniques

• box/unbox mechanisms of a Milner type system + extension by Laufer &
Odersky for abstract data-types

H ` e : ck on c

H ` emit x = e : [x : ck sig]

28

Translation Semantics

• parameterized state machines and signals can be combined in an arbitrary way

• a translation semantics of the extension into a basic language

Example

let node sum (a, b, r) = o where

automaton

| Await -> do unless a(x)&b(y) then Emit (x + y)
| Emit (v) -> do emit o = v unless r then Await

29

• a signal of type t is represented by a pair of type bool× t

• nil stands for any value with the right type (think of a local stack allocated
variable

let node sum (a, b, r) = o where

match pnextstate with

| Await -> match (a, b) with

| ((True, x), (True, x)) -> state = Emit(x + y)
| -> state = Await

| Emit(v) -> match r with

| true -> state = Await

| false -> state = Emit(v)
and

match state with

| Await -> o = (False,nil) and nextstate = Await

| Emit(v) -> o = (True,nil) and nextstate = Emit(v)
and

pnextstate = Await -> pre nextstate

30

Conclusion and Future work

Automata and control structures

• an extension of a data-flow language with control structures

• various kinds of transitions, yet quite simple

• two semantics: a translation semantics and a logical semantics

Extensions: parameterised states and signals

• transmit local information between states

• signals as a light way to abstract the clock of a flow

• both features combine well

• light to implement in a translation-based compiler

• available in the new Lucid Synchrone compiler

Certification

• formal certification of a synchronous data-flow compiler inside a proof assistant

• does a translation-based compiler simplifies the task?
31

