Divide and recycle: types and compilation for a hybrid synchronous language

Marc Pouzet
LIENS
Institut Universitaire de France
Marc.Pouzet@ens.fr

Paris, Synchronics days
Oct. 2010, 18th

\(^a\)Joint work with Albert Benveniste, Timothy Bourke and Benoit Caillaud
Motivation and Context

• **Explicit vs Implicit** hybrid system modelers: Simulink, Scicos vs Modelica.

• In this talk, we consider only explicit ones.

• A lot of work on the formal verification of hybrid systems but relatively few on programming language aspects.

Objective:

• Extend a Lustre-like language where dataflow equations are mixed with ODE.

• Make it conservative, i.e., nothing must change for the discrete subset (same typing, same code generation).

Contribution:

• **Divide** with a novel type system.

• **Recycle** existing tools, synchronous compilers and numerical solvers to execute them.
Parallel composition: homogeneous case

Two equations with discrete time:

\[f = 0.0 \rightarrow \text{pre } f + s \text{ and } s = 0.2 \times (x - \text{pre } f) \]

and the initial value problem:

\[\text{der}(y') = -9.81 \text{ init } 0.0 \text{ and } \text{der}(y) = y' \text{ init } 10.0 \]

The first program can be written in any synchronous language, e.g. Lustre.

\[\forall n \in \mathbb{N}^*, f_n = f_{n-1} + s_n \text{ and } f_0 = 0 \quad \forall n \in \mathbb{N}, s_n = 0.2 \times (x_n - f_{n-1}) \]

The second program can be written in any hybrid modeler, e.g. Simulink.

\[\forall t \in \mathbb{R}^+, y'(t) = 0.0 + \int_0^t -9.81 \, dt = -9.81 \, t \]

\[\forall t \in \mathbb{R}^+, y(t) = 10.0 + \int_0^t y'(t) \, dt = 10.0 - 9.81 \int_0^t t \, dt \]

Parallel composition is clear since equations share the same time scale.
Parallel composition: heterogeneous case

Two equations: a signal defined at discrete instants, the other continuously.

\[\text{der}(\text{time}) = 1.0 \text{ init } 0.0 \text{ and } x = 0.0 \text{ fby } x + \text{time} \]

or:

\[x = 0.0 \text{ fby } x + 1.0 \text{ and } \text{der}(y) = x \text{ init } 0.0 \]

It would be tempting to define the first equation as: \(\forall n \in \mathbb{N}, x_n = x_{n-1} + \text{time}(n) \)

And the second as:

\(\forall n \in \mathbb{N}^*, x_n = x_{n-1} + 1.0 \text{ and } x_0 = 1.0 \)

\(\forall t \in \mathbb{R}^+, y(t) = 0.0 + \int_0^t x(t) \, dt \)

i.e., \(x(t) \) as a piecewise constant function from \(\mathbb{R}^+ \) to \(\mathbb{R}^+ \) with \(\forall t \in \mathbb{R}^+, x(t) = x_{[t]} \).

In both cases, this would be a mistake. \(x \) is defined on a discrete, logical time; \(\text{time} \) on an continuous, absolute time.
Equations with reset

Two independent groups of equations.

\[
\text{der}(p) = 1.0 \text{ init } 0.0 \text{ reset } 0.0 \text{ every } \text{up}(p - 1.0)
\]

and

\[x = 0.0 \text{ fby } x + p\]

and

\[
\text{der}(\text{time}) = 1.0 \text{ init } 0.0
\]

and

\[z = \text{up}(\sin (\text{freq } \times \text{time}))\]

Properly translated in Simulink, changing \text{freq} changes the output of \text{x}!

If \text{f} is running on a continuous time basis, what would be the meaning of:

\[y = f(x) \text{ every } \text{up}(z) \text{ init } 0\]

All these programs are \textit{wrongly typed} and should be statically rejected. Simulink does it!
Discrete vs Continuous time signals

A signal is discrete if it is activated on a discrete clock.

A clock is termed *discrete* if it has been declared so or if it is the result of a zero-crossing or a sub-sampling of a discrete clock. Otherwise, it is termed *continuous*.

Notation

- **up(e)** tests the zero-crossing of expression e (from negative to positive).

- Handlers have priorities.

 $z = 1 \text{ every up}(x) \mid 2 \text{ every up}(y) \text{ init 0}$

- **last(x)** for the left-limit of signal x.

 $z = \text{last} \ z + 1 \text{ every up}(x) \mid \text{last} \ z - 1 \text{ every up}(y) \text{ init 0}$
Examples

Combinatorial and sequential function (discrete time).

\[
\text{let } \text{add} (x, y) = x + y \\
\text{let node counter}(\text{top, tick}) = o \text{ where} \\
| o = \text{if top then } i \text{ else } 0 fby o + 1 \\
| \text{and } i = \text{if tick then } 1 \text{ else } 0 \\
\text{let edge } x = \text{true } \rightarrow \text{pre } x \leftrightarrow x
\]

- \text{add} get type signature: \(\text{int} \times \text{int} \rightarrow \text{int}\)
- \text{counter} get type signature: \(\text{bool} \times \text{bool} \rightarrow \text{int}\)
- \text{edge} get type signature: \(\forall \alpha.\alpha \rightarrow \alpha\)
Connecting a discrete to continuous time

\[
\text{let hybrid counter_ten(top, tick) = o where}
\]

\[
(* \text{a periodic timer} *)
\]

\[
\text{der(time) = 1.0 /. 10.0 init 0.0 reset 0.0 every zero}
\]

\[
\text{and zero = up(time -. 1.0)}
\]

\[
(* \text{discrete function} *)
\]

\[
\text{and o = counter(top, tick) when zero init 0}
\]

The type signature is: \(\text{bool} \times \text{bool} \xrightarrow{\text{C}} \text{int} \).

Remark: provide ad-hoc programming constructs for periodic timers.
The Bouncing ball

```latex
let hybrid bouncing(x0, y0, x'0, y'0) = (x, y) where
  \text{der}(x) = x' \text{ init } x0

\text{and}
  \text{der}(x') = 0.0 \text{ init } x'0

\text{and}
  \text{der}(y) = y' \text{ init } y0

\text{and}
  \text{der}(y') = -. g \text{ init } y'0 \text{ reset -. 0.9 } \ast \text{ last } y' \text{ every } up(-. y)
```

Its type signature is: \texttt{float \times float \times float} \rightarrow \texttt{float \times float}
The language kernel

- Synchronous (discrete) Lustre-like functions.
- Ordinary Differential Equations (ODE) with reset handlers

\[
\begin{align*}
\lambda & ::= \text{let } k \ f(p) = e \mid d; d \\
\epsilon & ::= x \mid v \mid op(e) \mid e \text{by } e \mid \text{last}(x) \\
 & \quad \mid \text{up}(e) \mid f(e) \mid (e, e) \mid \text{let } E \text{ in } e \\
p & ::= (p, p) \mid x \\
h & ::= e \text{every } e \mid \ldots \mid e \text{every } e \\
E & ::= x = e \mid \text{der}(x) = e \text{init } e \text{ reset } h \\
 & \quad \mid x = h \text{ default } e \text{ init } e \\
 & \quad \mid x = h \text{ init } e \mid E \text{ and } E
\end{align*}
\]
Typing

The type language

\[\sigma ::= \forall \beta_1, \ldots, \beta_n. t \xrightarrow{k} t \]

\[t ::= t \times t \mid \beta \mid bt \]

\[k ::= D \mid C \mid A \]

\[bt ::= \text{float} \mid \text{int} \mid \text{bool} \mid \text{zero} \]

We restrict to a first order language. Extension to higher-order later (but simple).

Initial conditions

\[(+) : \text{int} \times \text{int} \xrightarrow{A} \text{int} \]

\[(=) : \forall \beta. \beta \times \beta \xrightarrow{A} \text{bool} \]

\[\text{if} : \forall \beta. \text{bool} \times \beta \times \beta \xrightarrow{A} \beta \]

\[\text{pre}(.): \forall \beta. \beta \xrightarrow{D} \beta \]

\[.\text{fby}. : \forall \beta. \beta \times \beta \xrightarrow{D} \beta \]

\[\text{up}(.): \text{float} \xrightarrow{C} \text{zero} \]
The Type system

Global and local environment

\[G ::= [f_1 : \sigma_1; \ldots; f_n : \sigma_n] \quad H ::= [] \mid H, x : t \mid H, \text{last}(x) : t \]

Typing predicates

- \(G, H \vdash_k e : t \): Expression \(e \) has type \(t \) and kind \(k \). \(G, H \vdash_k e : t \)

- \(H, H \vdash_k E : H' \): Equation \(E \) produces environment \(H' \) and has kind \(k \).

Subtyping

An combinatorial function can be passed where a discrete or continuous one is expected:

\[\forall k, A \leq k \]
A sketch of Typing rules

(den)
\[G, H \vdash_c e_1 : \text{float} \quad G, H \vdash_c e_2 : \text{float} \quad G, H \vdash h : \text{float} \]
\[G, H \vdash_c \text{der}(x) = e_1 \text{init} e_2 \text{reset} h : [\text{last}(x) : \text{float}] \]

(and)
\[G, H \vdash_k E_1 : H_1 \quad G, H \vdash_k E_2 : H_2 \]
\[G, H \vdash_k E_1 \text{ and } E_2 : H_1 + H_2 \]

(eq)
\[G, H \vdash_k e : t \]
\[G, H \vdash_k x = e : [x : t] \]

(app)
\[t \xrightarrow{k} t' \in \text{Inst}(G(f)) \quad G, H \vdash_k e : t \]
\[G, H \vdash_k f(e) : t' \]
A sketch of the semantics

The base clock: ∂ infinitesimal, the set

$$BaseClock(\partial) = \{n\partial \mid n \in \mathbb{N}^*\}$$

is isomorphic to \mathbb{N}^* as a total order.

For $t = t_n = n\partial \in BaseClock(\partial)$, $t = t_{n-1}$ and $t = t_{n+1}$.

Clock and signals

A clock T is a subset of $BaseClock(\partial)$. A signal s is a total function $s : T \rightarrow V$.

If T is a clock and b a signal $b : T \rightarrow \mathbb{B}$, then T on b defines a subset of T comprising those instants where $b(t)$ is true:

$$T\text{ on } b = \{t \mid (t \in T) \land (b(t) = \text{true})\}$$

If $s : T \rightarrow \mathbb{R}^*$, we write T on $\text{up}(s)$ for the instants when s crosses zero, that is:

$$T\text{ on } \text{up}(s) = \{t^* \mid (t \in T) \land (s(t^*) \leq 0) \land (s(t) > 0)\}$$

The effect of $\text{up}(e)$ is delayed by one cycle.
Discrete vs Continuous

Let x be a signal with clock domain T_x, it is typed \textit{discrete} ($\mathbb{D}(T)$) either if it has been so declared, or if its clock is the result of a zero-crossing or a sub-clock of a discrete clock. Otherwise it is typed \textit{continuous} ($\mathbb{C}(T)$). That is:

1. $\mathbb{C}(\text{BaseClock}(\partial))$

2. If $\mathbb{C}(T)$ and $s : T \mapsto \mathbb{R}$ then $\mathbb{D}(T \text{ on up}(s))$

3. If $\mathbb{D}(T)$ and $s : T \mapsto \mathbb{B}$ then $\mathbb{D}(T \text{ on } s)$

4. If $\mathbb{C}(T)$ and $s : T \mapsto \mathbb{B}$ then $\mathbb{C}(T \text{ on } s)$

\textbf{Correction of the type system:}

When an is typed \mathbb{D} (resp. \mathbb{C}), it is indeed activated on a discrete (resp. continuous) clock.
\[\text{integr}^\#(T)(s)(s_0)(hs)(t) = s'(t) \quad \text{where} \]

\[s'(t) = s_0(t) \quad \text{if} \quad t = \min(T) \]

\[s'(t) = s'(\cdot t) + \partial s(\cdot t) \quad \text{if} \quad \text{handler}^\#(T)(hs)(t) = \text{NoEvent} \]

\[s'(t) = v \quad \text{if} \quad \text{handler}^\#(T)(hs)(t) = \text{Xcrossing}(v) \]

\[\text{up}^\#(T)(s)(t) = \text{false} \quad \text{if} \quad t = \min(T) \]

\[\text{up}^\#(T)(s)(t^\cdot) = \text{true} \quad \text{if} \quad (s(\cdot t) \leq 0) \land (s(t) > 0) \land (t \in T) \]

\[\text{up}^\#(T)(s)(t^\cdot) = \text{false} \quad \text{otherwise} \]
Compilation

The non-standard semantics is not operational. It serves as a reference to establish the correctness of the compilation. Two problem to address:

1. The compilation of the discrete part, that is, the synchronous subset of the language.

2. The compilation of the continuous part which is to be linked to a black-box numerical solver.

Principle

Translate the program into the discrete subset. Compile the result with an existing synchronous compiler such that it verifies the following invariant:

The discrete state, i.e., the values of delays, will not change if all of the zero-crossing conditions are false.
Example (counter)

Add extra input and outputs.

- \(\text{up}(e) \) becomes a fresh boolean input \(z \) and generate an equation \(up_z = e \).
- \(\text{der}(x) = e \text{ init} \ e_0 \) becomes \(dx = e \text{ init} \ e_0 \).
- A continuous state variable becomes an input.

```plaintext
let node counter_ten([z], [time], (top, tick)) =
  (o, [upz], [dtime])
where
  dtime = 1.0 /. 10.0 init 0.0 reset 0.0 every z
and o = counter(top, tick) when z init 0
and upz = time -. 1.0
```

In practice, represent these extra inputs with arrays.

Now, ignoring details of syntax, the function `counter_ten` can be processed by any synchronous compiler, and the generated transition function verifies the invariant.
Interfacing with a numerical solver

We used the Sundials CVODE library. An Ocaml interface has been developed.

Structure of the execution: Run the transition function with two modes, a continuous one and a discrete one

- **Continuous phase:** processed by the numerical solver which stops when a zero-crossing event has been detected.
- **Discrete phase:** compute the consequence of (one or several) zero-crossing(s).

Delta-delayed synchrony vs Instantaneous synchrony

For cascaded zero-crossing, two interpretations of up(e) lead to different results.

- **Delta-delay**: the effect of a zero-crossing is delayed by one instant.

 \[
 T \text{ on } up(s) = \{ t^* \mid (t \in T) \land (s(t^*) \leq 0) \land (s(t) > 0) \}\]

- **Instantaneous**: the effect is immediate.

 \[
 T \text{ on } up(s) = \{ t \mid (t \in T) \land (s(t^*) \leq 0) \land (s(t) > 0) \}\]

We have considered the first solution.

- Simple to compile. But the discrete state can last several instants.

- The second one is (a little) more complicated to compile. But all zero-crossing can be statically scheduled. Only one instant in the discrete state.

Simultaneous events: A zero-crossing is a boolean signal; they are treated with a priority. Exactly what Simulink does.
Conclusion

Proposal

• To mix signals on discrete time and signal on continuous time.

• A Lustre-like proposal to combine stream equations with ODE.

• Divide with a type-system, recycle a existing compiler to use a numerical solver as a black-box.

Extension

• (Hybrid) hierarchical automata can be translated into the basic language

• Implementation in a real language
References

