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Abstract—We give a denotational framework (a “meta model”)
within which certain properties of models of computation can be
compared. It describes concurrent processes in general terms as
sets of possible behaviors. A process is determinate if, given the
constraints imposed by the inputs, there are exactly one or exactly
zero behaviors. Compositions of processes are processes with
behaviors in the intersection of the behaviors of the component
processes. The interaction between processes is through signals,
which are collections of events. Each event is a value-tag pair,
where the tags can come from a partially ordered or totally
ordered set. Timed models are where the set of tags is totally
ordered. Synchronous events share the same tag, and synchronous
signals contain events with the same set of tags. Synchronous
processes have only synchronous signals as behaviors. Strict
causality (in timed tag systems) and continuity (in untimed tag
systems) ensure determinacy under certain technical conditions.
The framework is used to compare certain essential features of
various models of computation, including Kahn process networks,
dataflow, sequential processes, concurrent sequential processes
with rendezvous, Petri nets, and discrete-event systems.

I. INTRODUCTION

AMAJOR impediment to further progress in modeling
and specification of concurrent systems is the confusion

that arises from different usage of common terms. Terms
like “synchronous,” “discrete event,” “dataflow,” “signal,”
and “process” are used in different communities to mean
significantly different things. To address this problem, we
give a formalism that will enable description, abstraction, and
differentiation of models of computation. It is not intended
as a “grand unifying model of computation” but rather as a
“meta model” within which certain properties of the models
of computation can be studied. To be sufficiently precise, this
language is a mathematical one. It isdenotational, in the
sense of Scott and Strachey [38], rather than operational, to
avoid associating the semantics of a model of computation
with an execution policy. In many denotational semantics,
the denotationof a program fragment is a partial function
or a relation on the state. This approach does not model
concurrency well [40], where the notion of a single global
state may not be well defined. In our approach, the denotation
of a process is a partial function or a relation on signals, and
hence we can model concurrency well.
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We define precisely a process, signal, and event, and give a
framework for identifying the essential properties of discrete-
event systems, dataflow, rendezvous-based systems, Petri nets,
and process networks. Our definitions of these terms some-
times conflict with common usage in some communities, and
even with our own prior usage in certain cases. We have made
every attempt to maintain the spirit of that usage with which
we are familiar, but have discovered that terms are used in
contradictory ways (sometimes even within a community).
Maintaining consistency with all prior usage is impossible
without going to the unacceptable extreme of abandoning the
use of these terms altogether.

Our objectives overlap somewhat with prior efforts to
provide mathematical models for concurrent systems, such
as communicating sequential processes (CSP) [19], calculus
of communicating systems (CCS) [29], event structures [41],
action structures [30], and interaction categories [1], and pre-
vious efforts to formally compare models of computation [37],
[42]. We do not have a good answer for the question “do we
really need yet another meta model for concurrent systems?”
except perhaps that our objectives are somewhat different and
result in a model that has some elements in common with
other models, but overall appears to be somewhat simpler.
It is more descriptive of concurrency models (more “meta”)
than some process calculi, which might for example assume a
single interaction mechanism, such as rendezvous, and show
how other interaction mechanisms can be described in terms of
it. We assume no particular interaction mechanism, and show
how to use the framework to describe and compare a number
of interaction mechanisms (including rendezvous). We devote
most of our attention, however, to interaction mechanisms in
practical use for designing electronic systems, such as discrete-
event, rendezvous, and dataflow. The latter two are aligned
with the “atomicity” and “precedence constraints” interaction
patterns of Agha’s actors model [2], but we add the discrete-
event model because of our interest in physical modeling of
digital electronic systems.

The prior frameworks closest to ours, Abramsky’s interac-
tion categories [1] and Winskell’s event structures [41], have
been presented as categorical concepts. We avoid category
theory here because it does not appear to be necessary for
our more limited objectives, and because we wish to make the
concepts more accessible to a wider audience. But it would
be wrong to not acknowledge the influence. We limit the
mathematics to sets, posets, relations, and functions.

Section II generically develops the notion of tagged sig-
nals, systems, and composition of systems. Section III illus-
trates some tag systems for various models of computation.
Section IV shows how tag systems can model time and causal-
ity, an essential property of concurrent models of computation.
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II. THE TAGGED SIGNAL MODEL

A. Signals

Given a set ofvalues and a set oftags , we define
an event to be a member of , i.e., an event has a
tag and a value. We will use tags to model time, precedence
relationships, synchronization points, and other key properties
of a model of computation. The values represent the operands
and results of computation.

We define asignal to be a set of events. A signal can be
viewed as a subset of , or as a member of thepowerset

(the set of all subsets of ). A functional
signal or proper signalis a (possibly partial) function from
to . By “partial function” we mean a function that may be
defined only for a subset of . By “function” we mean that
if and , then . We
call the set of all signals , where of course .
It is often useful to form atuple of signals, where is
a natural number.1 The set of all such tuples will be denoted

. Position in the tuple serves the same purposes as naming
of signals in other process calculi. Reordering of the tuple
serves the same purposes as renaming. A similar use of tuples
is found in the interaction categories of Abramsky [1].

The empty signal (one with no events) will be denoted by,
and the tuple of empty signals by, where the number of
empty signals in the tuple will be understood from the context.
These are signals like any other, so and . For
any signal (ordinary set union). For any tuple

, where by the notation we mean the pointwise
union of the sets in the tuple.

In some models of computation, the setof values includes
a special value (called “bottom”), which indicates the
absence of a value. Notice that while it might seem intuitive
that for any , this would violate
(suppose that already contains an event at). Thus, it is
important to view as an ordinary member of the setlike
any other member.

B. Processes

In the most general form, aprocess is a subset of
for some . A particular is said tosatisfythe process
if . An that satisfies a process is called abehaviorof
the process. Thus aprocessis a set of possiblebehaviors. For

, process may also be viewed as arelation2 between
the signals in

1) Composing Processes:Since a process is a set of be-
haviors, a composition of processes should be simply the
intersection of the behaviors of each of the processes. A
behavior of the composition process should be a behavior of
each of the component processes. However, we have to use
some care in forming this intersection. Before we can form
such an intersection, each process to be composed must be

1An alternative notation would name rather than number the signals in the
tuple. Although this might be more elegant, it would require more complicated
notation to manipulate tuples, so we stick to the simpler form.

2A relation between setsA andB is simply a subset ofA�B.

Fig. 1. Composition of independent processes.

Fig. 2. An interconnection of processes.

defined as a subset of the same set of signals, called by
some researchers itssort [3].

Consider, for example, the two processes and in
Fig. 1. These are each subsets of, but they are of different
sorts. relates an entirely different set of signals than. The
composition involves eight signals, so to form the composition,
we must first augment and to define them in terms of
subsets of . Let

(1)

These are of the same sort, and composition is simply their
intersection

(2)

This can be simplified to

(3)

This parallel composition of noninteracting processes is simply
the cross product3 of the sets of behaviors. Since there is no
interaction between the processes, a behavior of the composite
process consists of any behavior of together with any
behavior of . A behavior of is an eight-tuple, where the
first four elements are a behavior of and the remaining four
elements are a behavior of .

3The tensor product is used in the interaction categories of Abramsky [1]
for the same composition. Here it follows from the intersection of behaviors.
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Fig. 3. A self-loop.

More interesting systems have processes that interact. Con-
sider Fig. 2. Aconnection is a particularly simple
process where two (or more) of the signals in the-tuple are
constrained to be identical. For example, in Fig. 2, ,
where

if (4)

can be given similarly as . There is nothing
special about connections as processes, but they are useful
to couple the behaviors of other processes. For example, in
Fig. 2, the composite process may be given as

(5)

where the first set is given by (3). That is, any that
satisfies the composite process must be a member of each of

, , and .
Given processes in of the same sort (some of which

may be connections), a processcomposed of these processes
is given by

(6)

where is the collection of processes .
As suggested by the gray outline in Fig. 2, it makes little

sense to expose all the signals of a composite process. In
Fig. 2, for example, since signals and are identical to

and , respectively, it would make more sense to “hide”
two of these signals and to model the composition as a subset
of rather than . This changes the sort of the composite,
which may make it easier to compose it again.

Let be an ordered set of indexes in
the range , and define theprojection of

onto by .
Thus, the ordered set of indexes defines the signals that are
part of the projection and the order in which they appear
in the resulting tuple. The projection can be generalized to
processes. Given a process , define the projection

to be the set such that there exists where
. Thus, in Fig. 2, we can define the composite

process , where
. Projection then facilitates composition of

this process with others, since the others will not need to be
augmented to involve irrelevant signals. A similar approach is
used in [5] for process composition within a more specialized
framework.

Composition is set intersection. Cross product and projec-
tion are syntactic operations that merely give process defini-
tions the right sort to enable composition by intersection. They
play no semantic role in composition.

If the two signals in a connection are associated with the
same process, as shown in Fig. 3, then the connection is called
a self-loop. For the example in Fig. 3, ,
where . For simplicity, we will often denote
self-loops with only a single signal, obviating the need for
the projection or the connection. This is simply a syntactic
shorthand; if two signals are constrained to be identical, we
lose nothing by considering only one of the signals.

Note that this projection operator is really quite versatile.
There are several other ways we could have used it to
define the composition in Fig. 2, even avoiding connection
processes altogether. The operator can also be used to construct
arbitrary permutations of signals, accomplishing the same
end as renaming and hiding in other process calculi. Some
basic examples are shown in Fig. 4. Note that the numbering
of signals (compared with names) affects the manipulation
of processes to give them compatible sorts. The projection
operator is used for permutation in Fig. 4(b). Note further
that Fig. 4(d) shows that the connection processes are easily
replaced by more carefully constructed intersections.

2) Inputs and Outputs:Many processes (but by no means
all) have the notion of inputs, which are events or signals that
are defined outside the process. Formally, aninput to a process
in is an externally imposed constraint such that

is the total set of acceptable behaviors.
Often we wish to talk about the behaviors of a process for

a set of possible inputs, which we denote . That
is, any input . In this case, we discuss the process and
its possible inputs together, .

Within this definition, there is a very rich set of ways
to model inputs. Inputs could be as simple as asserting the
presence of an individual event in a particular signal. For
example, suppose that in Fig. 3, the input is a single event

in . Then

(7)

Note that this does not constrain the behaviors of the process
to have only a single event in . It merely constrains the
behaviors to have the eventin . Suppose further that we
wish to consider the behaviors of Fig. 3 when the input is any
single event in . Then we can define to be the set of all
sets of the form (7) (i.e., for each ).

More commonly, the inputs define an entire signal or set of
signals. We call any signal that is entirely defined externally
an input signal. Consider a process where of the

signals are input signals. Suppose these have indexes in
the set . Then each element is a set

for some . In other words, the input
completely defines , a tuple of input signals. By saying
that is the set of acceptable behaviors, we simply say
that the input signals must appear within any behavior tuple.

A process and its possible inputs is said to beclosed
if , a set with only one element, . Since the
set of behaviors is , there are no input constraints
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(a) (b) (c)

(d) (e)

Fig. 4. Examples of composition of processes.

Fig. 5. A partitioning of the signals in Fig. 1 into inputs and outputs.

Fig. 6. Composition of a functional process with a source process.

in a closed process. A process and its possible inputs areopen
if they are not closed.

So far, however, we have not captured the notion of a
process “determining” the values of the outputs depending on
the inputs. To do this, consider an index setfor input
signals and an index set for output signals. A process is
functional4 with respect to if for every and

4A relationR � A�B is a function if for every(a; b) 2 R and(a; c) 2 R;
b = c.

Fig. 7. Feedback (a directed self-loop).

Fig. 8. Communicating sequential processes.

where , it follows that . For
such a process, there is a single-valued mapping
such that for all . A process istotal
if . In this case, is defined over all . It is
partial otherwise, i.e., .

Note that a given process may be functional with respect
to more than one pair of index sets . A connection, for
example , is functional with respect to either
or . In both cases, is the identity function.

In Figs. 2–4, there is no indication of which signals might
be inputs and which might be outputs. Fig. 5 modifies Fig. 2
by adding arrowheads to indicate inputs and outputs. In
this case, might be functional with respect to

.
3) Determinacy: A process isdeterminateif for any input

it has exactly one behavior or exactly no behaviors;
i.e., or , where is the size of
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Fig. 9. A simple dataflow process that consumes and produces a single token
on each firing.

Fig. 10. A deadlocked dataflow graph.

Fig. 11. More complicated dataflow actors.

the set . Otherwise, it isnondeterminate. Thus, whether a
process is determinate or not depends on our characterization

of the set of possible inputs.
A process in that is functional with respect to

is obviously determinate if and together contain all the
indexes in . Given the input signals, the output
signals are determined (or there is unambiguously no behavior,
if the function is partial).

In Fig. 4, if all processes are functional with inputs on the
left and outputs on the right, then obviously the composition
processes are also functional. Thus, the compositions in Fig. 4
preserve determinacy. A slightly more subtle situation involves
sourceprocesses (processes with outputs but no inputs), like
the example in Fig. 6. This composition will be functional
(and hence determinate) if is functional and has exactly
one behavior.

A much more complicated situation involves feedback, as
illustrated by the example in Fig. 7. Whether determinacy is
preserved depends on the tag system and more details about
the process.

(a) (b) (c)

(d) (e) (f)

Fig. 12. Some simple Petri nets.

III. T AG SYSTEMS

So far, tags have had no explicit role in the description of
processes. But we have also said nothing about the opera-
tional interaction of processes. Do they synchronize? Are they
causal? Under what conditions exactly are they determinate?
To answer these questions, we need structure in the system of
tags. This structure turns out to be the major distinguishing
feature between various concurrent models of computation.

Frequently, a natural interpretation for the tags is that they
mark time in a physical system. Neglecting relativistic effects,
time is the same everywhere, so tagging events with the time
at which they occur puts them in a certain order (if two events
are genuinely simultaneous, then they have the same tag). Such
a simple model of time is certainly intuitively appealing.

For specifying systems, however, the global ordering of
events in a timed system may be overly restrictive. A specifi-
cation should not be constrained by one particular physical
implementation, and therefore need not be based on the
semantics of the physical world. Thus, for specification, often
the tagsshould not mark time, but should instead reflect
ordering induced by causality (this will be explained below).

In a modelof a physical system, by contrast, tagging the
events with the time at which they occur may seem natural.
They must occur at a particular time, and if we accept that
time is uniform (i.e., again neglecting relativistic effects),
then our model should reflect the ensuing ordering of events.
However, when modeling a large concurrent system, the model
should probably reflect the inherent difficulty in maintaining
a consistent view of time in a distributed system [14], [21],
[28], [33]. This difficulty appears even in relatively small
systems, such as very large scale integrated chips, where
clock distribution is challenging. If an implementation cannot
maintain a consistent view of time across its subsystems, then
it may be inappropriate for its model to do so (it depends on
what questions the model is expected to answer).

The central role of a tag system is to establish ordering
among events. Anordering relationon the set is a reflexive,
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transitive, antisymmetric relation on members of the set. We
denote this relation using the template “.” Reflexivemeans
that , transitive means that and imply
that , andantisymmetricmeans that and
imply that , for all in . Of course, we can
define a related irreflexive relation, denoted “,” where
if and . The ordering of the tags induces an
ordering of events as well. Given two events and

if and only if . A set with an
ordering relationship is called anordered set. If the ordering
relationship is partial (there exist such that neither

nor ), then is called apartially ordered setor
poset [10], [39].

A. Timed Models of Computation

A timed model of computationhas a tag system where is
a totally ordered set. That is, for any distinct and in ,
either or . In timed systems, a tag is also called a
time stamp. There are several distinct flavors of timed models.

1) Metric Time: Some timed models of computation in-
clude operations on tags. At a minimum,may be anAbelian
group, in addition to being totally ordered. This means that
there is an operation , called addition, under
which is closed. Moreover, there is an element, calledzero
and denoted “,” such that for all . Finally, for
every element , there is another element such
that . A consequence is that is itself a
tag for any and in .

In a slightly more elaborate tag system, has ametric,
which is a function , where is the set of real
numbers, that satisfies the following conditions:

(8)

(9)

(10)

and

(11)

for all . Such systems are said to havemetric
time. In a typical example of metric time, is the set of
real numbers and , the absolute value of
the difference. Metric time is frequently used when directly
modeling physical systems (without relativistic effects).

2) Continuous Time:Let denote the set of tags in
a signal . A continuous-time systemis a metric timed system

where is a connected set and for each signal
in any tuple that satisfies the system. Aconnected set is
one where there do not exist two nonempty disjoint open sets

and such that .
3) Discrete Event:Many simulators, including most digital

circuit simulators, are based on a discrete-event model (see
for example [16]). Given a process, and a tuple of signals

that satisfies the process, let denote the set of tags
appearing in any signal in the tuple. Clearly, , and

the ordering relationship for members ofinduces an ordering
relationship for members of . A discrete-event model of
computationhas a timed tag system, and for all processes
and all is order isomorphicto a subset of the
integers.5 We explain this now in more detail.

A map from one ordered set to another
is order preservingor monotonicif implies that

, where the ordering relations are the ones for the
appropriate set. A map is a bijection if
(the image of the domain is the range) and implies that

. An order isomorphismis an order-preserving
bijection. Two sets are order isomorphic if there exists an order
isomorphism from one to the other.

This definition of discrete-event systems corresponds well
with intuition. It says that the time stamps that appear in
any behavior can be enumerated in chronological order. Note
that it is not sufficient to just be able to enumerate the time
stamps (the ordering is important). The rational numbers, for
example, are enumerable, but would not be a suitable set
of time stamps for a discrete-event system. This is because
between any two rational numbers, there are an infinite number
of other rational numbers. Thus, it is also not sufficient for

to be merely isomorphic to a set of integers, since the
rationals are isomorphic to the set of integers. But they are not
order isomorphic. “Order isomorphism” captures the notion of
“discrete” (indeed, Mazurkiewicz gives a considerably more
complicated but equivalent notion of discreteness in terms of
relations [27]). It captures the intuitively appealing concept
that between any two finite time stamps there will be a finite
number of time stamps.

Note further that while we insist that be discrete (which
is stronger than enumerable), we need not constrainto be
even enumerable. For example, it is common for discrete-event
systems to take to be the set of real numbers. We then
insist that processes (and inputs) be defined in such a way that

is always a discrete subset of. We could alternatively
constrain to ensure that is always discrete, for example,
by choosing , the set of nonnegative integers with the
usual numerical order.

If always has a least tag, then we say that the model is
a one-sided discrete-event model of computation. This simply
captures the notion of starting the processes at some point
in time. In this case, will be order isomorphic to a
subset of , the set of nonnegative integers with the usual
numerical order. Note in particular that might be finite,
thus capturing the notion of stopping the processes, or it might
be infinite.

In some communities, notably, the control systems com-
munity, a discrete-event model also requires that the set of
values be countable, or even finite [9], [18]. This helps to
keep the state space finite in certain circumstances, which can
be a big help in formal analysis. However, in the simulation
community, it is largely irrelevant whether is countable
[16]. In simulation, the distinction is technically moot, since all
representations of values in a computer simulation are drawn
from a finite set. We adopt the broader use of the term, and

5This elegant definition is due to W.-T. Chang.
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will refer to a system as a discrete-event system whetheris
countable, finite, or neither.

4) Discrete-Event Simulators:The discrete-event model of
computation is frequently used in simulators for such appli-
cations as circuit design, communication network modeling,
transportation systems, etc. In a typical discrete-event sim-
ulator, events explicitly include time stamps. These are the
only types of systems we discuss where the tags are explicit
in the implementation. The discrete-event simulator operates
by keeping a list of events sorted by time stamp. The event
with the smallest time stamp is processed and removed from
the list. In the course of processing the event, new events
may be generated. These are usually constrained to have time
stamps larger than (or sometimes equal to) the event being
processed. We will return to this causality constraint later,
where we will see that under appropriate circumstances, it
ensures determinacy.

In some discrete-event simulators, such as VHDL simula-
tors, tags conceptually contain both a time value and a “delta
time.” Delta time has theinterpretation of zero time in the
simulation, but is an important part of the tag. It is not usually
explicit in the simulation, but it affects the semantics. It is used
to ensure strict causality (to be defined precisely below), and
thus to ensure determinism. A suitable tag system for such a
discrete-event simulator could have , where is
the set of nonnegative integers with the usual numerical order.
The first component will typically be called the “time stamp,”
while the second component will be called the “delta time
offset.” The ordering relation between two tags
and is given by if and only if or

and .
Note, however, that is not order isomorphic

with or any subset. So unlike the case where , the
structure of itself offers no assurance that is discrete. In
principle, in a particular signal, between tags and

where the time stamps and are finite, there
could be an infinite number of tags. This can occur in practice
in a discrete-event simulation when a zero-delay feedback loop
is modeled and there is no fixed point (or the fixed point is not
found). Events circulate forever around the loop, incrementing
the delta time component of the tag, but failing to increment
the time-stamp component. The simulation gets stuck, and time
fails to advance. We will see later in the paper that this flaw
is a mathematical property of this system of tags.

5) Synchronous and Discrete-Time Systems:Two events
are synchronousif they have the same tag. Two signals are
synchronous if all events in one signal are synchronous with
an event in the other signal and vice versa. A process is
synchronousif every signal in any behavior of the process
is synchronous with every other signal in the behavior. A
discrete-time systemis a synchronous discrete-event system.
Cycle-basedlogic simulators are discrete-time systems.

By this definition, the so-called synchronous dataflow model
of computation [22] is not synchronous (we will say more
about dataflow models below). The “synchronous languages”
[4] (such as Lustre, Esterel, Signal, and Argos) are syn-
chronous if we consider , where (bottom) denotes the
absence of an event. Indeed, a key property of synchronous

languages is that the absence of an event at a particular
“tick” (tag) is well defined. Another key property is that
event tags are totally ordered. Any two events either have
the same tag or one unambiguously precedes the other. The
Signal language [6] is a particularly interesting case because it
includes a nondeterminate operator “default” that permits the
construction of programs with many possible interleavings of
events. It is nonetheless synchronous because every possible
behavior is synchronous.

The process algebra community (based on CSP [19] and
CCS [29], for instance) refers to an interaction between
processes by rendezvous as synchronous. The processes them-
selves are not synchronous, however. By our definition, CSP
and CCS are not even timed (we will have more to say
about rendezvous below). There are synchronous versions of
some process algebras, such as Milner’s SCCS [29], where
Milner’s use of “synchronous” is identical with ours. Thus, in
addition to being mostly consistent with the literature (with the
only major exception being our own prior usage), we believe
that our definition captures the essential and original meaning
of the word, latinized from the Greek “sun” (together) and
“khronos” (time).

6) Sequential Systems:A degenerate form of timed tag
systems is a sequential system. The tagged signal model for
a sequential process has a single signal, and the tags
in the signal are totally ordered. For example, under the Von
Neumann model of computation, the values denote
states of the system, and the signal denotes the sequence of
states corresponding to the execution of a program. Below,
we will show several ways to construct untimed concurrent
systems by composing sequential systems.

B. Untimed Models of Computation

When tags are partially ordered rather than totally ordered,
we say that the tag system isuntimed. A variety of untimed
models of computation have been proposed. In general, the or-
dering of tags denotes causality or synchronization. Processes
can be defined in terms of constraints on the tags in signals.

We are not alone in using partial orders to model concurrent
systems. Pratt gives an excellent motivation for doing so,
and then generalizes the notion of formal string languages
to allow partial ordering rather than just total ordering [32].
Mazurkiewicz uses partial orders in developing an algebra
of concurrent “objects” associated with “events” [27]. Partial
orders have also been used to analyze Petri nets [36]. Lamport
observes that a coordinated notion of time cannot be exactly
maintained in distributed systems, and shows that a partial
ordering is sufficient [21]. He gives a mechanism in which
messages in an asynchronous system carry time stamps and
processes manipulate these time stamps. We can then talk
about processes having information or knowledge at acon-
sistent cut, rather than “simultaneously.” Fidge gives a related
mechanism in which processes that can fork and join increment
a counter on each event [15]. A partial ordering relationship
between these lists of times is determined by process creation,
destruction, and communication. If the number of processes
is fixed ahead of time, then Mattern gives a more efficient
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implementation by using “vector time” [26]. Unlike the work
of Lamport, Fidge, and Mattern, we are not using partial orders
in the implementation of systems, but rather are using them
as an analytical tool to study models of computation and their
interaction semantics. Thus, efficiency of implementation is
not an issue.

1) Rendezvous of Sequential Processes:The CSP model of
Hoare [19] and the CCS model of Milner [29] are key
representatives of a family of models of computation that in-
volve sequential processes that communicate with rendezvous.
Similar models are realized, for example, in the languages Oc-
cam and Lotos. Intuitively, rendezvous means that sequential
processes reach a particular point at which they must verify
that another process has reached a corresponding point before
proceeding. This can be captured in the tagged signal model
as depicted in Fig. 8. In this case, is totally ordered for
each . Thus, each , for , denotes
a sequential process. Moreover, representing each rendezvous
point there will be events and in signals and

, respectively, such that

(12)

where is the tag of the event .
Note that CSP and CCS are neither synchronous nor even

timed. Events directly modeling a rendezvous are synchronous,
but events that are not associated with rendezvous have only
a partial ordering relationship with each other. Indeed, this
partial ordering is one of the most interesting properties of
these models of computation, particularly when there are more
than two processes.

In some such models of computation, a process can reach
a state where it will rendezvous with one of several other
processes (this sort of behavior is supported, for example, by
the “select” statement in Ada). In this case, a composition of
such processes is often nondeterminate.

2) Kahn Process Networks:In a Kahn process network
[20], processes communicate viachannels, which are
(informally) one-way unbounded first-in, first-out (FIFO)
queues with a single reader and a single writer. Let
again denote the tags in signal. The FIFO property of the
channels implies that is totally ordered for each signal
. But the set of all tags is in general partially ordered.

Moreover, signals are discrete, or, more technically, is
order isomorphic with a set of integers for each signal.

The informal notion of “reading” and “writing” to channels
is formalized in our model by ordering constraints on tags
across signals. For example, consider a simple process that
produces one output event for each input event. Suppose
the input signal is , where is the set
of nonnegative integers with the usual numerical order and

. Let the output be , similarly
ordered. Then the process imposes the ordering constraint that

for all .
The importance of the tags in a particular signalis limited

to the ordering that it imposes on events. For a functional
signal where is totally ordered, let denote the
sequenceof values in (an ordered set, ordered according to
the tags). That is, the tags are discarded. Then two signals

and are sequence equivalentif . Thus
induces a set of equivalence classes in, the set of
signals, where each member of is a set of signals all with
the same sequence . This notion of sequence equivalence
generalizes trivially to tuples of signals, so we denote-tuples
of sequences by .

A process issequence determinateif all of its behaviors
are sequence equivalent. A process issequence functionalif
given a set of equivalent tuples of input signals, all possible
outputs are sequence equivalent. Thus, a sequence functional
process with inputs and outputs has a mapping

rather than . Formally, a
Kahn process with inputs and
outputs , where , is defined by
a function , where

(13)

Later in this paper, we will study constraints on that ensure
sequence determinacy.

Whether a sequence determinate process is also determinate
depends on the tag system. Sometimes it is useful to have a tag
system that represents more information than just the ordering
of values in sequences. For example, it might model the timing
of the execution of a process network, in which case the timing
nondeterminism of a concurrent system is represented in the
model even if the process itself is sequence determinate. This
can be viewed as a way to study design refinement. At a higher
level of abstraction, a sequence determinate specification is
given. But since this specification is not determinate in a timed
tag system, it admits many possible implementation timings.

3) Dataflow: The dataflow model of computationis a spe-
cial case6 of Kahn process networks [23]. Adataflow process
is a Kahn process that is also sequential, where the events on
the self-loop signal denote thefiringsof the dataflow actor. The
self-loop signal is called thefiring signal. The firing rules of
a dataflow actor are partial ordering constraints between these
events and events on the inputs. Adataflow process network
is a network of such processes.

The firing signal is ordered like all signals in the model.
Consider two successive events in the firing signal
(successivemeans there are no intervening events). An input
event , where and , is said to beconsumed
by firing . An input event that is less than all firing events
is consumed by the first firing. An output event, where

and , is said to beproducedby firing . An
output event that is greater than all firing events is produced
by the last firing (if there is one).

For example, consider a dataflow processwith one input
signal and one output signal, where each firing consumes
one input event and produces one output event, as shown in
Fig. 9. Denote the input signal by , where

. The firings are denoted by the signal
6The term “dataflow” is sometimes applied to Kahn process networks in

general, but this fails to reflect the heritage that dataflow has in computer
architecture. The dataflow model originally proposed by Dennis [12] had the
notion of a “firing” as an integral part. Our use of the term is consistent with
that of Dennis. The term is also applied to certain synchronous languages such
as Lustre and Signal [6], [17]. Under our definitions, these are not dataflow
languages.
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, and the output by ,
which will be similarly ordered. With this notation, theth
firing consumes theth input and produces theth output for
all . The definitions of “consume” and “produce” then imply
that for all , an intuitive sort of causality constraint.
A network of such processes will establish a partial ordering
relationship between the firings of the actors.

Consider modifying Fig. 9 with a connection as shown
in Fig. 10. This establishes the identity , but since

and must be empty. This is the only behavior
for this process, and it corresponds to deadlock.

More interesting examples of dataflow actors can also be
modeled. The so-calledswitchandselectactors, for example,
are shown in Fig. 11. Each of them takes a Boolean-valued
input signal (the bottom signal) and uses the value of the
Boolean to determine the routing oftokens (events). The
switch takes a single token at its left input and routes it to
the top right output if the Boolean in is true. Otherwise,
it routes the token to the bottom right output.

The partial ordering relationships imposed by the switch
and select are inherently more complicated than those imposed
by the simple dataflow actor in Fig. 9. But they can be fully
characterized nonetheless. Suppose the control signal in the
switch is given by , where the index
denotes the first event on the second, etc. Suppose
moreover that the Booleans are encoded so that .
Let

for (14)

Denote the input signal by and the output
signals by and . Then
the ordering constraints imposed by the actor are

(15)

(16)

4) Petri Nets: Petri nets can also be modeled in the frame-
work. Petri nets are similar to dataflow, but the events within
signals need not be ordered. We associate a signal with each
place and each transition in a Petri net. Consider the trivial
net in Fig. 12(a). Viewing the signals and as sets of
events, there exists a one-to-one function such that

for all . This simply says that every firing (an
event in ) has a unique corresponding token (an event in)
with a smaller tag. In Fig. 12(b), we simply require that there
exist two one-to-one functions and
such that and for all . In Fig. 12(c),
which represents a nondeterministic choice, we again need two
one-to-one functions and such that

for all and for all , but
we impose the additional constraint that ,
where the notation refers to the image of the function

when applied to members of the set. In Fig. 12(d), we
note that if the initial marking of the place is denoted by the
set of events, then it is sufficient to define .
Composing these simple primitives then becomes a simple
matter of composing the relevant functions. For example, in

Fig. 12(e), for
all , and for all , so for
all . In Fig. 12(f), is such that
for all , and (the initial marking is empty);
therefore . The Petri net is not live (it is deadlocked).

C. Heterogeneous Systems

It is assumed above that when defining a system, the
sets and include all possible tags and values. In some
applications, it may be more convenient to partition these sets
and to consider the partitions separately. For instance,might
be naturally divided into subsets according to a
standard notion ofdata types. Similarly, might be divided,
for example, to separately model parts of a heterogeneous sys-
tem that includes continuous-time, discrete-event, and dataflow
subsystems. This suggests a type system that focuses on signals
rather than values. Of course, processes themselves can then
also be divided by types, yielding aprocess-level type system
that captures the semantic model of the signals that satisfy the
process, something like the interaction categories of Abramsky
[1].

IV. THE ROLE OF TAGS IN COMPOSITION OFPROCESSES

In Section II-B1, where we composed processes according
to (6), tags played no evident role. Composition was treated
there as combining constraints. Without considering tags,
we were able to give some simple conditions in Section II-
B3 under which compositions of functional processes are
determinate. We can often do much more by taking the tags
into account. We find that in doing so, we can connect our
tagged signal model to well-known results in semantics. We
will do this now for two special cases, discrete-event systems
and Kahn process networks.

A. Causality in Discrete-Event Systems

Causality is a key concept in discrete-event systems. Intu-
itively, it means that output events do not have time stamps
less than the inputs that caused them. By studying causality
rigorously, we can address a family of problems that arise
in the design of discrete-event simulators. These problems
center around how to deal with synchronous events (those
with identical tags) and how to deal with feedback loops. But
causality comes in subtly different forms that have important
consequences.

Consider a discrete-event tag system where , the
reals. We can define a metric on the set of -tuples of
signals as follows:

(17)

We define , where is the
subset of events with tag. If we define such that

(18)

then is one of the following:

• the smallest tag whereand differ (if such a tag exists);
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• the greatest lower bound on the tags where they differ
(if there is no smallest tag, but there is a greatest lower
bound);

• infinity if and are identical;

• minus infinity otherwise.

The latter two can be understood by observing that ifand
are identical

(19)

a sensible extrapolation from (17) [let in (18)]. The
fourth condition occurs if and have no common prefix,
in which case

(20)

which is also a sensible extrapolation from (17) [let
in (18)].7

It is easy to verify that (17) is a metric by checking that it
satisfies (8)–(11). In fact, it is anultrametric, meaning that in
addition to satisfying (11), it satisfies the stronger condition

(21)

This metric is sometimes called theCantor metric. A similar
form has been used by Reed and Roscoe [34], [35]. Their form
is identical to this one for discrete signals. Metric spaces are
also used by de Bakker and de Vink [11].

The Cantor metric converts our set of-tuples of signals
into a metric space. In this metric space, two signals are
“close” (the distance is small) if they are identical up to a large
tag. The metric therefore induces an intuitive notion of an open
neighborhood. An open neighborhood of radiusis the set of
all signals that are identical at least up to and including the tag

. We can use this metric to classify three different
forms of causality.

A function is causalif for all

(22)

In other words, two possible outputs differ no earlier than the
inputs that produced them.

A function is strictly causal if for all

(23)

In other words, two possible outputs differ later than the inputs
that produced them (or not at all).

A function is delta causalif there exists a
real number such that for all

(24)

Intuitively, this means that there is a delay of at least
, a strictly positive number, before any output of

a process can be produced in reaction to an input event.
7Naundorf has pointed out that inclusion of infinite distance requires careful

generalization of the definition of a metric space [31]. Fortunately, for practical
reasons, this is usually not an issue because all signals have a common prefix.
Specifically, there is usually a starting time before which there are no events. If
that starting time ists, then the largest distance possible between two signals
is 1=2t , which corresponds to two signals that differ at the starting time.

Inequality (24) is recognizable as the condition satisfied by
a contraction mapping.

A metric space iscompleteif every Cauchy sequence of
points in the metric space that converges does so to a limit
that is also in the metric space. It can be verified that the set of
signals in a discrete-event system is complete. TheBanach
fixed-point theorem(see, for example, [8]) states that if

is a contraction mapping and is a complete metric
space, then there is exactly one such that .8

This is called afixed point. Moreover, the Banach fixed-point
theorem gives a constructive way (sometimes calledthe fixed-
point algorithm) to find the fixed point. Given any

is the limit of the sequence

(25)

Consider a feedback loop like that in Fig. 7 in a discrete-
event tag system. The Banach fixed-point theorem tells us
that if the process is functional and delta causal, then the
feedback loop has exactly one behavior (i.e., it is determi-
nate). This determinacy result was also proved by Yates [43],
although he used somewhat different methods. Moreover, the
Banach fixed-point theorem gives us a constructive way to
find that behavior. Start with any guess about the signals
(most simulators start with an empty signal), and iteratively
apply the function corresponding to the process. This is exactly
what VHDL, Verilog, and other discrete-event simulators do.
It is their operational semantics, and the Banach fixed-point
theorem tells us that if every process in any feedback loop is a
delta-causal functional process, then the operational semantics
match the denotational semantics,9 i.e., the simulator delivers
the right answer.

The constraint that processes be delta causal is fairly severe.
In particular, it is not automatically satisfied by processes
in VHDL, despite the fact that VHDL processes always
exhibit “delta” delay. The common term “delta” is misleading.
The contraction mapping condition prevents so-calledZeno
conditions where between two finite tags there can be an
infinite number of other tags. Such Zeno conditions are not
automatically prevented in VHDL.

It is possible to reformulate things so that VHDL processes
are correctly modeled as strictly causal (not delta causal).
Fortunately, a closely related theorem (see [8, ch. 4]) states
that if is a strictly causal function and is a
complete metric space, then there isat most onefixed point

. Thus, the “delta” delays in VHDL are
sufficient to ensure determinacy, but not enough to ensure that
a feedback system has a behavior, nor enough to ensure that
the constructive procedure in (25) will work.

If the metric space iscompactrather than just complete,
then strict causality is enough to ensure the existence of a
fixed point and the validity of the constructive procedure (25)
[8]. In general, the metric space of discrete-event signals is
not compact, although it is beyond the scope of this paper to
show this. Thus, to be sure that a simulation will yield the

8See Naundorf [31] for a generalization that works when infinite distances
between signals are allowed.

9This is sometimes called thefull abstractionproperty.
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correct behavior, without further constraints, we must ensure
that the function within any feedback loop is delta causal.

B. Monotonicity and Continuity in Kahn Process Networks

Untimed systems cannot have the same notion of causality
as timed systems. The equivalent intuition is provided by
the monotonicity condition. Monotonicity is enough to ensure
determinacy of feedback compositions. A slightly stronger
condition, continuity, is sufficient to provide a constructive
procedure for finding the one unique behavior. These two
conditions depend on a partial ordering of signals called the
prefix order.

Matthews has given the beginnings of an approach to
unifying the metric space methods of the previous section with
the partial-order-based methods of this section [24], [25]. He
uses apartial metric, which is the least generalization of a
metric that does not require an object to have zero distance to
itself. Matthews has given a treatment of dataflow deadlock
using this technique, but the method is still not rich enough
to completely subsume the partial-order and metric-space
approaches, so we proceed with a more classical exposition
here.

A partially ordered tag systemis a system where the set
of tags is a partially ordered set or poset, as defined in

Section III. We can also define an order such that the set
of signals becomes a poset. A signal is a set of events. Set
inclusion, therefore, provides a natural partial order for signals.
Instead of the symbol “ ” that we used for the ordering of
tags, we use the symbol “” for an ordering based on set
inclusion. This is a reflexive antisymmetric transitive binary
relation. Thus, for two signals and if every event
in is also in .

Recall that for Kahn process networks, we let denote
thesequenceof values in the signal, which is itself always a
totally ordered set of events. In this case, another natural partial
ordering for signals emerges; it is called theprefix order. For
the prefix order, we write if is a prefix
of (i.e., if the first values of are exactly those in

). Let denote the set of signals partially ordered by
this ordering. Clearly, in , the empty signal is a
prefix of every other signal, at the bottom of the partial order,
so it is sometimes calledbottom.

In partially ordered models for signals, it is often useful for
mathematical reasons to ensure that the poset is acomplete
partial order (CPO). To explain this fully, we need some more
definitions. Achain in is a set and

, where is a totally ordered set (ordered by “”) and for
any and in

(26)

An upper boundof a subset is an element
where every element in is a prefix of . A

least upper bound(LUB), written , is an upper bound that
it is a prefix of every other upper bound. A lower bound and
greatest lower bound are defined similarly. A CPO is a partial
order with a bottom element where every chain has a LUB.
From a practical perspective, this usually implies that our set

of sequences must include sequences with an infinite
number of values.

These definitions are easy to generalize to , the set
of -tuples of sequences. For and

if each corresponding element is a prefix, i.e.,
for each , where . With this
definition, if is a CPO, so is . We will assume
henceforth that is a CPO for all .

1) Monotonicity and Continuity:We can now define the
untimed equivalents of causality, connecting to well-known
results originally due to Kahn [20]. Our contribution here is
only to present these results using our notation. A process
is monotonicif it is sequence functional with function , and

(27)

Intuitively, this says that if an input sequenceis extended
with additional events appended to the end to get, then
the output can only be changed by extending it with
additional events to get ; i.e., giving additional inputs
can only result in additional outputs. This is intuitively the
untimed equivalent of causality.

A process is continuous if it is sequence functional
with function and for every chain

has a least upper bound , and

(28)

The notation denotes a set obtained by applying the
function to each element of . Intuitively, this says that
the response of the function to an infinite input sequence is
the limit of its response to the finite approximations of this
input. “Continuous” here is exactly the topological notion of
continuity in a particular topology called theScott topology.
In this topology, the set of all signals with a particular finite
prefix is an open set. The union of any number of such open
sets is also an open set, and the intersection of a finite number
of such open sets is also an open set.

A continuous process is monotonic [20]. To see this, sup-
pose is continuous, and consider two
signals and in , where . Define the chain

. Then , so from continuity

(29)

Therefore , so the process is monotonic.
Not all monotonic functions are continuous. Consider, for

example, a system where the set of values is binary,
, and

if is finite
otherwise.

(30)

It is easy to show that this is monotonic but not continuous.
Compositions of continuous (or monotonic) functions with-

out feedback, like those in Figs. 4 and 6, obviously yield
continuous (or monotonic) functions. As before, it is only the
feedback case that is subtle.

Consider the feedback system of Fig. 7. In general, it
may not be sequence determinate, even if the process is
sequence functional and continuous. Consider a trivial case,
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where the process is sequence functional, with its function
being the identity function. This function

is certainly continuous. Then any satisfies the
composite process because for any .
Since the process has many behaviors, it is not sequence
determinate.

We will now show that there is an alternative interpretation
of the composition that is sequence determinate. Under this
interpretation, any composition of continuous processes is se-
quence determinate. Moreover, this interpretation is consistent
with execution policies typically used for such systems (their
operational semantics), and hence is an entirely reasonable
denotational semantics for the composition. This interpretation
is called theleast fixed-pointsemantics.

A well-known fixed-point theorem states that a continuous
function in a CPO has a least fixed point

(see [10, p. 89]). By “least fixed point,” we
mean that for any such that . Moreover,
the theorem gives us a constructive way to find the least fixed
point. Putting it into our context, suppose we have a continuous
function . Then define the sequence of
sequences

(31)

Since is monotonic and the tuple of empty sequences
is a prefix of all other tuples of sequences, this sequence is
a chain. Since is a CPO, this chain has an LUB. The
fixed-point theorem tells us that this LUB is the least fixed
point of .

This theorem is very similar to the so-calledKnaster–Tarski
fixed point theorem, which applies to complete lattices rather
than CPO’s [10]. For this reason, this approach to semantics
is sometimes calledTarskian.

Note that the constructive technique given by (31) is exactly
what one would expect in an implementation of Kahn process
networks. Begin with all sequences empty and start iteratively
applying functions. This theorem tells us that this operational
semantics is consistent with the denotational semantics (the
least fixed-point semantics), so again we have full abstraction.

Under this least fixed-point semantics, the value ofin
Fig. 7 is , the empty signal. Under this semantics, this is
the only signal that satisfies the composite process, so the
composite process is determinate. Intuitively, this solution
agrees with a reasonable execution of the process, in which
we would not produce any output frombecause there are no
inputs. This reasonable operational semantics therefore agrees
with the denotational semantics. For a complete treatment of
this agreement, see Winskel [40].

In terms of the tagged signal model, if is the set of
sequence tuples that satisfy the process, we are declaring the
behavior of the process to be , the smallest member
(in a prefix order sense) of the set . This minimum exists
and is in fact equal to the least fixed point, as long as the
composing processes are continuous.

Yet another fixed-point theorem deals with monotonic pro-
cesses that are not continuous. This theorem states that a
monotonic function on a CPO has a unique least fixed point,
but gives no constructive way to find the least fixed point (see

[10, p. 96]). Fortunately, this lack of constructive solution is
not a problem in practice since practical monotonic processes
are invariably continuous. Of course, nonmonotonic processes
create many problems.

V. TRANSFORMATIONS BETWEEN MODELS

Central to the approach we have given is the use a tag
system , which can be partially ordered or totally ordered,
and captures temporal and causal properties of systems. These
properties are distinct from the functional properties of a sys-
tem, which relate only to values in our model. An interesting
observation is that a model of a system can be transformed into
a quite different model by manipulating the tag system alone.
Suppose, for example, that we have two tag systemsand
and an order-preserving map . Suppose further that
we have a process . We can define a new
process constructively by replacing each tagin by .
Obviously, this is a closely related process. If, for example,

is partially ordered, where the partial order represents data
precedences, and is totally ordered, where the tags represent
time, then describes an implementation in time of. For
example, might represent a dataflow model of a system and

might represent the evaluation of that dataflow model on
a sequential computer.

This suggests that our tagged signal model can be used to
formulate design refinement and verification, much the way
language containment is used in automata. For the dataflow
example above, the existence of the order-preserving map
is sufficient to show that the sequential system is a correct
implementation of the dataflow model, where “correct” means
that all the data precedences are respected.

VI. CONCLUSION

We have given the beginnings of a framework within which
certain properties of models of computation can be understood
and compared. Of course, any model of computation will have
important properties that are not captured by this framework,
and a property that is captured may have more than one
distinct representation within the framework. The intent is not
to be able to completely define a given model of computation,
but rather to be able to compare and contrast its notions of
concurrency, communication, and time with those of other
models of computation. The framework is also not intended to
be itself a model of computation, but rather a “meta model,” so
it should not be interpreted as some “grand unified model” that
when implemented will obviate the need for other models. It is
too general for any useful implementation and too incomplete
to provide for computation. It is meant simply as an analytical
tool. Of course, a great deal of work remains to be done to
determine whether it is useful as an analytical tool.
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