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Synchronous Prog. of Reactive Systems [Halbwachs, 93]

Domain specific languages for reactive control software;

a program is an ideal deterministic and synchronous (zero-delay) model;

a reference specification for

validation, e.g., simulation/testing/formal proofs

and the generation of executable embedded code.

2 / 38



Synchronous Prog. of Reactive Systems [Halbwachs, 93]

Domain specific languages for reactive control software;

a program is an ideal deterministic and synchronous (zero-delay) model;

a reference specification for

validation, e.g., simulation/testing/formal proofs

and the generation of executable embedded code.

2 / 38



Synchronous Prog. of Reactive Systems [Halbwachs, 93]

Domain specific languages for reactive control software;

a program is an ideal deterministic and synchronous (zero-delay) model;

a reference specification for

validation, e.g., simulation/testing/formal proofs

and the generation of executable embedded code.

2 / 38



Synchronous Prog. of Reactive Systems [Halbwachs, 93]

Domain specific languages for reactive control software;

a program is an ideal deterministic and synchronous (zero-delay) model;

a reference specification for

validation, e.g., simulation/testing/formal proofs

and the generation of executable embedded code.

2 / 38



Synchronous Prog. of Reactive Systems [Halbwachs, 93]

Domain specific languages for reactive control software;

a program is an ideal deterministic and synchronous (zero-delay) model;

a reference specification for

validation, e.g., simulation/testing/formal proofs

and the generation of executable embedded code.

2 / 38



Synchronous Prog. of Reactive Systems [Halbwachs, 93]

Domain specific languages for reactive control software;

a program is an ideal deterministic and synchronous (zero-delay) model;

a reference specification for

validation, e.g., simulation/testing/formal proofs

and the generation of executable embedded code.

2 / 38



The compiler plays a central role

• It generates an implementation (e.g., C code).

• It statically reject models for which it cannot ensure important safety
properties, e.g.:

• the program does react (no deadlock),
the reaction is unique (determinacy),
the generated sequential code runs in bounded time and space.

• Checks are part of the language specification: if they fail, no code is
generated.

• Compiler correctness is a difficult challenge.

• E.g., a compiler like Scade is used in certified applications.

How to ensure it for a language and compiler that needs to evolve?
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A lot of work has been done on the formalization of semantics for
synchronous languages!

on paper and/or with computer-checked proofs (cf. Vélus).
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This work

• We consider a first-order synchronous functional language

• a large subset of Scade.

Objective
• A formal semantics that is executable, i.e., an interpreter;

• that is constructive, i.e., defined as a total function in a typed functional
language with strong normalization (all program terminate);

• that can apply directly to the source, before compilation starts;

• is independent of a compiler.
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For what?

• An oracle for compiler testing (e.g., fuzzing);

• to explore new language constructs before implementing them;

• to execute partial models or that are rejected by the compiler;

• to prove compiler steps.

A prototype in OCaml
• A reference implementation in purely functional style.

• https://zelus.di.ens.fr/zrun/emsoft2023

• https://zelus.di.ens.fr/zrun/emsoft2023/work
(branch work)
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A synchronous language kernel
A first-order Lustre-like synchronous language of streams.

Global declarations (d), patterns (p), expressions (e), equations (E ),
immediate constants (v):

(declaration) d ::= let f = e | let node f p = e | d d

(pattern) p ::= () | x | x , ..., x
(expression) e ::= v | x

| f (e, ..., e) | (e, ..., e) | ()
| e fby e

| let rec E in e

(equation) E ::= p = e | E andE
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Examples

let node forward_euler(h, x0, x’) =
(* [x(0) = x0(0)

/\ forall n in Nat. x(n) = x(n-1) + h(n-1) * x’(n-1)] *)
let rec x = x0 fby (x +. h *. x’) in x

let node backward_euler(h, x0, x’) =
(* [x(0) = x0(0)

/\ forall n in Nat. x(n) = x(n-1) + h(n) * x’(n)] *)
let rec x = x0 -> pre(x) +. h *. x’ in x

let node pi(p, i, u) = p *. u +. backward_euler(h, 0.0, i *. u)

let node sin_cos(h) =
let rec sin = forward_euler(h, 0.0, cos)
and cos = backward_euler(h, 1.0, -. sin) in
(sin, cos)
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Which semantics ?

A signal s is an infinite sequence:

stream(T )
def
= N → T

or the solution of the fix-point equation:

stream(T ) = T × stream(T )

It is an infinite object.

A deterministic system is a stream function:

system(T ,T ′)
def
= stream(T ) → stream(T ′)

Parallel and feed-forward composition are easy = function composition.

Feedback: a function fix (.) : (stream(T ) → stream(T )) → stream(T )

such that fix (f ) is a solution of the stream equation:

x = f (x)
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Feedback
fix (f ) does not always exist, e.g., f = λx .λn.x(n) + 1.

Idea: complete a set T with ⊥ to explicitly represent an undefined value
(e.g., divergence, deadlock);

A flat domain D = T⊥ = T + {⊥}, with ⊥ a minimal element and ≤ the
flat order, i.e., ∀x ∈ T .⊥ ≤ x .

If (D,≤,⊥) is a Complete Partial Order (CPO) and f , a continuous
function f : D → D.

It has a lfp (fix (f ) = limn→∞(f n(⊥)).

This is not an effective computational definition because the height of D
may be unbounded

E.g., the CPO of streams (stream(T⊥),≤s ,⊥s), with ⊥s = λn.⊥ is the
bottom stream and ≤s the prefix order:

x ≤ y iff ∀n ∈ N.x(n) ̸= y(n) ⇒ ∀m ≥ n.x(n) = ⊥
10 / 38



How to define fix (.) constructively, as a total function?

where the meta-language is a statically typed functional language

with strong normalization, i.e., all functions terminate?

e.g., the programming language of Coq.
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We used ideas introduced in several works

The PhD. thesis of Georges Gonthier [Gonthier, 1988] who introduced the
idea of a computational semantics for Esterel.

The paper “Circuits as streams in Coq, verification of a sequential
multiplier” by Christine Paulin [Paulin-Mohring, 1995].

The paper “a Coiterative Characterization of Synchronous Stream
Functions” by Paul Caspi and Marc Pouzet [Caspi and Pouzet, 1998].

“The semantics and execution of a synchronous block-diagram language”,
by Stephen Edwards and Edward Lee [Edwards and Lee, 2003]
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A coiterative interpretation of streams [Jacobs and Rutten, 1997]
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Streams as sequential processes [Paulin-Mohring, 1995]
A concrete stream producing values in the set T is a pair made of a step
function f : S → T × S and an initial state s : S .

coStream(T , S) = CoF (S → T × S ,S)

Given a concrete stream v = CoF (f , s), nth(v)(n) returns the n-th
element of the corresponding stream process:

nth(CoF (f , s))(0) = let v , s = f s in v
nth(CoF (F , s))(n) = let v , s = f s in nth(CoF (f , s))(n − 1)
concrete(v) = CoF (λn.(v(n), (n + 1)), 0)

nth(.)(.) : coStream(T , S) → stream(T )
concrete(.) : stream(T ) → coStream(T ,N)

One can go from a stream-based to a concrete-based interpretation, and
back.
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Definition (Equivalence)
Two concrete streams CoF (f , s) and CoF (f ′, s ′) are equivalent iff they
produce the same stream:

nth(CoF (f , s)) = nth(CoF (f ′, s ′))

We write CoF (f , s) ∼= CoF (f ′, s ′) for equivalence of concrete streams.

Taking stream(x)(n)
def
= nth(x)(n), concrete(stream(x)) ∼= x and

stream(concrete(x)) = x .

Find an inductive relation R that is verified on initial states, that is,
R(s, s ′) and preserved by the application of the two transition functions.

∀s, s ′.R(s, s ′) ⇒ (fst o f )(s) = (fst o f ′)(s ′)∧R((snd o f )(s), (snd o f ′)(s ′))

E.g., to prove that forall x , y .0 fby (x + y) ∼= (0 fby x) + (0 fby y), take
R(s1 + s2, (s1, s2)).

15 / 38



Synchronous Stream Processes [Caspi and Pouzet, 1998]

A stream function should be a value from:

stream(T ) → stream(T ′)

that is:
coStream(T ,S) → coStream(T ′,S ′)

Consider the class of synchronous or length preserving functions.

sNode(T ,T ′,S) = CoP(S → T → T ′ × S ,S)

That is, it only needs the current value of its input in order to compute the
current value of its output.
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Synchronous Application

A value f = CoP(ft, s) defines a stream function:

run(CoP(ft, s))(CoF (x , xs)) = CoF (λ(m, xs). let v , xs = x xs in
let v ,m = ft mv in
v , (m, xs),

(s, xs))

with
run(.)(.) : sNode(T ,T ′, S ′) → coStream(T , S)

→ coStream(T ′, S ′ × S)

run(.)(.) convert a synchronous function into a stream function.
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Feedback (fixpoint)
Consider:

f : coStream(T ,S) → coStream(T ′,S ′)

and the following feedback loop written in the kernel language:

let rec y = f (y) in y

We want to define fix (.) such that fix (f ) is a fixpoint of f , that is:

fix (f ) = f (fix (f ))

Suppose that f is the image of a synchronous function, that is, it exists
CoP(ft, s) such that f y ∼= run(CoP(ft, s0))(y).

If yn = nth(y)(n), we should have:

yn, sn+1 = ft sn yn
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Consider f = CoP(ft, s) with ft : S → T → T × S .

We want feedback (ft) : S → T × S such that

feedback (ft) (s) = v , s ′

where
v , s ′ = ft s v
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A lazy functional language like Haskell allows for writing such a recursively
defined value:

feedback (ft) = λs.let rec v , s ′ = ft s v in v , s ′

where v is defined recursively.

CoF (feedback (ft), s) computes a stream that is a solution of the equation
y = f (y).

We have replaced a recursion on time, that is, a stream recursion, by a
recursion on a value at every instant.

It can be programmed directly in Haskell (or OCaml, using module Lazy);

it leads to an interpretor.
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Where is the devil?

feedback (.) is not a total function, e.g., it diverges or deadlocks.

For example, feedback (λs, x .x + 1, s) which corresponds to:

let f () =
let rec x = x+1 in x

Or feedback (λs, (x , y).(y , x), s):

let f () =
let rec x = y and y = x in (x, y)

As a consequence, we cannot define feedback (.) in Coq.
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Bounded Fixpoint

By restricting to length preserving functions, we have made the problem of
computing the fix-point function simpler.

Indeed, if (D,≤,⊥) is a CPO of bounded height, the fixpoint can be
reached in a finite number of steps.

We have replaced an unbounded iteration by an bounded
one [Caspi and Pouzet, 1998].

The idea of computing a fix-point for every reaction was introduced in a
“computable semantics” for Esterel [Gonthier, 1988], lately called
“constructive semantics” [Berry, 1999]).

This idea of bounded iteration was exploited in [Edwards and Lee, 2003].
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Bounded Fixpoint

The unbounded iteration for the fixpoint is replaced by a bounded one.

fix (0) (f )(s) = ⊥, s
fix (n) (f )(s) = let v , s ′ = fix (n − 1) (f )(s) in f s v

with:

fix (.) : N → (S → T⊥ → T⊥ × S) → S → coStream(T⊥, S)
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How many iterations?

It depends on the type T . Define:

∥int∥ = 0
∥T⊥∥ = 1 + ∥T∥
∥T1 × T2∥ = ∥T1∥+ ∥T2∥
∥T1 → T2∥ = ∥T2∥|T1|

where |T | is the cardinality of T .

It is enough to give only a credit of ∥T∥ iterations for a fixpoint on a value
of type T .

For n recursively defined stream variables, iterate n times at most.

Continuity is replaced by monotony and the function fix (.) is total.
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The semantics of an expression e is:

[[e]]ρ = CoF (f , s) where f = [[e]]State
ρ and s = [[e]]Init

ρ

We use two auxiliary functions. If e is an expression and ρ an environment
which associates a value to a variable name:
• [[e]]Init

ρ is the initial state of the transition function associated to e;
• [[e]]State

ρ is the step function.
We suppose the existence of a environment γ for global definitions. It is
kept implicit in the following definitions.

γ(x) returns either a value Val(v) or a node CoP(p, s).
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Semantics of Expressions

[[v fby e]]Init
ρ

def
= (v , [[e]]Init

ρ )

[[v fby e]]State
ρ (m, s)

def
= (m, let v , s = [[e]]State

ρ (s) in (v , s))

[[x ]]State
ρ (s)

def
= (ρ(x), s)

[[c]]Init
ρ

def
= ()

[[c]]State
ρ (s)

def
= (c , s)

[[(e1, ..., e2)]]
Init
ρ

def
= ([[e1]]

Init
ρ , ..., [[e2]]

Init
ρ )

[[(e1, ..., e2)]]
State
ρ (s)

def
= let (vi , si = [[ei ]]

State
ρ (si ))i∈[1..n] in

(v1, ..., vn), (s1, ..., sn)
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Node application

[[f (e1, ..., en)]]
Init
ρ = fi , [[e1]]

Init
ρ , ..., [[en]]

Init
ρ

[[f (e1, ..., en)]]
State
ρ = λ(m, s).let (vi , si = [[ei ]]

State
ρ (si ))i∈[1..n] in

let r ,m′ = fo m (v1, ..., vn) in
r , (m′, s)

if γ(f ) = CoP(fo, fi)

[[let node f (x1, ..., xn) = e]]Init
γ = γ + [CoP(p, s)/f ]

where s = [[e]]Init
ρ+[⊥/x1,...,⊥/xn]

and p = λs, (v1, ..., vn).[[e]]
State
ρ+[v1/x1,...,vn/xn]

(s)
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Equations

If E is an equation, ρ is an environment, [[E ]]Init
ρ is the initial state and

[[E ]]State
ρ is the step function. The semantics of an equation eq is:

[[E ]]ρ = [[E ]]Init
ρ , [[E ]]State

ρ

[[p = e]]Init
ρ = [[e]]Init

ρ

[[p = e]]State
ρ = λs.let v , s = [[e]]State

ρ (s) in [v |p], s

[[E1 andE2]]
Init
ρ = ([[E1]]

Init
ρ , [[E2]]

Init
ρ )

[[E1 andE2]]
State
ρ = λ(s1, s2).let ρ1, s1 = [[E1]]

State
ρ (s1) in

let ρ2, s2 = [[E2]]
State
ρ (s2) in

ρ1 + ρ2, (s1, s2)
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Let Def (E ) = {x1, ..., xn}, the set of defined variables in E .

[[rec E ]]Init
ρ = [[E ]]Init

ρ

[[rec E ]]State
ρ = λs.feedback (∥E∥+ 1) (λs, ρ′.[[E ]]State

ρ+ρ′ (s))(s)

[[let rec E in e ′]]Init
ρ = [[e]]Init

ρ , [[e ′]]Init
ρ+[⊥/x1,...,⊥/xn]

[[let rec E in e ′]]State
ρ = λ(s, s ′).let ρ′, s = [[rec E ]]State

ρ (s) in
let v ′, s ′ = [[e ′]]State

ρ+ρ′ (s
′) in

v ′, (s, s ′)

∥E∥ is the number of variables defined by E .
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A Complete Language

This semantics extends to a rich language, e.g., that mix a data-flow and
control-flow programming style.

by-case definition of streams with default value (see paper);

hierarchical automata (see paper);

arrays and iterators, static parameters 2.

2https://zelus.di.ens.fr/zrun/emsoft2023
30 / 38
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A focus on Causality
It has been the subject of strong debates!

Dynamic causality (is a value ⊥?) vs static causality (what the compiler
can approximate safely).

There is no absolute notion of causality: there is not one that is better
than the other.

Some are more powerful (they accept more program); but at the price of a
greater complexity, lack of modularity of analysis and code generation.

The choice is determined by the code you target, e.g., circuit or software.

For circuits, if cyclic circuits are forbidden by the synthesis tool, why
fighting for constructive causality?

For software, different compromises, e.g., code size of the target code.
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Demo

Examples available at:
https://zelus.di.ens.fr/zrun/emsoft2023/work/tests/good/.

A simple counter, etc.
https:
//zelus.di.ens.fr/zrun/emsoft2023/work/tests/good/ex0.zls.

The cyclic circuit of Malik.
https:
//zelus.di.ens.fr/zrun/emsoft2023/work/tests/good/malik.zls.

The Bus arbiter by R. de Simone.
https://zelus.di.ens.fr/zrun/emsoft2023/work/tests/good/
arbiter.zls.

Type zrun.exe -s main -n 10 arbiter.zls
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The causality in Lustre vs Signal vs Esterel correspond to different
interpretations of the conditional.

With zrun, you can try several.

Syntactic Causality (Lustre)

⋆if ⊥ then _ else _ def
= ⊥

⋆if _ then⊥ else _ def
= ⊥

⋆if _ then _ else ⊥ def
= ⊥

⋆if true then x else _ def
= x

⋆if false then _ else y def
= y
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Causality

Lazy Causality

⋆if ⊥ then _ else _ def
= ⊥

⋆if true then x else _ def
= x

⋆if false then _ else y def
= y

Constructive Causality

⋆if ⊥ then v1 else v2
def
= if v1 = v2 then v1 else ⊥

⋆if true then x else _ def
= x

⋆if false then _ else y def
= y

where v1 = v2 must be decidable.
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Causality
With the following definition for the or/and operations:

⋆or(x , y) def
= if x then true else y

⋆and(x , y) def
= if x then y else false

With the first interpretation, the two operators are strict. With the second
one, they are sequential, left-to-right; with the third one, it corresponds to
the 3-valued logic for boolean operators.

⋆or(true,_) = true
⋆or(_, true) = true
⋆or(false, x) = x
⋆or(x , false) = x
⋆and(false,_) = false
⋆and(_, false) = false
⋆and(true, x) = x
⋆and(x , true) = x
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Constructive Causality (Esterel)
The following program:

tobe = tobe or not tobe

is not causally correct in Esterel. Neither it is with the third encoding.

But the following one, that is not causally correct in Esterel:
x = if x then true else true

is with the third encoding.

Which one is better? no one.

It depends on the primitive operations of the target platform.

There are many and comparable ways of lifting a primitive
f : T 1 × ...× T n → T into
⋆f : T 1

⊥ × ...× T n
⊥ → T⊥ [Schneider et al., 2005]

each with its own impact in term of static analyses and code generation.
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Conclusion

• An executable semantics for a data-flow synchronous language.

• The input language has the main programming constructs of Scade.

• Constructiveness is a consequence that the semantics is expressible in a
statically typed functional language with strong normalization, e.g., Coq.

• The semantics is rather abstract. By changing what is a value and how
functions are lifted, we can experiment different run-time causalities.

• The state-based and co-iterative approach works surprisingly well.

• It can deal with error management with little change of the code.

• We prototyped several new language constructs not in Scade, in
particular array operations.
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