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Motivation and Context

• Explicit vs Implicit hybrid system modelers: Simulink, Scicos vs Modelica.

• In this talk, we consider only explicit ones.

• A lot of work on the formal verification of hybrid systems but relatively few on
programming language aspects.

Objective:

• Extend a Lustre-like language where dataflow equations are mixed with ODE.

• Make it conservative, i.e., nothing must change for the discrete subset (same
typing, same code generation).

Contribution:

• Divide with a novel type system.

• Recycle existing tools, synchronous compilers and numerical solvers to execute
them.
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Parallel composition: homogeneous case

Two equations with discrete time:

f = 0.0 -> pre f + s and s = 0.2 * (x - pre f)

and the initial value problem:

der(y’) = -9.81 init 0.0 and der(y) = y’ init 10.0

The first program can be written in any synchronous language, e.g. Lustre.

∀n ∈ IN∗, fn = fn−1 + sn and f0 = 0 ∀n ∈ IN, sn = 0.2 ∗ (xn − fn−1)

The second program can be written in any hybrid modeler, e.g. Simulink.

∀t ∈ IR+, y′(t) = 0.0 +
∫ t

0
−9.81 dt = −9.81 t

∀t ∈ IR+, y(t) = 10.0 +
∫ t

0
y′(t) dt = 10.0− 9.81

∫ t

0
t dt

Parallel composition is clear since equations share the same time scale.
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Parallel composition: heterogeneous case

Two equations: a signal defined at discrete instants, the other continuously.

der(time) = 1.0 init 0.0 and x = 0.0 fby x + time

or:

x = 0.0 fby x +. 1.0 and der(y) = x init 0.0

It would be tempting to define the first equation as: ∀n ∈ IN, xn = xn−1 + time(n)

And the second as:

∀n ∈ IN∗, xn = xn−1 + 1.0 and x0 = 1.0

∀t ∈ IR+, y(t) = 0.0 +
∫ t

0
x(t) dt

i.e., x(t) as a piecewise constant function from IR+ to IR+ with ∀t ∈ IR+, x(t) = xbtc.

In both cases, this would be a mistake. x is defined on a discrete, logical time; time
on an continuous, absolute time.
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Equations with reset

Two independent groups of equations.

der(p) = 1.0 init 0.0 reset 0.0 every up(p - 1.0)

and

x = 0.0 fby x + p

and

der(time) = 1.0 init 0.0

and

z = up(sin (freq * time))

Properly translated in Simulink, changing freq changes the output of x!

If f is running on a continuous time basis, what would be the meaning of:

y = f(x) every up(z) init 0

All these programs are wrongly typed and should be statically rejected. Simulink
does it.
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Discrete vs Continuous time signals

A signal is discrete if it is activated on a discrete clock.

A clock is termed discrete if it has been declared so or if it is the result of a
zero-crossing or a sub-sampling of a discrete clock. Otherwise, it is termed
continuous.

Notation

• up(e) tests the zero-crossing of expression e (from negative to positive).

• If x = up(e), all handlers using x are governed by the same zero-crossing.

• Handlers have priorities.

z = 1 every up(x) | 2 every up(y) init 0

• last(x) for the left-limit of signal x.

z = last z + 1 every up(x) | last z - 1 every up(y) init 0

6/25



Examples

Combinatorial and sequential function (discrete time).

let add (x,y) = x + y

let node counter(top, tick) = o where

o = if top then i else 0 fby o + 1

and i = if tick then 1 else 0

let edge x = true -> pre x <> x

• add get type signature: int× int
A→ int

• counter get type signature: bool× bool
D→ int

• edge get type signature: ∀α.α
D→ bool
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Connecting a discrete to continuous time

let hybrid counter_ten(top, tick) = o where

(* a periodic timer *)

der(time) = 1.0 /. 10.0 init 0.0 reset 0.0 every zero

and zero = up(time -. 1.0)

(* discrete function *)

and o = counter(top, tick) every zero init 0

The type signature is: bool× bool
C→ int.

Remark: provide ad-hoc programming constructs for periodic timers.
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The Bouncing ball

let hybrid bouncing(x0,y0,x’0,y’0) = (x,y) where

der(x) = x’ init x0

and

der(x’) = 0.0 init x’0

and

der(y) = y’ init y0

and

der(y’) = -. g init y’0 reset -. 0.9 *. last y’ every up(-. y)

Its type signature is: float× float× float
C→ float× float
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The language kernel

• Synchronous (discrete) Lustre-like functions.

• Ordinary Differential Equations (ODE) with reset handlers

d ::= let k f(p) = e | d; d

e ::= x | v | op(e) | e fby e | last(x)

| up(e) | f(e) | (e, e) | let E in e

p ::= (p, p) | x

h ::= e every e || ... || e every e

E ::= x = e | der(x) = e init e reset h

| x = h default e init e

| x = h init e | E and E
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Typing

The type language

σ ::= ∀β1, ..., βn.t
k→ t

t ::= t× t | β | bt
k ::= D | C | A
bt ::= float | int | bool | zero

We restrict to a first order language. Extension to higher-order later (but simple).

Initial conditions
(+) : int× int

A→ int

(=) : ∀β.β × β
A→ bool

if : ∀β.bool× β × β
A→ β

pre(.) : ∀β.β
D→ β

. fby . : ∀β.β × β
D→ β

up(.) : float
C→ zero
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The Type system

Global and local environment

G ::= [f1 : σ1; ...; fn : σn] H ::= [ ] | H,x : t | H, last(x) : t

Typing predicates

• G, H `k e : t: Expression e has type t and kind k. G, H `k e : t

• H,H `k E : H ′: Equation E produces environment H ′ and has kind k.

Subtyping

An combinatorial function can be passed where a discrete or continuous one is
expected:

∀k, A ≤ k
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A sketch of Typing rules

(der)

G, H `C e1 : float G, H `C e2 : float G, H ` h : float

G, H `C der(x) = e1 init e2 reset h : [last(x) : float]

(and)

G, H `k E1 : H1 G, H `k E2 : H2

G, H `k E1 and E2 : H1 + H2

(eq)

G, H `k e : t

G, H `k x = e : [x : t]

(app)

t
k→ t′ ∈ Inst(G(f)) G, H `k e : t

G, H `k f(e) : t′
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(var)

G, H + [x : t] `k x : t

(var-last)

G, H + [last(x) : t] `k x : t

(eq-discrete)

G, H ` h : t G, H `C e : t

G, H `C x = h init e : [last(x) : t]

(handler)

∀i ∈ {1, .., n} G, H `D ei : t G, H `C zi : zero

G, H ` e1 every z1 || ... || en every zn : t

Property 1 (Subtyping) The following property holds:

G, H `A e : t ⇒ (G, H `C e : t) ∧ (G, H `D e : t)
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A sketch of the semantics

The sets ?R and ?N as the non-standard extensions of R and N.

• ?N contains elements that are infinitely large (?n > n for any n ∈ N).

• ?R contains elements that are infinitesimal, 0 < ∂ < t for any t ∈ R+.

The base clock: ∂ infinitesimal, the set

BaseClock(∂) = {n∂ | n ∈ ?N}

is isomorphic to ?N as a total order. For every t ∈ R+ and any ε > 0, there exists
t′ ∈ BaseClock(∂) such that |t′ − t| < ε expressing that BaseClock(∂) is dense in R+.

BaseClock(∂) is a natural candidate for a time index set and ∂ is the corresponding
time basis.

For t = tn = n∂ ∈ BaseClock(∂), •t = tn−1 and t• = tn+1.
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A sketch of the semantics

Reason “as if” the time was discrete and global. The idea of using non standard
analysis for the semantics of systems has been recognized by Bliudze et Krob.

Clock and signals A clock T is a subset of BaseClock(∂). A signal s is a total
function s : T 7→ V .

If T is a clock and b a signal b : T 7→ B, then T on b defines a subset of T comprising
those instants where b(t) is true:

T on b = {t | (t ∈ T ) ∧ (b(t) = true)}

If s : T 7→ ?R, we write T on up(s) for the instants when s crosses zero, that is:

T on up(s) = {t• | (t ∈ T ) ∧ (s(•t) ≤ 0) ∧ (s(t) > 0)}

The effect of up(e) is delayed by one cycle.
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Discrete vs Continuous

Let x be a signal with clock domain Tx, it is typed discrete (D(T )) either if it has
been so declared, or if its clock is the result of a zero-crossing or a sub-clock of a
discrete clock. Otherwise it is typed continuous (C(T )). That is:

1. C(BaseClock(∂))

2. If C(T ) and s : T 7→ ?R then D(T on up(s))

3. If D(T ) and s : T 7→ B then D(T on s)

4. If C(T ) and s : T 7→ B then C(T on s)

Correction of the type system:

When an is typed D (resp. C), it is indeed activated on a discrete (resp. continuous)
clock.

Infinitesimal independence: For well-typed programs, the ideal semantics does
not depend on the choice of the infinitesimal.
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integr#(T )(s)(s0)(hs)(t) = s′(t) where

s′(t) = s0(t) if t = min(T )

s′(t) = s′(•t) + ∂s(•t) if handler#(T )(hs)(t) = NoEvent

s′(t) = v if handler#(T )(hs)(t) = Xcrossing(v)

up#(T )(s)(t) = false if t = min(T )

up#(T )(s)(t•) = true if (s(•t) ≤ 0) ∧ (s(t) > 0) and (t ∈ T )

up#(T )(s)(t•) = false otherwise
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Compilation

The non-standard semantics is not operational. It serves as a reference to establish
the correctness of the compilation. Two problems to address:

1. The compilation of the discrete part, that is, the synchronous subset of the
language.

2. The compilation of the continuous part which is to be linked to a black-box
numerical solver.

Principle

Translate the program into the discrete subset. Compile the result with an existing
synchronous compiler such that it verifies the following invariant:

The discrete state, i.e., the values of delays, will not change if all of the
zero-crossing conditions are false.
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Example (counter)

Add extra input and outputs.

• up(e) becomes a fresh boolean input z and generate an equation upz = e.

• der(x) = e init e0 becomes dx = e init e0.

• A continuous state variable becomes an input.

let node counter_ten([z], [time], (top, tick)) = (o, [upz], [dtime])

where

dtime = 1.0 /. 10.0 init 0.0 reset 0.0 every z

and o = counter(top, tick) every z init 0

and upz = time -. 1.0

In practice, represent these extra inputs with arrays.

Now, ignoring details of syntax, the function counter_ten can be processed by any
synchronous compiler, and the generated transition function verifies the invariant.
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Interfacing with a numerical solver

We used the Sundials CVODE library. An Ocaml interface has been developed.

Structure of the execution: Run the transition function with two modes, a
continuous one and a discrete one

• Continuous phase: processed by the numerical solver which stops when a
zero-crossing event has been detected.

• Discrete phase: compute the consequence of (one or several) zero-crossing(s).

DI C D
/ init

zc

no-zc zc
no-zc / reinit
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Delta-delayed synchrony vs Instantaneous synchrony

For cascaded zero-crossing, two interpretations of up(e) lead to different results.

• Delta-delay: the effect of a zero-crossing is delayed by one instant.

T on up(s) = {t• | (t ∈ T ) ∧ (s(•t) ≤ 0) ∧ (s(t) > 0)}

• Instantaneous: the effect is immediate.

T on up(s) = {t | (t ∈ T ) ∧ (s(•t) ≤ 0) ∧ (s(t) > 0)}

We have considered the two solutions.

• The first one is simpler to compile. But the discrete state can last several
instants.

• The second one is (a little) more complicated to compile. But all zero-crossing
can be statically scheduled. Only one instant in the discrete state.

Simultaneous events A zero-crossing is a boolean signal; they are treated with a
priority. Exactly what Simulink does.
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Discussion: synchronous vs Asynchronous events

Zero-crossing can be ordered in a reset construct.

x = (last x + 1) every up(x1)

| (last x - 1) every up(x2) init 0.0

x is incremented when up(x1) is true and decremented when up(x2) is true.

• When both are true, conditions are taken in sequence: the first branch is
executed only so one zero-crossing is discarded.

• This makes the behavior reproducible (from one simulation to the other with
the same program). Possible extension with boolean calculus on events.

x = (last x) every up(x1) & up(x2)

| (last x + 1) every up(x1)

| (last x - 1) every up(x2) init 0.0

• Is-it (physically) meaningfull? Numerical solvers indicate when several
simultaneous zero-crossing occur

• Missing an event is questionnable (see Ramine Nikoukhah’s discussion on the
topic). Here, we prefer to forbid non determinism.
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Conclusion

Proposal

• Mix signals on discrete and continuous time.

• A Lustre-like proposal to combine stream equations with ODE.

• Divide with a type-system, recycle a existing compiler to use a numerical solver
as a black-box.

• A prototype implementation.

Extension

• Add timers (periodic clocks) as particular zero-crossing events.

• Hybrid (hierarchical) automata.

• Combination of solvers, i.e., use different solvers at the same time.
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