Divide and recycle: types and compilation for a hybrid synchronous language

Marc Pouzet
LIENS
Institut Universitaire de France
Marc.Pouzet@ens.fr

Paris, Synchronics days
Oct. 2010, 18th

Joint work with Albert Benveniste, Timothy Bourke and Benoit Caillaud
Motivation and Context

- **Explicit vs Implicit** hybrid system modelers: Simulink, Scicos *vs* Modelica.

- In this talk, we consider only explicit ones.

- A lot of work on the formal verification of hybrid systems but relatively few on programming language aspects.

Objective:

- Extend a Lustre-like language where dataflow equations are mixed with ODE.

- Make it conservative, i.e., nothing must change for the discrete subset (same typing, same code generation).

Contribution:

- **Divide** with a novel type system.

- **Recycle** existing tools, synchronous compilers and numerical solvers to execute them.
Parallel composition: homogeneous case

Two equations with discrete time:

\[f = 0.0 \rightarrow \text{pre } f + s \quad \text{and} \quad s = 0.2 \times (x - \text{pre } f) \]

and the initial value problem:

\[\text{der}(y') = -9.81 \quad \text{init} \quad 0.0 \quad \text{and} \quad \text{der}(y) = y' \quad \text{init} \quad 10.0 \]

The first program can be written in any synchronous language, e.g. Lustre.

\[\forall n \in \mathbb{N}^* \quad f_n = f_{n-1} + s_n \quad \text{and} \quad f_0 = 0 \quad \forall n \in \mathbb{N} \quad s_n = 0.2 \times (x_n - f_{n-1}) \]

The second program can be written in any hybrid modeler, e.g. Simulink.

\[\forall t \in \mathbb{R}_+ \quad y'(t) = 0.0 + \int_0^t -9.81 \, dt = -9.81 \, t \]

\[\forall t \in \mathbb{R}_+ \quad y(t) = 10.0 + \int_0^t y'(t) \, dt = 10.0 - 9.81 \int_0^t t \, dt \]

Parallel composition is clear since equations share the same time scale.
Parallel composition: heterogeneous case

Two equations: a signal defined at discrete instants, the other continuously.

\[\text{der}(\text{time}) = 1.0 \text{ init } 0.0 \text{ and } x = 0.0 \text{ fby } x + \text{time} \]

or:

\[x = 0.0 \text{ fby } x +. 1.0 \text{ and } \text{der}(y) = x \text{ init } 0.0 \]

It would be tempting to define the first equation as: \(\forall n \in \mathbb{N} \ x_n = x_{n-1} + \text{time}(n) \)

And the second as:

\[\forall n \in \mathbb{N}^* \ x_n = x_{n-1} + 1.0 \text{ and } x_0 = 1.0 \]

\[\forall t \in \mathbb{R}^+ \ y(t) = 0.0 + \int_0^t x(t) \, dt \]

i.e., \(x(t) \) as a piecewise constant function from \(\mathbb{R}^+ \) to \(\mathbb{R}^+ \) with \(\forall t \in \mathbb{R}^+ \ x(t) = x_{[t]} \).

In both cases, this would be a mistake. \(x \) is defined on a discrete, logical time; \text{time} on an continuous, absolute time.
Equations with reset

Two independent groups of equations.

\[\text{der}(p) = 1.0 \ \text{init} \ 0.0 \ \text{reset} \ 0.0 \ \text{every} \ \text{up}(p - 1.0) \]

and

\[x = 0.0 \ \text{fby} \ x + p \]

and

\[\text{der}(\text{time}) = 1.0 \ \text{init} \ 0.0 \]

and

\[z = \text{up}(\sin (\text{freq} \times \text{time})) \]

Properly translated in Simulink, changing \text{freq} changes the output of \text{x}!

If \text{f} is running on a continuous time basis, what would be the meaning of:

\[y = \text{f}(x) \ \text{every} \ \text{up}(z) \ \text{init} \ 0 \]

All these programs are \textbf{wrongly typed} and should be statically rejected. Simulink does it!
Discrete vs Continuous time signals

A signal is discrete if it is activated on a discrete clock.

A clock is termed *discrete* if it has been declared so or if it is the result of a zero-crossing or a sub-sampling of a discrete clock. Otherwise, it is termed *continuous*.

Notation

- `up(e)` tests the zero-crossing of expression `e` (from negative to positive).
- Handlers have priorities.

 \[
 z = 1 \text{ every } up(x) | 2 \text{ every } up(y) \text{ init } 0
 \]
- `last(x)` for the left-limit of signal `x`.

 \[
 z = \text{last } z + 1 \text{ every } up(x) | \text{last } z - 1 \text{ every } up(y) \text{ init } 0
 \]
Examples

Combinatorial and sequential function (discrete time).

\[
\text{let } \text{add} \ (x,y) = x + y
\]

\[
\text{let } \text{node} \ \text{counter}(\text{top}, \text{tick}) = \begin{array}{l}
o = \text{if} \ \text{top} \ \text{then} \ i \ \text{else} \ 0 \end{array} \ \text{fby} \ o + 1
\]
\[
\text{and } i = \text{if} \ \text{tick} \ \text{then} \ 1 \ \text{else} \ 0
\]

\[
\text{let } \text{edge} \ x = \text{true} \rightarrow \text{pre} \ x \Leftrightarrow x
\]

- add get type signature: \(\text{int} \times \text{int} \xrightarrow{A} \text{int} \)
- counter get type signature: \(\text{bool} \times \text{bool} \xrightarrow{D} \text{int} \)
- edge get type signature: \(\forall \alpha.\alpha \xrightarrow{D} \alpha \)
Connecting a discrete to continuous time

let hybrid counter_ten(top, tick) = o where

(* a periodic timer *)
 der(time) = 1.0 /. 10.0 init 0.0 reset 0.0 every zero

and zero = up(time -. 1.0)

(* discrete function *)

and o = counter(top, tick) when zero init 0

The type signature is: bool \times\ bool \to int.

Remark: provide ad-hoc programming constructs for periodic timers.
The Bouncing ball

let hybrid bouncing(x0,y0,x’0,y’0) = (x,y) where
 der(x) = x’ init x0

and
 der(x’) = 0.0 init x’0

and
 der(y) = y’ init y0

and
 der(y’) = -. g init y’0 reset -. 0.9 * last y’ every up(-. y)

Its type signature is: float × float × float → float × float
The language kernel

- Synchronous (discrete) Lustre-like functions.
- Ordinary Differential Equations (ODE) with reset handlers

\[d ::= \text{let } k \ f(p) = e \mid d; d \]

\[e ::= x \mid v \mid op(e) \mid e \text{by } e \mid \text{last}(x) \]
\[\quad \mid \text{up}(e) \mid f(e) \mid (e \ e) \mid \text{let } E \text{ in } e \]

\[p ::= (p \ p) \mid x \]

\[h ::= e \text{ every } e \mid ... \mid e \text{ every } e \]

\[E ::= x = e \mid \text{der}(x) = e \text{ init } e \text{ reset } h \]
\[\quad \mid x = h \text{ default } e \text{ init } e \]
\[\quad \mid x = h \text{ init } e \mid E \text{ and } E \]
Typing

The type language

\[\sigma ::= \forall \beta_1 \ldots \beta_n. t \xrightarrow{k} t \]
\[t ::= t \times t \mid \beta \mid bt \]
\[k ::= D \mid C \mid A \]
\[bt ::= \text{float} \mid \text{int} \mid \text{bool} \mid \text{zero} \]

We restrict to a first order language. Extension to higher-order later (but simple).

Initial conditions

\[(+) ::= \text{int} \times \text{int} \xrightarrow{A} \text{int} \]
\[(=) ::= \forall \beta. \beta \times \beta \xrightarrow{A} \text{bool} \]
\[\text{if} ::= \forall \beta. \text{bool} \times \beta \times \beta \xrightarrow{A} \beta \]
\[\text{pre(.)} ::= \forall \beta. \beta \xrightarrow{D} \beta \]
\[\text{fby.} ::= \forall \beta. \beta \times \beta \xrightarrow{D} \beta \]
\[\text{up(.)} ::= \text{float} \xrightarrow{C} \text{zero} \]
The Type system

Global and local environment

\[G ::= [f_1 : \sigma_1; \ldots; f_n : \sigma_n] \quad H ::= [] | H x : t | H \text{ last}(x) : t \]

Typing predicates

- \(G \ H \vdash_k e : t \): Expression \(e \) has type \(t \) and kind \(k \). \(G \ H \vdash_k e : t \)
- \(H \ H \vdash_k E : H' \): Equation \(E \) produces environment \(H' \) and has kind \(k \).

Subtyping

An combinatorial function can be passed where a discrete or continuous one is expected:

\[\forall k \ A \leq k \]
A sketch of Typing rules

\[(\text{der})\]
\[
G, H \vdash_c e_1 : \text{float} \quad G, H \vdash_c e_2 : \text{float} \quad G, H \vdash h : \text{float}
\]
\[
G, H \vdash_c \text{der}(x) = e_1 \text{ init } e_2 \text{ reset } h : [\text{last}(x) : \text{float}]
\]

\[(\text{and})\]
\[
G, H \vdash_k E_1 : H_1 \quad G, H \vdash_k E_2 : H_2
\]
\[
G, H \vdash_k E_1 \text{ and } E_2 : H_1 + H_2
\]

\[(\text{eq})\]
\[
G, H \vdash_k e : t
\]
\[
G, H \vdash_k x = e : [x : t]
\]

\[(\text{app})\]
\[
t \xrightarrow{k} t' \in \text{Inst}(G(f)) \quad G, H \vdash_k e : t
\]
\[
G, H \vdash_k f(e) : t'
\]
A sketch of the semantics

The base clock: ∂ infinitesimal, the set

$$BaseClock(\partial) = \{n\partial \mid n \in \mathbb{N}^*\}$$

is isomorphic to \mathbb{N}^* as a total order.

For $t = t_n = n\partial \in BaseClock(\partial)$, $\bullet t = t_{n-1}$ and $t^\bullet = t_{n+1}$.

Clock and signals A clock T is a subset of $BaseClock(\partial)$. A signal s is a total function $s : T \rightarrow V$.

If T is a clock and b a signal $b : T \rightarrow \mathbb{B}$, then T on b defines a subset of T comprising those instants where $b(t)$ is true:

$$T \text{ on } b = \{t \mid (t \in T) \land (b(t) = \text{true})\}$$

If $s : T \rightarrow \mathbb{R}^*$, we write T on $\text{up}(s)$ for the instants when s crosses zero, that is:

$$T \text{ on up}(s) = \{t^\bullet \mid (t \in T) \land (s(\bullet t) \leq 0) \land (s(t) > 0)\}$$

The effect of up(e) is delayed by one cycle.
Discrete vs Continuous

Let \(x \) be a signal with clock domain \(T_x \), it is typed \textit{discrete} (\(\text{D}(T) \)) either if it has been so declared, or if its clock is the result of a zero-crossing or a sub-clock of a discrete clock. Otherwise it is typed \textit{continuous} (\(\text{C}(T) \)). That is:

1. \(\text{C}(\text{BaseClock}(\partial)) \)
2. If \(\text{C}(T) \) and \(s : T \mapsto *\mathbb{R} \) then \(\text{D}(T \text{ on up}(s)) \)
3. If \(\text{D}(T) \) and \(s : T \mapsto \mathbb{B} \) then \(\text{D}(T \text{ on } s) \)
4. If \(\text{C}(T) \) and \(s : T \mapsto \mathbb{B} \) then \(\text{C}(T \text{ on } s) \)

Correction of the type system:

When an is typed \(\text{D} \) (resp. \(\text{C} \)), it is indeed activated on a discrete (resp. continuous) clock.
integr\#(T)(s)(s_0)(hs)(t) = s'(t) \quad \text{where}

s'(t) = s_0(t) \quad \text{if } t = \min(T)

s'(t) = s'('t) + \partial s('t) \quad \text{if } \text{handler}\#(T)(hs)(t) = \text{NoEvent}

s'(t) = v \quad \text{if } \text{handler}\#(T)(hs)(t) = \text{Xcrossing}(v)

up\#(T)(s)(t) = \text{false} \quad \text{if } t = \min(T)

up\#(T)(s)(t\text{•}) = \text{true} \quad \text{if } (s('t) \leq 0) \land (s(t) > 0) \text{ and } (t \in T)

up\#(T)(s)(t\text{•}) = \text{false} \quad \text{otherwise}
Compilation

The non-standard semantics is not operational. It serves as a reference to establish the correctness of the compilation. Two problem to address:

1. The compilation of the discrete part, that is, the synchronous subset of the language.

2. The compilation of the continuous part which is to be linked to a black-box numerical solver.

Principle

Translate the program into the discrete subset. Compile the result with an existing synchronous compiler such that it verifies the following invariant:

The discrete state, i.e., the values of delays, will not change if all of the zero-crossing conditions are false.
Example (counter)

Add extra input and outputs.

- \(\text{up}(e) \) becomes a fresh boolean input \(z \) and generate an equation \(\text{up}_z = e \).
- \(\text{der}(x) = e\ \text{init}\ e_0 \) becomes \(dx = e\ \text{init}\ e_0 \).
- A continuous state variable becomes an input.

```plaintext
let node counter_ten([z], [time], (top, tick)) =
  (o, [upz], [dtime])

where
  dtime = 1.0 /. 10.0\ \text{init}\ 0.0\ \text{reset}\ 0.0\ \text{every}\ z
and\ o = counter(top, tick)\ \text{when}\ z\ \text{init}\ 0
and\ upz = time -. 1.0
```

In practice, represent these extra inputs with arrays.

Now, ignoring details of syntax, the function `counter_ten` can be processed by any synchronous compiler, and the generated transition function verifies the invariant.
Interfacing with a numerical solver

We used the Sundials CVODE library. An Ocaml interface has been developed.

Structure of the execution: Run the transition function with two modes, a continuous one and a discrete one

- **Continuous phase:** processed by the numerical solver which stops when a zero-crossing event has been detected.

- **Discrete phase:** compute the consequence of (one or several) zero-crossing(s).
Delta-delayed synchrony vs Instantaneous synchrony

For cascaded zero-crossing, two interpretations of \(\text{up}(e) \) lead to different results.

- **Delta-delay**: the effect of a zero-crossing is delayed by one instant.

\[
T \text{ on } \text{up}(s) = \{ t^\bullet \mid (t \in T) \land (s(\cdot t) \leq 0) \land (s(t) > 0) \}
\]

- **Instantaneous**: the effect is immediate.

\[
T \text{ on } \text{up}(s) = \{ t \mid (t \in T) \land (s(\cdot t) \leq 0) \land (s(t) > 0) \}
\]

We have considered the first solution.

- Simple to compile. But the discrete state can last several instants.
- The second one is (a little) more complicated to compile. But all zero-crossing can be statically scheduled. Only one instant in the discrete state.

Simultaneous events: A zero-crossing is a boolean signal; they are treated with a priority. Exactly what Simulink does.
Conclusion

Proposal

• To mix signals on discrete time and signal on continuous time.

• A Lustre-like proposal to combine stream equations with ODE.

• Divide with a type-system, recycle an existing compiler to use a numerical solver as a black-box.

Extension

• (Hybrid) hierarchical automata can be translated into the basic language

• Implementation in a real language
References

