
Systèmes Synchrones
MPRI – cours 2.23-1 2014-2015

Final Exam
25 november, 2014

This text has 4 pages. The time limit is 3h. Courses notes are allowed.

Activation Conditions, Sequencing and Modular Reset

In this exam, you will extend a language kernel similar to Lustre with control structures and study
their translation into the kernel. The syntax of the language is given below.

d ::= node f(p) returns (q)B

p, q, r ::= x | x, ..., x
B ::= var r doE done

E ::= E and E | x = e

e ::= v | x | true | false | e+ e | e = e | e and e | e or e | not e
| pre e | preb e | e -> e | if e then e else e

d is the definition of a node with formal parameters p, result q and body B. The body B is
a set of equations E where variables from r are local to E. p, q and r denote patterns; here
lists of variables. E stands for equations of the form x = e, with e an expression, and parallel
compositions of equations, E and E. v denotes an integer constant. true and false are boolean
constants. + stands for integer addition; and for logical conjunction; or for logical disjunction,
and; not for negation. pre e is the unit delay for integers. preb e is the unit delay for booleans.
To avoid initialization issues, the initial value of pre e is −1; the initial value of preb e is false.

Relational Semantics: We define a relation semantics for this kernel. Let V∞ be the set of
sequences of values from V . If v ∈ V∞ and n ∈ N, v(n) is the n-th element of v. An environment
ρ is a mapping from names to sequences. Given ρ and an equation E, [[E]]ρ means that E satisfies
ρ. If e is an expression, [[e]]ρ(n) with n ∈ N is the value of e at instant n. We do not require the
semantics to be deterministic. That is, there may be an equation E and two environments ρ1 and
ρ2, with ρ1 6= ρ2, such that [[E]]ρ1 and [[E]]ρ2 . We give (only) the main cases below.

[[E1 and E2]]ρ
def
= [[E1]]ρ ∧ [[E2]]ρ

[[x = e]]ρ
def
= ∀n ∈ N, [[x]]ρ(n) = [[e]]ρ(n)

[[e1 + e2]]ρ(n)
def
= [[e1]]ρ(n) + [[e2]]ρ(n)

[[if e1 then e2 else e3]]ρ(n)
def
= if [[e1]]ρ(n) then [[e2]]ρ(n) else [[e3]]ρ(n)

[[preb e]]ρ(0)
def
= false

[[pre e]]ρ(0)
def
= −1

[[preb e]]ρ(n+ 1)
def
= [[e]]ρ(n)

[[pre e]]ρ(n+ 1)
def
= [[e]]ρ(n)

[[x]]ρ(n)
def
= ρ(x)(n)

[[v]]ρ(n)
def
= v

[[var x1, ..., xn doE done]]ρ
def
= ∃s1, ..., sn.[[E]]ρ+[x1 7→s1,...,xn 7→sn]

1

Question 1 Define the following operations in terms of the kernel language:

1. until(x) returns a sequence ok that is initially false and that only becomes true as soon as
x is true in the strict past. Once ok becomes true, it stays true.

2. unless(x) returns a sequence ok with current value true as soon as x is true. The current
value of ok is false otherwise. Once ok is true, it stays true.

3. init(x, y) is true whenever x is true, otherwise it becomes false if y was true in the preceding
instant, otherwise it keeps its previous value. Note that init(false, true) = true -> false.

The following questions involve extending the kernel language with new programming con-
structs by defining the cases of a translation function Tr(.) where Tr(E) takes an equation E and
returns another equation E′.

Blocks with Local Variables

The language of equations E is extended with a block construct:

E ::= · · · | var r doE done

The semantics is that of a block.

Question 2 Define a translation function Tr(.) so that Tr(E) translates E from the extended
language into the kernel one.

Activation Condition

The kernel language is now extended with an “activation condition” mechanism. The syntax is
given below:

E ::= activate if e then E | ...

Intuitively, in activate if e then E, the equation E is active only at the instants when e is
true. Otherwise, variables from E keep their previous values. For example, the following program
defines the sequence: cpt = -1 -1 42 43 43 43 44 45 45 45 46 47 ...

activate if cond then do cpt = 42 -> pre cpt + 1 done

and

cond = false -> (preb (false -> not (preb cond)))

Question 3 Is the previous program equivalent to the following one? Explain why.

cpt = if cond then 42 -> pre cpt + 1 else pre cpt

and cond = false -> (preb (false -> not (preb cond)))

Question 4 Propose an equivalent version that does not use the “activation condition” control
structure.

Question 5 Define a translation function Tr(E) which translates E from the extended language
into a semantically equivalent equation E′ from the kernel language.

Question 6 Propose a sufficient condition on activate if e then E so that its translation is
causally correct, in the Lustre sense.

2

We now extend the syntax and semantics of activation conditions to allow a default handler
to be executed when the boolean condition is false.

E ::= activate if e then E else E | ...

For example, the following program:

activate if cond then do cpt = 42 -> pre cpt - 1 done

else cpt = 45 -> pre cpt + 1 done

and cond = false -> (preb (false -> preb (false -> not (preb cond))))

defines the sequence cpt = 45 46 47 42 41 40 48 49 50 39 38 37 ... (pre cpt denotes a
local memory updated only when the code in which it appears is active. The two occurrences of
pre cpt denote different memories).

Question 7 Give an equivalent definition without using the binary activation condition.

Question 8 Extend the translation function Tr(.) accordingly. You may assume that the sets of
non-local variables defined in E1 and E2 in activate if e then E1 else E2 are the same.

Question 9 Extend the translation function Tr(.) to handle the general situation where the two
branches do not necessarily define the same variables.

Question 10 Propose a relational semantics [[.]]. that extends the basic one with the new construct
activate if e then E1 else E2.

Sequencing Operations

We now introduce sequencing constructs.

E ::= · · · | do E until e then E | do E unless e then E

do E1 until e then E2 gives weak preemption: E1 is activated up to and including the first instant
that the boolean condition e becomes true. The execution of E2 then starts in the following instant.
do E1 unless e then E2 gives strong preemption: E1 is executed up to but not including the first
instant that e is true. E2 starts at the first instant when e is true. Thus, the program:

do x = 0 -> pre x + 1 until (x = 5) then x = 10 done

defines the sequence x = 0 1 2 3 4 5 10 10 10 10 ... The following program:

do x = 0 -> pre x + 1 unless cond then x = 10 done

and

cond = false -> preb (false -> true)

defines the sequence x = 0 1 10 10 10 ...

Question 11 Extend the translation function Tr(.) with the two sequencing constructs.

Question 12 Define a causality constraint that ensures the translated code is causally correct in
the Lustre sense.

Question 13 Can one of the constructs (weak versus strong) be expressed in terms of the other?

Question 14 Propose a relational semantics for these two programming constructs.

3

Modular Reset

The language is now extended with the construct

E ::= · · · | reset E every e

that reinitializes every stateful construct to its initial value. Thus, the program:

reset

cpt = 0 -> pre cpt + 1

every

(false -> pre cpt = 5)

defines the sequence cpt = 0 1 2 3 4 5 0 1 2 3 4 5 ...

Question 15 What is the translation of reset x = 0 -> 1 every c?

Question 16 Extend Tr(.) so that the construction reset E every e is eliminated and expressed
in the kernel language.

Question 17 [Extra] Define a relational semantics for the reset construct.

Exceptions

The kernel language is now extended with a programming construct to raise and trap exceptions.

E ::= exit T | try E with | T then E ... | T then E done

exit T raises the exception with name T (we suppose that exception names are declared globally).
The construct try E with | T1 then E1 ... | Tn then En done, where T1, . . . , Tn are supposed
to be pairwise distinct, executes E and at the instant Ti is raised, the corresponding block Ei
becomes active for the rest of the execution.

An exception T can be raised several times in a single instant (e.g., exit T and exit T) with
the same effect as a single raise. Two different exceptions can also be raised simultaneously (e.g.,
exit T2 and exit T1): the first matching handler in the list of handlers is activated (here E1).

Question 18 Propose an encoding of exit T , and extend Tr(.) accordingly.

Question 19 Propose an encoding of exceptions into the kernel language and extend Tr(.) ac-
cordingly.

4

