IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 12, DECEMBER 1998 1217
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Abstract—We give a denotational framework (a “meta model”) We define precisely a process, signal, and event, and give a
within which certain properties of models of computation can be framework for identifying the essential properties of discrete-
compared. It describes concurrent processes in general terms aseyant systems, dataflow, rendezvous-based systems, Petri nets,
sets of possible behaviors. A process is determinate if, given the -
constraints imposed by the inputs, there are exactly one or exactly "’.md procegs ngtworks. Our def'n't!ons of these terms some-
zero behaviors. Compositions of processes are processes witfimes conflict with common usage in some communities, and
behaviors in the intersection of the behaviors of the component even with our own prior usage in certain cases. We have made
processes. The interaction between processes is through signalsevery attempt to maintain the spirit of that usage with which
which are collections of events. Each event is a value-tag pair, \ye gre familiar, but have discovered that terms are used in

where the tags can come from a partially ordered or totally tradict fi ithi mmunity)
ordered set. Timed models are where the set of tags is totally contradictory ways (sometimes even within a co unity).

ordered. Synchronous events share the same tag, and synchronoudVlaintaining consistency with all prior usage is impossible
signals contain events with the same set of tags. Synchronouswithout going to the unacceptable extreme of abandoning the
processes have only synchronous signals as behaviors. Striciyse of these terms altogether.

causality (in timed tag systems) and continuity (in untimed tag Our objectives overlap somewhat with prior efforts to

systems) ensure determinacy under certain technical conditions. id th tical dels f current svstems. such
The framework is used to compare certain essential features of provide mathematical modeils for concu Y » Su

various models of computation, including Kahn process networks, &S communicating sequential processes (CSP) [19], calculus
dataflow, sequential processes, concurrent sequential processe®f communicating systems (CCS) [29], event structures [41],

with rendezvous, Petri nets, and discrete-event systems. action structures [30], and interaction categories [1], and pre-
vious efforts to formally compare models of computation [37],
[42]. We do not have a good answer for the question “do we
really need yet another meta model for concurrent systems?”
MAJOR impediment to further progress in modelingxcept perhaps that our objectives are somewhat different and
and specification of concurrent systems is the confusieasult in a model that has some elements in common with
that arises from different usage of common terms. Termasher models, but overall appears to be somewhat simpler.
like “synchronous,” “discrete event,” “dataflow,” “signal,” It is more descriptive of concurrency models (more “meta”)
and “process” are used in different communities to meahan some process calculi, which might for example assume a
significantly different things. To address this problem, wsingle interaction mechanism, such as rendezvous, and show
give a formalism that will enable description, abstraction, arttbw other interaction mechanisms can be described in terms of
differentiation of models of computation. It is not intendedt. We assume no particular interaction mechanism, and show
as a “grand unifying model of computation” but rather as laow to use the framework to describe and compare a number
“meta model” within which certain properties of the modelsf interaction mechanisms (including rendezvous). We devote
of computation can be studied. To be sufficiently precise, thisost of our attention, however, to interaction mechanisms in
language is a mathematical one. It denotational in the practical use for designing electronic systems, such as discrete-
sense of Scott and Strachey [38], rather than operational,eeent, rendezvous, and dataflow. The latter two are aligned
avoid associating the semantics of a model of computatiovith the “atomicity” and “precedence constraints” interaction
with an execution policy. In many denotational semanticpatterns of Agha’'s actors model [2], but we add the discrete-
the denotationof a program fragment is a partial functionevent model because of our interest in physical modeling of
or a relation on the state. This approach does not modgjital electronic systems.
concurrency well [40], where the notion of a single global The prior frameworks closest to ours, Abramsky’s interac-
state may not be well defined. In our approach, the denotatidon categories [1] and Winskell's event structures [41], have
of a process is a partial function or a relation on signals, abéen presented as categorical concepts. We avoid category
hence we can model concurrency well. theory here because it does not appear to be necessary for
our more limited objectives, and because we wish to make the
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Il. THE TAGGED SIGNAL MODEL

A. Signals

Given a set ofvaluesV and a set oftags 7, we define
an evente to be a member of” x V, i.e., an event has a
tag and a value. We will use tags to model time, precedence
relationships, synchronization points, and other key properties
of a model of computation. The values represent the operands
and results of computation.

We define asignal s to be a set of events. A signal can be
viewed as a subset @f x V, or as a member of theowerset
p(T x V) (the set of all subsets df’ x V). A functional
signal or proper signalis a (possibly partial) function frorff Fig. 1. Composition of independent processes.
to V. By “partial function” we mean a function that may be
defined only for a subset d¢f. By “function” we mean that
if e; = (t,v1) € s andey = (¢t,v2) € s, thenv; = vy. We
call the set of all signal$, where of courses = (T x V).
It is often useful to form auple s of N signals, whereV is
a natural numbet.The set of all such tuples will be denoted
SN, Position in the tuple serves the same purposes as naming
of signals in other process calculi. Reordering of the tuple
serves the same purposes as renaming. A similar use of tuples
is found in the interaction categories of Abramsky [1].

The empty signal (one with no events) will be denoted\by
and the tuple of empty signals hy, where the numbelN of
empty signals in the tuple will be understood from the context.
These are signals like any other, 36 S and A € SV, For
any signals, s U A = s (ordinary set union). For any tupke
sUA = s, where by the notatioauU A we mean the pointwise
union of the sets in the tuple. defined as a subset of the same set of sighals called by

In some models of computation, the $€bf values includes some researchers isort [3].
a special valuel (called “"bottom”), which indicates the Consider, for example, the two processBs and P in
absence of a value. Notice that while it might seem intuitiveig. 1. These are each subsetsSdf but they are of different
that (¢, L) € A for any ¢ € T, this would violates U A = s sorts.P; relates an entirely different set of signals than The
(suppose thak already contains an event & Thus, it is composition involves eight signals, so to form the composition,
important to view_L as an ordinary member of the Sétlike we must first augment’, and P, to define them in terms of
any other member. subsets ofs3. Let

Fig. 2. An interconnection of processes.

B p P =P xS5*
. Processes
_ ) Py = S*x Ps. 1)
In the most general form, processP is a subset ofS™
for someN. A particulars € S¥ is said tosatisfythe process These are of the same sort, and composition is simply their
if s € P. An s that satisfies a process is calledb@haviorof intersection

the process. Thus grocesss a set of possibleehaviors For

_ p! /
N > 2, process may also be viewed asedatior? between Q=hrnNk. (2)
the N signals ins _ _ This can be simplified to
1) Composing ProcessesSince a process is a set of be-
haviors, a composition of processes should be simply the Q=P xP. 3)

intersection of the behaviors of each of the processes.TA_ llel iti f int i is simol
behavior of the composition process should be a behr:lviord{f'S paraflel composition ot noninteracting processes 1S simply

each of the component processes. However, we have to @, Cross produdtof the sets of behaviors. Since there is no
some care in forming this intersection. Before we can forfpteraction between the processes, a behavior of the composite

such an intersection, each process to be composed musﬁ‘b%ces.s consists of any behaylor B[. together with any
ehavior of ,. A behavior of( is an eight-tuple, where the

_ _ _ ~ first four elements are a behavior Bf and the remaining four
1An alternative notation would name rather than number the signals in tgjements are a behavior @
tuple. Although this might be more elegant, it would require more complicate 2

notation to manipulate tuples, so we stick to the simpler form. 3The tensor product is used in the interaction categories of Abramsky [1]
2A relation between setd and B is simply a subset oft x B. for the same composition. Here it follows from the intersection of behaviors.
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P Composition is set intersection. Cross product and projec-
& 5, tion are syntactic operations that merely give process defini-
tions the right sort to enable composition by intersection. They
play no semantic role in composition.

If the two signals in a connection are associated with the
same process, as shown in Fig. 3, then the connection is called
a self-loop For the example in Fig. 3 = 7, (P N Cy3),
where I = {2,3,4}. For simplicity, we will often denote
self-loops with only a single signal, obviating the need for
Fig. 3. A self-loop. the projection or the connection. This is simply a syntactic

shorthand; if two signals are constrained to be identical, we

. . _ lose nothing by considering only one of the signals.
More interesting systems have processes that interact. Congate that this projection operator is really quite versatile.

sider Fig. 2. AconnectionC' C 5% is a particularly simple There are several other ways we could have used it to
process where two (or more) of the signals in fieuple are  jefine the composition in Fig. 2, even avoiding connection

constrained to be identical. For example, in FigC2,; C S*, 1 5cesses altogether. The operator can also be used to construct
where arbitrary permutations of signals, accomplishing the same
@) end as renaming and hiding in other process calculi. Some

basic examples are shown in Fig. 4. Note that the numbering
C,7 can be given similarly ag, = s7. There is nothing of signals (compared with names) affects the manipulation
special about connections as processes, but they are usefuprocesses to give them compatible sorts. The projection
to couple the behaviors of other processes. For example,Oerator is used for permutation in Fig. 4(b). Note further

S = (31782733734735736737) S 04,5 if 84 = S5.

Fig. 2, the composite process may be given as that Fig. 4(d) shows that the connection processes are easily
replaced by more carefully constructed intersections.
Q=(PLxP)NCy5NCoy ©) 2) Inputs and OutputsMany processes (but by no means

) o ) all) have the notion of inputs, which are events or signals that
where the first set is given by (3). That is, asyc S% that  gre defined outside the process. Formallyinmutto a process
satisfies the composite process must be a member of each 0~ 5 gn externally imposed constraiftC SV such that
Py x Py, Cys,and Gz 7. ~ AN P is the total set of acceptable behaviors.

Given M processes 5™ of the same sort (some of which  often we wish to talk about the behaviors of a process for
may be connections), a procegsomposed of these processeg get of possible inputs, which we dendgeC o(S™). That
is given by is, any inputA € B. In this case, we discuss the process and
0= ﬂ P (6) its possible inputs togethe(P, B).
¢ Within this definition, there is a very rich set of ways
PcP . . .
to model inputs. Inputs could be as simple as asserting the
whereP is the collection of processdg C SV, 1 < i< M. presence of an individual event in a particular signal. For
As suggested by the gray outline in Fig. 2, it makes littlexample, suppose that in Fig. 3, the input is a single event
sense to expose all the signals of a composite process.clift s2. Then
Fig. 2, for exampl_e, sinpe signals and s; are identical tp A={s:cems)} @)
s7 and s, respectively, it would make more sense to “hide”
two of these signals and to model the composition as a subSete that this does not constrain the behaviors of the process
of S¢ rather thanS®. This changes the sort of the compositep have only a single event is,. It merely constrains the
which may make it easier to compose it again. behaviors to have the eveatin s;. Suppose further that we
Let I = (¢1,---,im) be an ordered set of indexes inwish to consider the behaviors of Fig. 3 when the input is any
the rangel < ¢ < N, and define theprojection #;(s) of single event ins;. Then we can definé? to be the set of all
s = (s1,---,sn) € SN onto S™ by 77(s) = (s;,,---,s:,.). setsA of the form (7) (i.e., for each € 7" x V).
Thus, the ordered set of indexes defines the signals that ar&ore commonly, the inputs define an entire signal or set of
part of the projection and the order in which they appeaignals. We call any signal that is entirely defined externally
in the resulting tuple. The projection can be generalized &m input signal Consider a procesB C S~ wherem of the
processes. Given a process C S, define the projection IV signals are input signals. Suppose these have indexes in
77(P) to be the sef{s’ such that there exists € P where the set/ C {1,---,N}. Then each elemem € B is a set
77(s) = s'}. Thus, in Fig. 2, we can define the composités : 7;(s) = s’} for somes’ € SM. In other words, the input
process@’ = m;((P1 x P») N Cy5 N Coz) C S¢ where completely defines’, a tuple ofm input signals. By saying
I =1{1,3,4,6,7,8}. Projection then facilitates composition ofthat A N P is the set of acceptable behaviors, we simply say
this process with others, since the others will not need to b®at them input signals must appear within any behavior tuple.
augmented to involve irrelevant signals. A similar approach is A process and its possible inputg, B) is said to beclosed
used in [5] for process composition within a more specializéti B = { S}, a set with only one element, = SV. Since the
framework. set of behaviors ist N P = P, there are no input constraints
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Q =1 4 (PyXP)NCy o)
= 71 5,(P{ X 8) N (SX Py))

(d)

Fig. 4. Examples of composition of processes.

Q =7y 3 5 (PyXP)NCy )

Fig. 6. Composition of a functional process with a source process.

(b) (©)

g
Q =Ty 346 (P1XP)NCys)
(e)

s

",

Fig. 7. Feedback (a directed self-loop).

Sy 52

Fig. 8. Communicating sequential processes.

wheren;(s) = n;(s'), it follows that no(s) = no(s’). For
such a process, there is a single-valued mapping™ — S™
such that for alls € P, mo(s) = F(wz(s)). A process idotal

if 7;(P) = S™. In this case/} is defined over alls™. It is
partial otherwise, i.e.qr;(P) C S™.

Note that a given process may be functional with respect

to more than one pair of index set8, O). A connection, for
examples; = s, is functional with respect to eith¢f1}, {2})

in a closed process. A process and its possible inputs@@e or ({21, {1}). In both cases}" is the identity function.

if they are not closed.

In Figs. 2—-4, there is no indication of which signals might

So far, however, we have not captured the notion of i inputs and which might be outputs. Fig. 5 modifies Fig. 2
process “determining” the values of the outputs depending B9 adding arrowheads to indicate inputs and outputs. In

the inputs. To do this, consider an index gefor m input
signals and an index sét for n output signals. A procesB is
functionaf with respect td 7, O) if for everys € P ands’ € P

4Arelation? C Ax B is afunction if for every(a, b) € R and(a, c) € R,

b=c.

this case,P, might be functional with respect t6/,0) =
({1,2},{3,4}).

3) Determinacy: A process isdeterminatef for any input
A € B it has exactly one behavior or exactly no behaviors;
ie,|[ANP|=1or|ANnP| =0, where|X| is the size of
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Fig. 9. A simple dataflow process that consumes and produces a single token S1
on each firing.
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Fig. 12. Some simple Petri nets.

lll. TAG SYSTEMS

So far, tags have had no explicit role in the description of
processes. But we have also said nothing about the opera-
tional interaction of processes. Do they synchronize? Are they
causal? Under what conditions exactly are they determinate?
To answer these questions, we need structure in the system of
tags. This structure turns out to be the major distinguishing
feature between various concurrent models of computation.

Frequently, a natural interpretation for the tags is that they
mark time in a physical system. Neglecting relativistic effects,
time is the same everywhere, so tagging events with the time
at which they occur puts them in a certain order (if two events
are genuinely simultaneous, then they have the same tag). Such
a simple model of time is certainly intuitively appealing.

For specifying systems, however, the global ordering of
events in a timed system may be overly restrictive. A specifi-
cation should not be constrained by one particular physical
the setX. Otherwise, it isnondeterminateThus, whether a implementation, and therefore need not be based on the
process is determinate or not depends on our characterizasemantics of the physical world. Thus, for specification, often
B of the set of possible inputs. the tagsshould notmark time, but should instead reflect

A process inS that is functional with respect t¢/,O) ordering induced by causality (this will be explained below).
is obviously determinate if and O together contain all the In a modelof a physical system, by contrast, tagging the
indexes inl1 < ¢ < N. Given the input signals, the outputevents with the time at which they occur may seem natural.
signals are determined (or there is unambiguously no behavidbhey must occur at a particular time, and if we accept that
if the function is partial). time is uniform (i.e., again neglecting relativistic effects),

In Fig. 4, if all processes are functional with inputs on théhen our model should reflect the ensuing ordering of events.
left and outputs on the right, then obviously the compositiddowever, when modeling a large concurrent system, the model
processes are also functional. Thus, the compositions in Figsibuld probably reflect the inherent difficulty in maintaining
preserve determinacy. A slightly more subtle situation involves consistent view of time in a distributed system [14], [21],
sourceprocesses (processes with outputs but no inputs), lig8], [33]. This difficulty appears even in relatively small
the example in Fig. 6. This composition will be functionabystems, such as very large scale integrated chips, where
(and hence determinate) #; is functional andP; has exactly clock distribution is challenging. If an implementation cannot
one behavior. maintain a consistent view of time across its subsystems, then

A much more complicated situation involves feedback, @smay be inappropriate for its model to do so (it depends on
illustrated by the example in Fig. 7. Whether determinacy shat questions the model is expected to answer).
preserved depends on the tag system and more details aboilthe central role of a tag system is to establish ordering
the process. among events. Aordering relationon the sefl’ is a reflexive,

Fig. 11. More complicated dataflow actors.
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transitive, antisymmetric relation on members of the set. Wee ordering relationship for membersBinduces an ordering
denote this relation using the template.” Reflexivemeans relationship for members df'(s). A discrete-event model of
that ¢ < ¢, transitive means that < ¢ and+# < ¢’ imply computationhas a timed tag system, and for all procesBes
thatt < ¢, andantisymmetricmeans that < ¢ and# < ¢ and alls € P, T(s) is order isomorphicto a subset of the
imply that+ = ¢, for all £, #, ¢’ in 7. Of course, we can integers> We explain this now in more detail.

define a related irreflexive relation, denoted,” wheret < ¢’ A map f : A — B from one ordered sefi to another

if £ <t andt # t'. The ordering of the tags induces anB is order preservingor monotonicif a < «’' implies that
ordering of events as well. Given two events= (¢,v) and f(a) < f(a'), where the ordering relations are the ones for the
e =({,v),e< ifand only if t < #. A setT with an appropriate set. A map : A — B is abijectionif f(A)= B
ordering relationship is called asrdered set|f the ordering (the image of the domain is the range) angt o’ implies that
relationship is partial (there exist ¢ € T such that neither f(a) # f(a’). An order isomorphisms an order-preserving

t <t nort’ <t),thenT is called apartially ordered sebr bijection. Two sets are order isomorphic if there exists an order
poset[10], [39]. isomorphism from one to the other.

This definition of discrete-event systems corresponds well
with intuition. It says that the time stamps that appear in
any behavior can be enumerated in chronological order. Note

A timed model of computatidmas a tag system whefeis that it is not sufficient to just be able to enumerate the time
a totally ordered setThat is, for any distinct and# in 7', stamps (the ordering is important). The rational numbers, for
eithert < ¢ or ¢’ < t. In timed systems, a tag is also called &xample, are enumerable, but would not be a suitable set
time stampThere are several distinct flavors of timed modelgf time stamps for a discrete-event system. This is because

1) Metric Time: Some timed models of computation in-between any two rational numbers, there are an infinite number
clude operations on tags. At a minimuffimay be armAbelian of other rational numbers. Thus, it is also not sufficient for
group, in addition to being totally ordered. This means thadf(s) to be merely isomorphic to a set of integers, since the
there is an operation- : 7" x 1" — 7', called addition, under rationals are isomorphic to the set of integers. But they are not
which 7" is closed. Moreover, there is an element, caltedo order isomorphic. “Order isomorphism” captures the notion of
and denotedd,” such thatt+0 = ¢ for all ¢ € 7". Finally, for “discreté (indeed, Mazurkiewicz gives a considerably more
every element € 7', there is another elementt € 7" such complicated but equivalent notion of discreteness in terms of
thatt + (—¢) = 0. A consequence is thas — ¢; is itself a relations [27]). It captures the intuitively appealing concept
tag for anyt; andt; in 7. that between any two finite time stamps there will be a finite

In a slightly more elaborate tag systeffi, has ametric number of time stamps.
which is a functiond : T'x T" — R, whereR is the set of real  Note further that while we insist thdi(s) be discrete (which

A. Timed Models of Computation

numbers, that satisfies the following conditions: is stronger than enumerable), we need not consffaio be
even enumerable. For example, it is common for discrete-event
d(t,t') = d(t',t) (8) systems to takel’ to be the set of real numbers. We then

©) insist that processes (and inputs) be defined in such a way that

dit,t)y=0st="¢ _ : .
(t,¢) T(s) is always a discrete subset Bf We could alternatively

d(t,¢) 2 0 (10)  constraint to ensure thal'(s) is always discrete, for example,
by choosingl’ = w, the set of nonnegative integers with the
and usual numerical order.
If T'(s) always has a least tag, then we say that the model is
d(t, ¢y +d',¢") > d(¢t,t") (11) aone-sided discrete-event model of computatibinis simply

captures the notion of starting the processes at some point
for all ¢, #, # € T. Such systems are said to haweetric in time. In this caseI'(s) will be order isomorphic to a
time In a typica| examp|e of metric timel" is the set of subset ofw, the set of nonnegative integers with the usual
real numbers and(t — t') = |t — /|, the absolute value of numerical order. Note in particular th@ts) might be finite,
the difference. Metric time is frequently used when directi{hus capturing the notion of stopping the processes, or it might
modeling physical systems (without relativistic effects). ~ be infinite.

2) Continuous Time:Let7(s) C 7 denote the setof tagsin IN some communities, notably, the control systems com-
a signals. A continuous-time systeis a metric timed system munity, a discrete-event model also requires that the set of
@Q whereT is a connected set arifls) = T for each signak valuesV be countable, or even finite [9], [18]. This helps to
in any tuples that satisfies the system. donnected sef” is keep the state space finite in certain circumstances, which can
one where there do not exist two nonempty disjoint open s& a big help in formal analysis. However, in the simulation
O, and O such thatl’ = O; U Os. community, it is largely irrelevant whethé¥ is countable

3) Discrete Event:Many simulators, inc|uding most d|g|ta| [16]. In simulation, the distinction is technically moot, since all
circuit simulators, are based on a discrete-event model ($egresentations of values in a computer simulation are drawn
for example [16]). Given a proces?, and a tuple of signals from a finite set. We adopt the broader use of the term, and
s € P that satisfies the process, 1Efs) denote the set of tags
appearing in any signal in the tupde Clearly,7°(s) C T, and  SThis elegant definition is due to W.-T. Chang.
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will refer to a system as a discrete-event system whéther languages is that the absence of an event at a particular
countable, finite, or neither. “tick” (tag) is well defined. Another key property is that

4) Discrete-Event SimulatorsThe discrete-event model ofevent tags are totally ordered. Any two events either have
computation is frequently used in simulators for such applike same tag or one unambiguously precedes the other. The
cations as circuit design, communication network modelin§ignal language [6] is a particularly interesting case because it
transportation systems, etc. In a typical discrete-event siimeludes a nondeterminate operator “default” that permits the
ulator, events explicitly include time stamps. These are tleenstruction of programs with many possible interleavings of
only types of systems we discuss where the tags are expleients. It is nonetheless synchronous because every possible
in the implementation. The discrete-event simulator operateshavior is synchronous.
by keeping a list of events sorted by time stamp. The eventThe process algebra community (based on CSP [19] and
with the smallest time stamp is processed and removed fré&@€S [29], for instance) refers to an interaction between
the list. In the course of processing the event, new evemgcesses by rendezvous as synchronous. The processes them-
may be generated. These are usually constrained to have tgalves are not synchronous, however. By our definition, CSP
stamps larger than (or sometimes equal to) the event bemgd CCS are not even timed (we will have more to say
processed. We will return to this causality constraint lateapout rendezvous below). There are synchronous versions of
where we will see that under appropriate circumstances,sitme process algebras, such as Milner's SCCS [29], where
ensures determinacy. Milner’s use of “synchronous” is identical with ours. Thus, in

In some discrete-event simulators, such as VHDL simuladdition to being mostly consistent with the literature (with the
tors, tags conceptually contain both a time value and a “defaly major exception being our own prior usage), we believe
time.” Delta time has theénterpretation of zero time in the that our definition captures the essential and original meaning
simulation, but is an important part of the tag. It is not usuallgf the word, latinized from the Greekstiri' (together) and
explicit in the simulation, but it affects the semantics. It is usédkhronos (time).
to ensure strict causality (to be defined precisely below), and6) Sequential SystemsA degenerate form of timed tag
thus to ensure determinism. A suitable tag system for suclsystems is a sequential system. The tagged signal model for
discrete-event simulator could hafé= w x w, wherew is a sequential process has a single signand the tag¥(s)
the set of nonnegative integers with the usual numerical ordir.the signal are totally ordered. For example, under the Von
The first component will typically be called the “time stamp,Neumann model of computation, the valuesc V' denote
while the second component will be called the “delta timstates of the system, and the signal denotes the sequence of
offset.” The ordering relation between two tags= (#1,,) States corresponding to the execution of a program. Below,
andt = (#|,t,) is given byt < ¢ if and only if ; < #; or we will show several ways to construct untimed concurrent
t1 =t andty < t. systems by composing sequential systems.

Note, however, thal’ = w x w is not order isomorphic
with w or any subset. So unlike the case whéire= w, the ] .
structure ofT itself offers no assurance ths) is discrete. In B- Untimed Models of Computation
principle, in a particular signal, between tags (¢1,¢2) and When tags are partially ordered rather than totally ordered,
¥ = (t7,t,) where the time stamps andt} are finite, there we say that the tag system imtimed A variety of untimed
could be an infinite number of tags. This can occur in practi¢rodels of computation have been proposed. In general, the or-
in a discrete-event simulation when a zero-delay feedback loggring of tags denotes causality or synchronization. Processes
is modeled and there is no fixed point (or the fixed point is netin be defined in terms of constraints on the tags in signals.
found). Events circulate forever around the loop, incrementingWe are not alone in using partial orders to model concurrent
the delta time component of the tag, but failing to incremesystems. Pratt gives an excellent motivation for doing so,
the time-stamp component. The simulation gets stuck, and tiswed then generalizes the notion of formal string languages
fails to advance. We will see later in the paper that this fla allow partial ordering rather than just total ordering [32].
is a mathematical property of this system of tags. Mazurkiewicz uses partial orders in developing an algebra

5) Synchronous and Discrete-Time Syste&o events of concurrent “objects” associated with “events” [27]. Partial
are synchronousf they have the same tag. Two signals arerders have also been used to analyze Petri nets [36]. Lamport
synchronous if all events in one signal are synchronous wibhserves that a coordinated notion of time cannot be exactly
an event in the other signal and vice versa. A process naintained in distributed systems, and shows that a partial
synchronousf every signal in any behavior of the proces®rdering is sufficient [21]. He gives a mechanism in which
is synchronous with every other signal in the behavior. Aessages in an asynchronous system carry time stamps and
discrete-time systens a synchronous discrete-event systenprocesses manipulate these time stamps. We can then talk
Cycle-basedogic simulators are discrete-time systems. about processes having information or knowledge a&ba-

By this definition, the so-called synchronous dataflow modsistent cutrather than “simultaneously.” Fidge gives a related
of computation [22] is not synchronous (we will say morenechanism in which processes that can fork and join increment
about dataflow models below). The “synchronous languages’counter on each event [15]. A partial ordering relationship
[4] (such as Lustre, Esterel, Signal, and Argos) are sybhetween these lists of times is determined by process creation,
chronous if we considet. € V, where L (bottom) denotes the destruction, and communication. If the number of processes
absence of an event. Indeed, a key property of synchrondsidixed ahead of time, then Mattern gives a more efficient
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implementation by using “vector time” [26]. Unlike the works and s’ are sequence equivalerit >(s) = %(s'). Thus X

of Lamport, Fidge, and Mattern, we are not using partial ordeirsdluces a sett’s; of equivalence classes i, the set of
in the implementation of systems, but rather are using thesignals, where each member®8f; is a set of signals all with

as an analytical tool to study models of computation and theire same sequené&(s). This notion of sequence equivalence
interaction semantics. Thus, efficiency of implementation generalizes trivially to tuples of signals, so we denatéuples
not an issue. of sequences by3".

1) Rendezvous of Sequential ProcessEse CSP model of A process issequence determinaié all of its behaviors
Hoare [19] and the CCS model of Milner [29] are keyare sequence equivalent. A processésjuence functionaf
representatives of a family of models of computation that imfiven a set of equivalent tuples of input signals, all possible
volve sequential processes that communicate with rendezvamstputs are sequence equivalent. Thus, a sequence functional
Similar models are realized, for example, in the languages Qwocess withm inputs andn outputs has a mapping” :
cam and Lotos. Intuitively, rendezvous means that sequentidls)™ — (Fx)™ rather thanF : S™ — S™. Formally, a
processes reach a particular point at which they must verifahn processP C S~ with inputs I € {1,---,N} and
that another process has reached a corresponding point beterputsO C {1,---,N}, whereI n O = @, is defined by
proceeding. This can be captured in the tagged signal modelunction F” : (Ex)! — (Ex)I°!, where
as depicted in Fig. 8. In this casgé(s;) is totally ordered for .
eachi = 1,2,3. Thus, each(Pi,si(), )for i = 1,2, denotes P={se S : F'(X(ri(s)) = X(mo(s)}.  (13)

a sequential process. Moreover, representing each rendezvoyg in this paper, we will study constraints &# that ensure
point there will be events,, ¢z, andes in signalss;, s2, and - gequence determinacy.

s3, respectively, such that Whether a sequence determinate process is also determinate
T(ey) = T(ez) = T(es) (12) depends on the tag system. Sometimes it is useful to have a tag

_ system that represents more information than just the ordering

whereT’(e;) is the tag of the event;. of values in sequences. For example, it might model the timing

Note that CSP and CCS are neither synchronous nor evsfithe execution of a process network, in which case the timing
timed. Events directly modeling a rendezvous are synchronodgndeterminism of a concurrent system is represented in the
but events that are not associated with rendezvous have omiydel even if the process itself is sequence determinate. This
a partial ordering relationship with each other. Indeed, thisn be viewed as a way to study design refinement. At a higher
partial ordering is one of the most interesting properties @dvel of abstraction, a sequence determinate specification is
these models of computation, particularly when there are ma@jigen. But since this specification is not determinate in a timed
than two processes. tag system, it admits many possible implementation timings.

In some such models of computation, a process can reacl3) Dataflow: The dataflow model of computatias a spe-

a state where it will rendezvous with one of several othefal casé of Kahn process networks [23]. dataflow process
processes (this sort of behavior is supported, for example, iBya Kahn process that is also sequential, where the events on
the “select” statement in Ada). In this case, a composition gfe self-loop signal denote tlfieings of the dataflow actor. The
such processes is often nondeterminate. self-loop signal is called théiring signal The firing rules of

2) Kahn Process Networksin a Kahn process network a dataflow actor are partial ordering constraints between these
[20], processes communicate vighannels which are events and events on the inputs.dataflow process network
(informally) one-way unbounded first-in, first-out (FIFO)is a network of such processes.
queues with a single reader and a single writer. Ligs) The firing signal is ordered like all signals in the model.
again denote the tags in signal The FIFO property of the Consider two successive events in the firing signak ¢;, 1
channels implies thal’(s) is totally ordered for each signal (successiveneans there are no intervening events). An input
s. But the set of all tag<’ is in general partially ordered. evente’, wherec’ < ¢;4; and¢’ £ ¢, is said to beconsumed
Moreover, signals are discrete, or, more technicallys) is by firing ¢;;;. An input event that is less than all firing events
order isomorphic with a set of integers for each signal is consumed by the first firing. An output evedt, where

The informal notion of “reading” and “writing” to channelse, < ¢ ande;; % ¢”, is said to beproducedby firing ¢;. An
is formalized in our model by ordering constraints on tagsutput event that is greater than all firing events is produced
across signals. For example, consider a simple process tatthe last firing (if there is one).
produces one output event for each input event. Supposdor example, consider a dataflow procéssvith one input
the input signal iss = {e;;i € w}, wherew is the set signal and one output signal, where each firing consumes
of nonnegative integers with the usual numerical order amghe input event and produces one output event, as shown in
i < j= ¢ <ej. Letthe output be’ = {c};i € w}, similarly Fig. 9. Denote the input signal by = {¢};i € N}, where
ordered. Then the process imposes the ordering constraint that j = ¢/ < ¢;. The firings are denoted by the signal

e; < ¢ forall i € w. 6 . ) : .
¢ . . T The term “dataflow” is sometimes applied to Kahn process networks in
The Importance of the tags in a pamCUIar Slgmﬂ limited general, but this fails to reflect the heritage that dataflow has in computer
to the ordering that it imposes on events. For a functionakhitecture. The dataflow model originally proposed by Dennis [12] had the
signal s where T(s) is totally ordered, IetE(s) denote the notion of a “firing” as an integral part. Our use of the term is consistent with
. . that of Dennis. The term is also applied to certain synchronous languages such
Sequencmf valugs Ins (an ordered _Set' ordered accordmg tgs Lustre and Signal [6], [17]. Under our definitions, these are not dataflow
the tags). That is, the tags are discarded. Then two signatguages.
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s = {e;;¢ € N}, and the output by” = {e/;¢ € N}, Fig. 12(e),f2 : s2 — sy Uiy, f3: 53 — s2 Uiz, fale) < efor
which will be similarly ordered. With this notation, thith all ¢ € s2, and f3(e) < e for all ¢ € s3, SO f2(fa(e)) < e for
firing consumes théth input and produces thih output for all ¢ € s3. In Fig. 12(f), f : s2 — s1 is such thatf(e) < e
all <. The definitions of “consume” and “produce” then implyfor all ¢ € s2, and sz = s; (the initial marking is empty);
thate, < ¢ for all ¢, an intuitive sort of causality constraint.therefores; = (). The Petri net is not live (it is deadlocked).
A network of such processes will establish a partial ordering

relationship between the firings of the actors. C. Heterogeneous Systems

Consider modifying Fig. 9 with a connection as shown It is assumed above that when defining a system, the

L : . . o .
") F|g;/10/. Th(|js Nestabl;séres th? 'd%r]‘_“ty_ _ths ' tl)utb3|rr]10e_ sets?” and V' include all possible tags and values. In some
¢ < ¢, & ands’ must be empty. ThisIs the only behavior, ,ji-ations, it may be more convenient to partition these sets
for this process, and it corresponds to deadlock.

More interesting examples of dataflow actors can also agd to consider the partitions separately. For instariasjght
A naturally divided into subse V3, ... according to a
modeled. The so-calleswitchand selectactors, for example, y &, V2, g

h in Fia. 11. Each of th K Bool | 1%imdard notion oflata types Similarly, 7" might be divided,
are shown In Fig. 11. Each of them takes a Boolean-valu example, to separately model parts of a heterogeneous sys-

lBr)lpult signal éthe b(_)ttomh5|gnal)_ andbllises the vaIueT(r)]f ﬂfgm that includes continuous-time, discrete-event, and dataflow
00 ehan kto et(_armlme Ii € roytlnlgftq ens (((ajvents). 'ne subsystems. This suggests a type system that focuses on signals

switc t"’? esasing e.to en atits et mplut and routes 'F 0 rather than values. Of course, processes themselves can then

Fhe top right outpuss if the Booleaq inss is true. Otherwise, also be divided by types, yieldingocess-level type system

it routes the token to the bottom right output c%P{Yat captures the semantic model of the signals that satisfy the

The partial Qrderlng relatlonshlps_|mposed by the swit gcess, something like the interaction categories of Abramsky
and select are inherently more complicated than those impo

by the simple dataflow actor in Fig. 9. But they can be full ﬁj
characterized nonetheless. Suppose the control signal in th

switch is given byss = {(f2,,v2,)}, where the index = 1 f\/ THI-E ROLE OF TAGS IN COMPOSITION OF PROCESSES -
denotes the first event os, « = 2 the second, etc. Suppose In Section II-B1, Where_ we composed processes according
moreover that the Booleans are encoded sohate {0,1}. 0 (6), tags played no evident role. Composition was treated

Let there as combining constraints. Without considering tags,
& we were able to give some simple conditions in Section II-
by, = Z”Qi for k> 0. (14) B3 under which compositions of functional processes are

determinate. We can often do much more by taking the tags
) ) ) into account. We find that in doing so, we can connect our
Denote the input signal by, = {c, ;7 € N} and the output (agged signal model to well-known results in semantics. We

signals bys; = {¢cz,1;¢ € N} andsy = {eqmi¢ € N}. Then il do this now for two special cases, discrete-event systems
the ordering constraints imposed by the actor are and Kahn process networks.

i=1

€3k > €C1.b, (15)

Cam > CLimt,)- (16) A. Causality in Discrete-Event Systems

Causality is a key concept in discrete-event systems. Intu-

4) Petri Nets: Petri nets can also be modeled in the frametively, it means that output events do not have time stamps
work. Petri nets are similar to dataflow, but the events withiass than the inputs that caused them. By studying causality
signals need not be ordered. We associate a signal with e@gbrously, we can address a family of problems that arise
place and each transition in a Petri net. Consider the trivigl the design of discrete-event simulators. These problems
net in Fig. 12(a). Viewing the signals; and so as sets of center around how to deal with synchronous events (those
events, there exists a one-to-one functfons, — s; such that with identical tags) and how to deal with feedback loops. But
f(e) < eforall e € s2. This simply says that every firing (ancausality comes in subtly different forms that have important
event insz) has a unique corresponding token (an eventn consequences.
with a smaller tag. In Fig. 12(b), we simply require that there Consider a discrete-event tag system whére= R, the
exist two one-to-one functiong : s3 — s; and f : s3 — 52 reals. We can define a metric on the $8t of n-tuples of
such thatf; (e) < eandfz(e) < efor all e € s3. In Fig. 12(c), signals as follows:
which represents a nondeterministic choice, we again need two

one-to-one functiongy : s; — s; and f, : s3 — s; such that d(s,s’) = sup {if :s(t) £ (¢),t e T}. a7
fi(e) < eforall ¢ € sy and fa(e) < e for all ¢ € s3, but 2
we impose the additional constraint that(s2) N f2(s3) =0, We defines(t) = [si(t),--,sn(t)], Wheres; C s; is the

where the notationf(s) refers to the image of the functionsubset of events with tag If we definer such that
/ when applied to members of the setIn Fig. 12(d), we 1

note that if the initial marking of the place is denoted by the d(s,s’) = o (18)
set: of events, then it is sufficient to define = s; U 3.

Composing these simple primitives then becomes a simjfien 7 is one of the following:

matter of composing the relevant functions. For example, ine the smallest tag whereands’ differ (if such a tag exists);
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« the greatest lower bound on the tags where they differequality (24) is recognizable as the condition satisfied by
(if there is no smallest tag, but there is a greatest lowarcontraction mapping
bound); A metric space iscompleteif every Cauchy sequence of
« infinity if s ands’ are identical; points in the metric space that converges does so to a limit
that is also in the metric space. It can be verified that the set of
. . signalssS in a discrete-event system is complete. Banach
T/he latter two can be understood by observing that #nd gy eq_noint theorengsee, for example, [8]) states that f :
s’ are identical X — X is a contraction mapping anli is a complete metric
d(s,s) =0 (19) space, then there is exactly omes X such thatF(z) = z8
This is called dixed point Moreover, the Banach fixed-point
a sensible extrapolation from (17) [let— oo in (18)]. The theorem gives a constructive way (sometimes cathedfixed-
fourth condition occurs i ands’ have no common prefix, point algorithn) to find the fixed point. Given any, € X,

* minus infinity otherwise.

in which case z is the limit of the sequence
d(S, S) = (20) r1 = F(xo), To = F(a:l), r3z = F($2) et (25)
hich is also a sensible extrapolation from (17 —
:’x I(18)|]7 ! xirapolat (17) et —oc Consider a feedback loop like that in Fig. 7 in a discrete-

gvent tag system. The Banach fixed-point theorem tells us
that if the procesd” is functional and delta causal, then the
feedback loop has exactly one behavior (i.e., it is determi-
nate). This determinacy result was also proved by Yates [43],
max(d(s, s"),d(s',s")) > d(s,s"). (21) although he used somewhat different methods. Moreover, the
) o . _ . Banach fixed-point theorem gives us a constructive way to
This metric is sometimes called tl&antor metric A S|m|Ia_\r find that behavior. Start with any guess about the signals
for_m ha_s been u_sed by Ree‘_’ and Ro_scoe [34], [3_5]' Their fofmost simulators start with an empty signal), and iteratively
is identical to this one for d|screte.3|gnals. Metric spaces aésmy the function corresponding to the process. This is exactly
also used by de Bakker and de Vink [11]. _ what VHDL, Verilog, and other discrete-event simulators do.
~ The Cantor metric converts our set oftuples of signals i g their operational semantics, and the Banach fixed-point
into a metric space. In this metric space, two signals afigsorem tells us that if every process in any feedback loop is a
close” (the distance is small) if they are identical up t0 a largge 5 _causal functional process, then the operational semantics

tag. The metric therefore induces an intuitive notion of an OP®Ratch the denotational semanticse., the simulator delivers
neighborhood. An open neighborhood of radiuis the set of the right answer

all signals that are identical at least up to and including the tag
logy(71). We can use this metric to classify three differen,
forms of causality.

A function F' : S™ — S™ is causalif for all s, s’ € 5™

It is easy to verify that (17) is a metric by checking that i
satisfies (8)—(11). In fact, it is amtrametric meaning that in
addition to satisfying (11), it satisfies the stronger condition

The constraint that processes be delta causal is fairly severe.
particular, it is not automatically satisfied by processes
in VHDL, despite the fact that VHDL processes always
exhibit “delta” delay. The common term “delta” is misleading.
d(F(s), F(s')) < d(s,s"). (22) The contraction mapping condition prevents so-calfeho
conditions where between two finite tags there can be an
In other words, two possible outputs differ no earlier than thgfinite number of other tags. Such Zeno conditions are not

inputs that produced them. automatically prevented in VHDL.
A function F' : S™ — S is strictly causalif for all s, It is possible to reformulate things so that VHDL processes
s e s™ are correctly modeled as strictly causal (not delta causal).
/ / Fortunately, a closely related theorem (see [8, ch. 4]) states
d(E(s), F(s) < d(s,s). (23) that if ' : X — X is a strictly causal function and is a
In other words, two possible outputs differ later than the inpueomplete metric space, then thereatsmost onefixed point
that produced them (or not at all). z € X, F(x) = 2. Thus, the “delta” delays in VHDL are
A function F : S™ — S"™ is delta causalif there exists a sufficient to ensure determinacy, but not enough to ensure that
real numbel0 < § < 1 such that for alls, s’ € S™ a feedback system has a behavior, nor enough to ensure that
, , the constructive procedure in (25) will work.
d(F(s), F(s')) < bd(s, ). (24) If the metric space isompactrather than just complete,

Intuitively, this means that there is a delay of at least= then strict causality is enough to ensure the existence of a
log,(81), a strictly positive number, before any output ofixed point and the validity of the constructive procedure (25)

a process can be produced in reaction to an input evad: In general, the me.tri.c space of discrete—event_ signals is
not compact, although it is beyond the scope of this paper to

7Nau_ndo'rf has pointe(_j out that inclusjon of infinite distance requires cargtghow this. Thus, to be sure that a simulation will yield the
generalization of the definition of a metric space [31]. Fortunately, for practica

reasons, this is usually not an issue because all signals have a common prefix. o o
Specifically, there is usually a starting time before which there are no events. If See Naundorf [31] for a generalization that works when infinite distances
that starting time ig, then the largest distance possible between two signdk§tween signals are allowed.

is 1/2¢s, which corresponds to two signals that differ at the starting time.  °This is sometimes called tHeall abstractionproperty.
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correct behavior, without further constraints, we must ensu¥#.5) of sequences must include sequences with an infinite
that the function within any feedback loop is delta causal. number of values.
These definitions are easy to generalize“(@)”, the set

B. Monotonicity and Continuity in Kahn Process Networks Of N-tuples of sequences. Fere %(S)" anda’ € ()",

. . C o’ if each corresponding element is a prefix, i®.C o/
Untimed systems cannot have the same notion of causa txegch 1 <4< Np whergo— — (o 'Z_ ) W?h%r?s
= = ) = 15" yON).

as timed systems. The equivalent intuition is provided chefinition if 2(S) is a CPO, 50 i3(5)~. We will assume
the monotonicity condition. Monotonicity is enough to ensurﬁencefor£h thatt(S)™ is a C’PO for aIIN'

determinacy of feedback compositions. A slightly stronger 1) Monotonicity and Continuity:We can now define the

condition, continuity, is sufficient to provide a constructive . . : .
- . : Untimed equivalents of causality, connecting to well-known

procedure for finding the one unique behavior. These two s L .
I . . . results originally due to Kahn [20]. Our contribution here is
conditions depend on a partial ordering of signals called thé . .
prefix order only to present these results using our notation. A prodess

Matthews has given the beginnings of an approach |tsomonoton|0|f it is sequence functional with functiof’, and

unifying the metric space methods of the previous section with cCo = Flo) C F(d). (27)
the partial-order-based methods of this section [24], [25]. He
uses apartial metric which is the least generalization of alntuitively, this says that if an input sequenaeeis extended
metric that does not require an object to have zero distanceXish additional events appended to the end to ggtthen
itself. Matthews has given a treatment of dataflow deadlo&te outputi’(c) can only be changed by extending it with
using this technique, but the method is still not rich enougifditional events to get'(¢’); i.e., giving additional inputs
to completely subsume the partial-order and metric-spa@@n only result in additional outputs. This is intuitively the
approaches, so we proceed with a more classical expositigifimed equivalent of causality.
here. A process P is continuousif it is sequence functional
A partially ordered tag systens a system where the setwith function ' : £(S)™ — X(S)™ and for every chain
T of tags is a partially ordered set or poset, as defined ¥ € X(5)™, F(W) has a least upper boundt'(W), and
Sec’Fion Ill. We can also define an orgler such that the set FUW) = UF(W). 28)
of signals becomes a poset. A signal is a set of events. Set

inclusion, therefore, provides a natural partial order for signatghe notation (W) denotes a set obtained by applying the
Instead of the symbol<” that we used for the ordering of function I to each element of. Intuitively, this says that
tags, we use the symbolC” for an ordering based on setthe response of the function to an infinite input sequence is
inclusion. This is a reflexive antisymmetric transitive binanhe |imit of its response to the finite approximations of this
relation. Thus, for two signals ands’, s C 5" if every event input. “Continuous” here is exactly the topological notion of
in s is also ins'. continuity in a particular topology called thgcott topology
Recall that for Kahn process networks, we ¥&ts) denote |n this topology, the set of all signals with a particular finite
the sequencef values in the signai, which is itself always a prefix is an open set. The union of any number of such open
totally ordered set of events. In this case, another natural partiats is also an open set, and the intersection of a finite number
ordering for signals emerges; it is called theefix order For  of such open sets is also an open set.
the prefix order, we writéX(s) C X(s') if X(s) is a prefix A continuous process is monotonic [20]. To see this, sup-
of %X(s') (i.e., if the first values ob>(s') are exactly those in pose ' : £(S)™ — %(S)" is continuous, and consider two
E(s)). Let £(5) denote the set of signals partially ordered bgignalss and o’ in £(5)™, wheres C o’. Define the chain
this ordering. Clearly, inx(5), the empty signab(\) isa w = {o,0’}. ThenUW = ¢/, so from continuity
prefix of every other signal, at the bottom of the partial order, ) )
so it is sometimes calletottom F(o') = F(UW) = UF(W) = W{F(0), F(o")}.  (29)
In paruqlly ordered models for signals, it is often useful fo‘i’hereforeF(o—) C F(s"), s0 the process is monotonic.
mathematical reasons to ensure that the posetdenaplete . ; : :

. A Not all monotonic functions are continuous. Consider, for
partial order (CPO). To explain this fully, we need some moreexample a system where the set of values is bingiry-
definitions. Achainin 3(S) is a set{s;; 0, € 2(S) andi € {0,1} a;1d T
U}, whereU is a totally ordered set (ordered by ™) and for T
anyi and4’ in U Flo) = {[O], if & is finite

[0.1], otherwise. (30)

o, Coy 1< i. (26)
It is easy to show that this is monotonic but not continuous.

An upper boundof a subsetiW C X(S) is an element Compositions of continuous (or monotonic) functions with-
w € X(S) where every element iV is a prefix ofw. A out feedback, like those in Figs. 4 and 6, obviously yield
least upper boundLUB), written LIW, is an upper bound that continuous (or monotonic) functions. As before, it is only the
it is a prefix of every other upper bound. A lower bound anfiéedback case that is subtle.

greatest lower bound are defined similarly. A CPO is a partial Consider the feedback system of Fig. 7. In general, it
order with a bottom element where every chain has a LUBay not be sequence determinate, even if the process is
From a practical perspective, this usually implies that our se¢quence functional and continuous. Consider a trivial case,
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where the proces® is sequence functional, with its function[10, p. 96]). Fortunately, this lack of constructive solution is
F :3(S) — %(S) being the identity function. This function not a problem in practice since practical monotonic processes
is certainly continuous. Then any € X(S) satisfies the are invariably continuous. Of course, nonmonotonic processes
composite proces§ because for any € %(S), F(o) = 0. create many problems.

Since the process has many behaviors, it is not sequence
determinate.

We will now show that there is an alternative interpretation
of the compositior) that is sequence determinate. Under this Central to the approach we have given is the use a tag
interpretation, any composition of continuous processes is §¥stemZ’, which can be partially ordered or totally ordered,
guence determinate. Moreover, this interpretation is consistéfd captures temporal and causal properties of systems. These
with execution policies typically used for such systems (thefifoperties are distinct from the functional properties of a sys-
operational semantics), and hence is an entirely reasond8®. Which relate only to values in our model. An interesting
denotational semantics for the composition. This interpretati@fservation is that a model of a system can be transformed into
is called theleast fixed-poinsemantics. a quite different model by manipulating the tag system alone.

A well-known fixed-point theorem states that a continuoudUPPose, for example, that we have two tag systérand7”
function F/ : X — X in a CPOX has a least fixed point and an order-preserving mgp: 7' — 7. Suppose further that
z, F(z) = » (see [10, p. 89]). By “least fixed point,” weWe have a proces® C (p(I" x V))*. We can define a new
mean that for any such that'(y) = y, = T y. Moreover, ProcessP’ constructively by replacing each tagn P by f(z).
the theorem gives us a constructive way to find the least fixe¥pviously, this is a closely related process. If, for example,
point. Putting it into our context, suppose we have a continuo#isis partially ordered, where the partial order represents data
function F' : £(S)" — X(S)". Then define the sequence oforecedences, arilf is totally ordered, where the tags represent

V. TRANSFORMATIONS BETWEEN MODELS

sequences time, thenP’ describes an implementation in time Bf For
example,P might represent a dataflow model of a system and
oo =%(A), o1=F(oo), o2=F(o1),---.  (31) P’ might represent the evaluation of that dataflow model on

Since F” is monotonic and the tuple of empty sequengéa) & Sequential computer.
P Pty sequenkes) This suggests that our tagged signal model can be used to

is a prefix of all other tuples of sequences, this sequence]c is : desi " d ificati h th
a chain. SinceZ(S)™ is a CPO, this chain has an LUB. TheloMmulate design refinement and verification, much the way

fixed-point theorem tells us that this LUB is the least ﬁxe&mguage containment IS used in automata. For th? dataflow
point of F. example above, the existence of the order-preserving fnap

This theorem is very similar to the so-call&daster—Tarski ?S sufficient to show that the sequential system is a correct

fixed point theoregnwhich applies to complete lattices rathe}mplementatlon of the dataflow model, where “correct” means
than CPO'’s [10]. For this reason, this approach to semantF@?t all the data precedences are respected.
is sometimes calledarskian

Note that the constructive technique given by (31) is exactly VI. CONCLUSION
what one would expect in an implementation of Kahn process
networks. Begin with all sequences empty and start iterativeé

applying functions. This theorem tells us that this operation d compared. Of course, any model of computation will have
semantics is consistent with the denotational semantics ( ortant properties that are not captured by this framework,
least fixed-point sem_antics),_ SO again we have full abstr_actioihd a property that is captured may have more than one

,U”d‘?f this least flxed-.pomt semantlc_s, the valges@fm distinct representation within the framework. The intent is not
Fig. 7 is A, the empty signal. Under this semantics, this i§, 1o apje to completely define a given model of computation,
the only signal that satisfies the composite process, so Blﬁ rather to be able to compare and contrast its notions of
composite_ process is determina?e. Intuitively, this S_OIUtiO_ ncurrency, communication, and time with those of other
agrees with a reasonable execution of the process, in Whigh )5 of computation. The framework is also not intended to
we would pot produce any OUtPUt from beca‘,lse there are NOhe itself a model of computation, but rather a “meta model,” so
inputs. This reasonable operational semantics therefore agreeRouid not be interpreted as some “grand unified model” that
with the denotational semantics. For a complete treatment en implemented will obviate the need for other models. It is

this agreement, see Winskel [40]. too general for any useful implementation and too incomplete

In terms of the tagge(_j signal model, X{(@) is the §et of to provide for computation. It is meant simply as an analytical
sequence tuples that satisfy the proogssve are declaring the tool. Of course, a great deal of work remains to be done to

pehavior_of the process to bein(2(()), th? sma!lest member determine whether it is useful as an analytical tool.
(in a prefix order sense) of the sef(}). This minimum exists

and is in fact equal to the least fixed point, as long as the
composing processes are continuous.

Yet another fixed-point theorem deals with monotonic pro- The authors wish to acknowledge useful feedback from G.
cesses that are not continuous. This theorem states thaeary, F. Boussinot, W.-T. Chang, S. Edwards, S. Gay, A.
monotonic function on a CPO has a unique least fixed poi@jrault, L. Lavagno, P. Murthy, R. Nagarajan, H. Naundorf,
but gives no constructive way to find the least fixed point (sé&® Stevens, and four anonymous reviewers.

We have given the beginnings of a framewaork within which
rtain properties of models of computation can be understood
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