
Clocks in Kahn Process Networks

Marc Pouzet

École normale supérieure

Course notes - MPRI - October 3, 2017

Dataflow Semantics

Kahn Principle :The semantics of process networks communicating through

unbounded FIFOs (e.g., Unix pipe, sockets) ?

P

R

Q
x y z

tr

— message communication into FIFOs (send/wait)

— reliable channels, bounded communication delay

— blocking wait on a channel. The following program is forbidden

if (A is present) or (B is present) then ...

— a process = a continuous function (V ∞)n → (V ′∞)m.

Lustre :

— Lustre has a Kahn semantics (no test of absence)

— A dedicated type system (clock calculus) to guaranty the existence of

an execution with no buffer (no synchronization)

MPRI - Marc Pouzet 2/51

Pros and Cons of KPN

(+) : Simple semantics : a process defines a function (determinism) ;

composition is function composition

(+) : Modularity : a network is a continuous function

(+) : Asynchronous distributed execution : easy ; no centralized scheduler

(+/-) : Time invariance : no explicit timing ; but impossible to state that two

events happen at the same time.

x = x0 x1 x2 x3 x4 x5 ...

f(x) = y0 y1 y2 y3 y4 y5 ...

f(x) = y0 y1 y2 y3 y4 y5 ...

This appeared to be a useful model for video apps (TV boxes) : Sally (Philips

NatLabs), StreamIt (MIT), Xstream (ST-micro) with various “synchronous”

restriction à la SDF (Edward Lee)

MPRI - Marc Pouzet 3/51

A small dataflow kernel

A small kernel with minimal primitives

e ::= e fby e | op(e, ..., e) | x | i

| merge e e e | e when e

| λx.e | e e | rec x.e

op ::= + | − | not | ...

— function (λx.e), application (e e), fix-point (rec x.e)

— constants i and variables (x)

— dataflow primitives : x fby y is the unitary delay ; op(e1, ..., en) the

point-wise application ; sub-sampling/oversampling (when/merge).

MPRI - Marc Pouzet 4/51

Dataflow Primitives

x x0 x1 x2 x3 x4 x5

y y0 y1 y2 y3 y4 y5

x+ y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 x5 + y5

x fby y x0 y0 y1 y2 y3 y4

h 1 0 1 0 1 0

x′ = x whenh x0 x2 x4

z z0 z1 z2

merge h x′ z x0 z0 x2 z1 x4 z2

Sampling :

� if h is a boolean sequence, x whenh produces a sub-sequence of x

� merge h x z combines two sub-sequences

MPRI - Marc Pouzet 5/51

Kahn Semantics

Every operator is interpreted as a stream function (V ∞ = V ∗ + V ω). E.g., if

x 7→ s1 and y 7→ s2 then the value of x+ y is +# (s1, s2)

i# = i.i#

+# (x.s1, y.s2) = (x+ y).+# (s1, s2)

(x.s1) fby
s2 = x.s2

x.s when# 1.c = x.(s when# c)

x.s when# 0.c = s when# c

merge# 1.c x.s1 s2 = x.merge# c s1 s2

merge# 0.c s1 y.s2 = y.merge# c s1 s2

MPRI - Marc Pouzet 6/51

All this can be simulated in a few lines of Haskell

module Streams where

-- lifting constants

constant x = x : (constant x)

-- pointwise application

extend (f:fs) (x:xs) = (f x):(extend fs xs)

-- delays

(x:xs) ‘fby‘ y = x:y

pre x y = x : y

-- sampling

(x : xs) ‘when‘ (True : cs) = (x : (xs ‘when‘ cs))

(x : xs) ‘when‘ (False : cs) = xs ‘when‘ cs

merge (True : c) (x : xs) y = x : (merge c xs y)

merge (False : c) x (y : ys) = y : (merge c x ys)

After all, why do not use Haskell (or existing FP) ?

We can write many usefull examples and benefit from powerfull type/module

systems for free. Some of them are clearly real-time.

lift2 f x y = extend (extend (constant f) x) y

plusl x y = lift2 (+) x y

-- integers greaters than n

from n =

let nat = n ‘fby‘ (plusl nat (const 1)) in

nat

-- resetable counter

reset_counter res input =

let output = ifthenelse res (const 0) v

v = ifthenelse input

(pre 0 (plusl output (constant 1)))

(pre 0 output)

in output

Multi-periodic systems

every n =

let o = reset_counter (pre 0 o = n - 1)

(const True)

in o

filter n top = top when (every n)

hour_minute_second top =

let second = filter (const 10) top in

let minute = filter (const 60) second in

let hour = filter (const 60) minute in

hour,minute,second

Over-sampling (with fixed step)

Compute the sequence (on)n∈IN such that o2n = xn and o2n+1 = xn.

-- the half clock

half = (const True) ‘fby‘ notl half

-- double its input

stutter x =

o = merge half x ((pre 0 o) when notl half) in o

— over-sampling : the internal rate is faster than the rate of inputs

— this is still a real-time program

— why is it rejected in Lustre ?

Over-sampling with variable step

Compute the root of an input x (using Newton method)

un = un−1/2 + x/2un−1

u1 = x

eps = const 0.001

root input =

let ic = merge ok input (pre 0 ic) when notl ok)

uc = (pre 0 uc) / 2 + (ic / 2 * pre 0 uc)

ok = true -> uc - pre 0 uc <= eps

output = uc when ok

in output

This example mimics an internal while loop (example due to Paul Le Guernic)

Some Programs generate monsters !

A stream is represented as a lazy data-structure. Nonetheless, lazyness allows

streams to be build in a strange manner.

Structural (Scott) order :

⊥ ≤struct v, (v : w) ≤struct (v
′ : w′) iff v ≤struct v

′ and w ≤struct w
′.

The following programs are perfectly correct in Haskell (with a unique

non-empty solution)

first (x:y) = x

next (x:y) = y

incr (x:y) = (x+1) : incr y

one = 1 : one

x = (if hd(tl(tl(tl(x)))) = 5 then 3 else 4) : 1 : 2 : 3 : one

output = (hd(tl(tl(tl(x))))) : (hd(tl(tl(x)))) : (hd(x)) : output

The values are :

— x = 4 : 1 : 2 : 3 : 1 : ...

— output = 3 : 2 : 4 : 3 : 2 : 4 : ...

These stream may be constructed lazilly :

— x0 = ⊥, x1 = ⊥ : 1 : 2 : 3 : un, x2 = 4 : 1 : 2 : 3 : one.

— output0 = ⊥, output1 = 3 : 2 : 4 : ...

An other example (due to Paul Caspi) :

nat = zero ‘fby‘ (incr nat)

ifn n x y = if n <= 9 then hd(x) : if9(n+1) (tl(x)) (tl(y)) else y

if9 x y = ifn 9 x y

x = if9 (incr (next x)) nat

We have x = 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 10, 11,

Are they reasonnable programs ? Streams are constructed in a reverse manner

from the future to the past and are not “causal”.

This is because the structural order between streams allows to fill the holes in

any order, e.g. :

(⊥ : ⊥) ≤ (⊥ : ⊥ : ⊥ : ⊥) ≤ (⊥ : ⊥ : 2 : ⊥) ≤ (⊥ : 1 : 2 : ⊥) ≤ (0 : 1 : 2 : ⊥)

It is also possible to build streams with intermediate holes (undefined values in

the middle) through the final program is correct :

half = 0.⊥.0.⊥...

fail = fail

half = 0:fail:half

fill x = (hd(x)) : fill (tl(tl x))

ok = fill half

We need to model causality, that is, stream should be produced in a sequential

order. We take the prefix order introduced by Kahn :

Prefix order :

x ≤ y if x is a prefix of y, that is : ⊥ ≤ x and v.x ≤ v.y if x ≤ y

Causal function :

A function is causal when it is monotonous for the prefix order :

x ≤ y ⇒ f(x) ≤ f(y)

All the previous program will get the value ⊥ in the Kahn semantics.

Kahn Semantics in Haskell

It is possible to remove possible non causal streams by forbidding values of the

form ⊥.x. In Haskell, the annotation !a states that the value with type a is

strict (6= ⊥).

module SStreams where

-- only consider streams where the head is always a value (not bot)

data ST a = Cons !a (ST a) deriving Show

constant x = Cons x (constant x)

extend (Cons f fs) (Cons x xs) = Cons (f x) (extend fs xs)

(Cons x xs) ‘fby‘ y = Cons x y

(Cons x xs) ‘when‘ (Cons True cs) = (Cons x (xs ‘when‘ cs))

(Cons x xs) ‘when‘ (Cons False cs) = xs ‘when‘ cs

merge (Cons True c) (Cons x xs) y = Cons x (merge c xs y)

merge (Cons False c) x (Cons y ys) = Cons y (merge c x ys)

This time, all the previous non causal programs have value ⊥ (stack overflow).

Some “synchrony” monsters

✲

✲ even ✲

&

✲

✲

If x = (xi)i∈IN then even(x) = (x2i)i∈IN and x&even(x) = (xi&x2i)i∈IN .

Unbounded FIFOs !

� must be rejected statically

� every operator is finite memory through the composition is not : all the

complexity (synchronization) is hidden in communication channels

� the Kahn semantics does not model time, i.e., impossible to state that

two event arrive at the same time

MPRI - Marc Pouzet 16/51

Synchronous (Clocked) streams

Complete streams with an explicit representation of absence (abs).

x : (V abs)∞

Clock : the clock of x is a boolean sequence

IB = {0, 1}

CLOCK = IB∞

clock ǫ = ǫ

clock (abs .x) = 0.clock x

clock (v.x) = 1.clock x

Synchronous streams :

ClStream(V, cl) = {s/s ∈ (V abs)∞ ∧ clock s ≤prefix cl}

An other possible encoding : x : (V × IN)∞

MPRI - Marc Pouzet 17/51

Dataflow Primitives

Constant :

i#(ǫ) = ǫ

i#(1.cl) = i.i#(cl)

i#(0.cl) = abs .i#(cl)

Point-wise application :

Synchronous arguments must be constant, i.e., having the same clock

+# (s1, s2) = ǫ if si = ǫ

+# (abs .s1, abs .s2) = abs.+# (s1, s2)

+# (v1.s1, v2.s2) = (v1 + v2).+
(s1, s2)

MPRI - Marc Pouzet 18/51

Partial definitions

What happens when one element is present and the other is absent ?

Constraint their domain :

(+) : ∀cl : CLOCK.ClStream(int, cl)×ClStream(int, cl)→ ClStream(int, cl)

i.e., (+) expect its two input stream to be on the same clock cl and produce an

output on the same clock

These extra conditions are types which must be statically verified

Remark (notation) : Regular types and clock types can be written separately :

— (+) : int× int→ int ← its type signature

— (+) :: ∀cl.cl × cl → cl ← its clock signature

In the following, we only consider the clock type.

MPRI - Marc Pouzet 19/51

Sampling

s1 when
s2 = ǫ if s1 = ǫ or s2 = ǫ

(abs .s) when# (abs .c) = abs .s when# c

(v.s) when# (1.c) = v.s when# c

(v.s) when# (0.c) = abs .x when# c

merge c s1 s2 = ǫ if one of the si = ǫ

merge (abs.c) (abs .s1) (abs.s2) = abs .merge c s1 s2

merge (1.c) (v.s1) (abs .s2) = v.merge c s1 s2

merge (0.c) (abs .s1) (v.s2) = v.merge c s1 s2

MPRI - Marc Pouzet 20/51

Examples

base = (1) 1 1 1 1 1 1 1 1 1 1 1 1 ...

x x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ...

h = (10) 1 0 1 0 1 0 1 0 1 0 1 0 ...

y = x whenh x0 x2 x4 x6 x8 x10 x11 ...

h′ = (100) 1 0 0 1 0 0 1 ...

z = y whenh′ x0 x6 x11 ...

k k0 k1 k2 k3 ...

merge h′ z k x0 k0 k1 x6 k2 k3 ...

let clock five =

let rec f = true fby false fby false fby false fby f in f

let node stutter x = o where

rec o = merge five x ((0 fby o) whenot five) in o

stutter(nat) = 0.0.0.0.1.1.1.1.2.2.2.2.3.3...

MPRI - Marc Pouzet 21/51

Sampling and clocks

� x when# y is defined when x and y have the same clock cl

� the clock of x when# c is written cl on c : “c moves at the pace of cl”

s on c = ǫ if s = ǫ or c = ǫ

(1.cl) on (1.c) = 1.cl on c

(1.cl) on (0.c) = 0.cl on c

(0.cl) on (abs.c) = 0.cl on c

We get :

when : ∀cl.∀x : cl.∀c : cl.cl on c

merge : ∀cl.∀c : cl.∀x : cl on c.∀y : cl on not c.cl

Written instead :

when : ∀cl.cl→ (c : cl)→ cl on c

merge : ∀cl.(c : cl)→ cl on c→ cl on not c→ cl

MPRI - Marc Pouzet 22/51

Checking Synchrony

The previous program is now rejected.

✲

✲ even ✲

&

✲

✲

This is a now a typing error

let even x = x when half

let non_synchronous x = x & (even x)

^^^^^^^

This expression has clock ’a on half,

but is used with clock ’a

Final remarks :

— We only considered clock equality, i.e., “two streams are either

synchronous or not”

— Clocks are used extensively to generate efficient sequential code

MPRI - Marc Pouzet 23/51

Lucid Synchrone (sept. 96 –)

How to extend Lustre in a conservative way (without breaking it) ?

Build a “laboratory” language

— a (quasi-dogmatic) attachment to the basic principles : stream Kahn

semantics, clocks, functions

— study (implement) extensions of Lustre

— experiment things, manage all the compilation chain and write programs !

— Version 1 (1995), Version 2 (2001), V3 (2006)

Quite fruitful :

— start of a close colloboration with the SCADE team at

Esterel-Technologies

— the new SCADE 6 language (Oct. 2008) incorporates several features

from Lucid Synchrone

— the LCM language at Dassault-Systm̀es (Delmia Automation) based on

the same principles

From Synchrony to Relaxed Synchrony

Joint work with Albert Cohen, Marc Duranton, Louis Mandel and Florence

Plateau (PhD. Thesis at https://www.lri.fr/~mandel/lucy-n/~plateau/)

— can we compose non strictly synchronous streams provided their clocks

are closed from each other ?

— communication between systems which are “almost” synchronous

— model jittering, bounded delays

— Give more freedom to the compiler, generate more efficient code,

translate into regular synchronous code if necessary

MPRI - Marc Pouzet 25/51

A typical example : Picture in Picture

not incrust

incrust

SDHD

HD

HD

downscaler

when

merge

Incrustation of a Standard Definition (SD) image in a High Definition (HD)

one

� downscaler : reduction of an HD image (1920×1080 pixels)

to an SD image (720×480 pixels)

� when : removal of a part of an HD image

� merge : incrustation of an SD image in an HD image

Question :

� buffer size needed between the downscaler and the merge nodes ?

� delay introduced by the picture in picture in the video processing

chain ?

MPRI - Marc Pouzet 26/51

Too restrictive for video applications

?

t+

w
h
e
n

w
h
e
n

y

z

x

0 1

1 10 0

?

z

y

� streams should be synchronous

� adding buffer (by hand) difficult and error-prone

� compute it automatically and generate synchronous code

relax the associated clocking rules

MPRI - Marc Pouzet 28/51

N-Synchronous Kahn Networks

z

buff[1]

1 1 1 1 1 1 1 1

1 1 1 1 11 1 1

0 0 0 0 0 0

0 00 0 0 0 0

y

— based on the use of infinite ultimately periodic sequences

— a precedence relation cl1 <: cl2

MPRI - Marc Pouzet 29/51

Ultimately periodic sequences

Q2 for the set of infinite periodic binary words.

(01) = 01 01 01 01 01 01 01 01 01 . . .

0(1101) = 0 1101 1101 1101 1101 1101 1101 1101 . . .

— 1 for presence

— 0 for absence

Definition :

w ::= u(v) where u ∈ (0 + 1)∗ and v ∈ (0 + 1)+

MPRI - Marc Pouzet 30/51

Clocks and infinite binary words

Instants

N
u
m
b
er

of
on

es

20191817161514131211109876543210

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

w1

Ow(i) = cumulative function of 1 from w

MPRI - Marc Pouzet 31/51

Clocks and infinite binary words

Instants

N
u
m
b
er

of
on

es

20191817161514131211109876543210

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

Ow3

buffer size(w1, w2) = maxi∈N(Ow1
(i)−Ow2

(i))

sub-typing w1 <: w2

def
⇔ ∃n ∈ N, ∀i, 0 ≤ Ow1

(i)−Ow2
(i) ≤ n

MPRI - Marc Pouzet 32/51

Clocks and infinite binary words

Instants

N
u
m
b
er

of
on

es

20191817161514131211109876543210

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

Ow3

buffer size(w1, w2) = maxi∈N(Ow1
(i)−Ow2

(i))

sub-typing w1 <: w2

def
⇔ ∃n ∈ N, ∀i, 0 ≤ Ow1

(i)−Ow2
(i) ≤ n

synchronizability w1 ⊲⊳ w2

def
⇔ ∃b1, b2 ∈ Z,∀i, b1 ≤ Ow1

(i)−Ow2
(i) ≤ b2

precedence w1 � w2

def
⇔ ∀i, Ow1

(i) ≥ Ow2
(i)

MPRI - Marc Pouzet 33/51

Multi-clock

c ::= w | c on w w ∈ (0 + 1)ω

c on w is a sub-clock of c, by moving in w at the pace of c. E.g.,

1(10) on (01) = (0100).

base 1 1 1 1 1 1 1 1 1 1 ... (1)

p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

base on p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

p2 0 1 0 1 0 1 ... (01)

(base on p1) on p2 0 1 0 0 0 1 0 0 0 1 ... (0100)

For ultimately periodic clocks, precedence, synchronizability and equality are

decidable (but expensive)

MPRI - Marc Pouzet 34/51

Come-back to the language

Pure synchrony :

� close to an ML type system (e.g., SCADE 6)

� structural equality of clocks

H ⊢ e1 : ck H ⊢ e2 : ck

H ⊢ op(e1, e2) : ck

Relaxed Synchrony :

� we add a sub-typing rule :

H ⊢ e : ck on w w <: w′

(SUB)

H ⊢ buffer(e) : ck on w′

� defines synchronization points when a buffer is inserted

� the basis of the language Lucy-N (Plateau and Mandel).

MPRI - Marc Pouzet 35/51

What about non periodic systems ?

� The same idea : synchrony + properties between clocks. Insuring the

absence of deadlocks and bounded buffering.

� The exact computation with periodic clocks is expensive. E.g.,

(10100100) on 03600(1) on (101001001) =

09600(104107107102)

� Motivations :

1. To treat long periodic patterns. To avoid an exact computation.

2. To deal with almost periodic clocks. E.g., α on w where

w = 00.((10) + (01))∗

(e.g. w = 00 01 10 01 01 10 01 10 . . .)

Idea : manipulate sets of clocks ; turn questions into arithmetic ones

MPRI - Marc Pouzet 36/51

Abstraction of Infinite Binary Words

Instants

N
u
m
b
er

of
on

es

1211109876543210

9

8

7

6

5

4

3

2

1

0

Ow1

a1 =
〈

1
5 ,

7
5

〉 (

3
5

)

A word w can be abstracted by two lines : abs(w) =
〈

b0, b1
〉

(r)

concr
(〈

b
0
, b

1
〉

(r)
)

def
⇔







w, ∀i ≥ 1, ∧
w[i] = 1 ⇒ Ow(i) ≤ r × i+ b1

w[i] = 0 ⇒ Ow(i) ≥ r × i+ b0







MPRI - Marc Pouzet 37/51

Abstraction of Infinite Binary Words

Instants

N
u
m
b
er

of
on

es

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

a4 =
〈

3, 143

〉 (

1
3

)

Instants

N
u
m
b
er

of
on

es

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

a5 =
〈

−14
3 ,−3

〉 (

2
3

)

MPRI - Marc Pouzet 38/51

Abstract Clocks as Automata

Instants

N
u
m
b
er

of
on

es

1211109876543210

9

8

7

6

5

4

3

2

1

0

Ow1

a1 =
〈

1
5 ,

7
5

〉 (

3
5

)

4, 22, 2

1, 1

5, 34, 3

3, 2

2, 1

1, 0

1

1

0

1

0
1

0

1

0

1

a1 =
〈

1

5
, 7

5

〉 (

3

5

)

� set of states {(i, j) ∈ N2} : coordinates in the 2D-chronogram

� finite number of state equivalence classes

� transition function δ :







δ(1, (i, j)) = nf (i+ 1, j + 1) if j + 1 ≤ r × i+ b1

δ(0, (i, j)) = nf (i+ 1, j + 0) if j + 0 ≥ r × i+ b0

� allows to check/generate clocks

MPRI - Marc Pouzet 39/51

Abstract Relations

Instants

N
u
m
b
er

of
on

es
1211109876543210

9

8

7

6

5

4

3

2

1

0

Ow1

a1 =
〈

1
5 ,

7
5

〉 (

3
5

)

Ow2

a2 =
〈

−6
5 ,−

2
5

〉 (

3
5

)

Synchronizability : r1 = r2 ⇔
〈

b01, b
1
1

〉

(r1) ⊲⊳
∼
〈

b02, b
1
2

〉

(r2)

Precedence : b12 − b01 < 1 ⇒
〈

b01, b
1
1

〉

(r) �∼
〈

b02, b
1
2

〉

(r)

Subtyping : a1 <:∼ a2 ⇔ a1 ⊲⊳∼ a2 ∧ a1 �∼ a2

� proposition : abs(w1) <:∼ abs(w2) ⇒ w1 <: w2

� buffer : size(a1, a2) =
⌊

b11 − b02
⌋

MPRI - Marc Pouzet 40/51

Abstract Operators

Composed clocks : c ::= w | not w | c on c

Abstraction of a composed clock :

abs(not w) = not
∼ abs(w)

abs(c1 on c2) = abs(c1) on
∼ abs(c2)

Operators correctness property :

not w ∈ concr(not∼ abs(w))

c1 on c2 ∈ concr(abs(c1) on
∼ abs(c2))

MPRI - Marc Pouzet 41/51

Abstract Operators

Instants

N
u
m
b
er

of
on

es

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

a4 =
〈

3, 143

〉 (

1
3

)

a5 =
〈

−14
3 ,−3

〉 (

2
3

)

not
∼ operator definition :

� not
∼
〈

b0, b1
〉

(r) =
〈

−b1,−b0
〉

(1− r)

MPRI - Marc Pouzet 42/51

Abstract Operators

4, 03, 0

7, 16, 1

9, 2

12, 311, 3

15, 414, 4

18, 517, 5

21, 620, 6

23, 722, 7

26, 825, 8

25, 9

24, 823, 822, 8

21, 720, 7

19, 618, 617, 6

16, 515, 514, 5

13, 412, 411, 4

10, 39, 3

8, 27, 26, 2

5, 14, 13, 1

2, 01, 0
0 0

1

0 0 0

1

0 0 0

1

0 0

1

0 0 0

1

0 0 0

1

0 0 0

1

0 0

1

0 0 0

1

0

0

1 1

0

1 1

0

1 1

0

1 1

0

1 1

0

1 1

1

0

1 1

0

1 1

a1 on
∼ a2 =

〈

1

5
, 7

5

〉 (

3

5

)

on
∼

〈

− 6

5
,− 2

5

〉 (

3

5

)

on
∼ operator definition :

〈 b01 , b11 〉 (r1)

on
∼ 〈 b02 , b12 〉 (r2)

= 〈 b01 × r2 + b02 , b11 × r2 + b12 〉 (r1 × r2)

with b01 ≤ 0, b02 ≤ 0

MPRI - Marc Pouzet 43/51

Modeling Jitter

Instants

N
u
m
b
er

o
f
o
n
es

14131211109876543210

6

5

4

3

2

1

0

〈

0, 23

〉 (

1
3

)

Instants

N
u
m
b
er

o
f
o
n
es

14131211109876543210

6

5

4

3

2

1

0

〈

−1
3 ,

3
3

〉 (

1
3

)

� set of clock of rate r = 1
3
and jitter 1 can be specified by

〈

− 1
3
, 3
3

〉 (

1
3

)

�

〈

− 1
3
, 3
3

〉 (

1
3

)

= 〈−1, 1〉 (1) on∼
〈

0, 2
3

〉 (

1
3

)

� f :: ∀α.α→ α on∼
〈

− 1
3
, 3
3

〉 (

1
3

)

MPRI - Marc Pouzet 44/51

Formalization in a Proof Assistant

By Louis Mandel and Florence Plateau

Most of the properties have been proved in Coq

� example of property

Property on_absh_correctness:

forall (w1:ibw) (w2:ibw),

forall (a1:abstractionh) (a2:abstractionh),

forall H_wf_a1: well_formed_abstractionh a1,

forall H_wf_a2: well_formed_abstractionh a2,

forall H_a1_eq_absh_w1: in_abstractionh w1 a1,

forall H_a2_eq_absh_w2: in_abstractionh w2 a2,

in_abstractionh (on w1 w2) (on_absh a1 a2).

� number of Source Lines of Code

� specifications : about 1600 SLOC

� proofs : about 5000 SLOC

MPRI - Marc Pouzet 45/51

Back to the Picture in Picture Example

not incrust

incrust

SDHD

HD

HD

downscaler

when

merge

� abstraction of downscaler output :

abs((10100100) on 03600(1) on (172007201720072007201720072007201720))

=
〈

0, 7

8

〉 (

3

8

)

on
∼ 〈−3600,−3600〉 (1) on∼ 〈−400, 480〉

(

4

9

)

=
〈

−2000,− 20153

18

〉 (

1

6

)

� minimal delay and buffer :

delay buffer size

exact result 9 598 (≈ time to receive 5 HD lines) 192 240 (≈ 267 SD lines)

abstract result 11 995 (≈ time to receive 6 HD lines) 193 079 (≈ 268 SD lines)

This is implemented in Lucy-N http://lucy-n.org by Louis Mandel.

MPRI - Marc Pouzet 46/51

Parallel implementation and integer clocks

Parallel processes communicating through a buffer

gf

int f_out;

while (1) {

f_step (f_mem, &f_out);

fifo.push(f_out);

}

int g_in;

while (1) {

fifo.pop(&g_in);

v = g_step (g_mem, g_in);

}

Buffers allow to desynchronize the execution

MPRI - Marc Pouzet 48/51

FIFO with batching

To pop, the consumer has to check for the availability of data. This check is

expensive. It is better to communicate by chunks.

Batch :

� the consumer can read in the fifo only when batch values are available

� the producer can write in the fifo only when batch rooms are available

Batch size : 001 Cycles/push : 23.07 Bandwidth : 589.45 MB/s

Batch size : 002 Cycles/push : 15.79 Bandwidth : 861.40 MB/s

Batch size : 004 Cycles/push : 12.06 Bandwidth : 1127.83 MB/s

Batch size : 008 Cycles/push : 10.00 Bandwidth : 1359.69 MB/s

Batch size : 016 Cycles/push : 7.51 Bandwidth : 1810.58 MB/s

Batch size : 032 Cycles/push : 7.33 Bandwidth : 1855.32 MB/s

Batch size : 064 Cycles/push : 7.33 Bandwidth : 1855.20 MB/s

Batching : reduce the synchronization with the FIFO

MPRI - Marc Pouzet 49/51

Integer clocks

α on (2)α on (2)
f g

Burst :

� allows to compute and communicate several values within one instant

� formulas can be easily lifted to integers

MPRI - Marc Pouzet 50/51

Integer clocks

α on (2)α on (2)
f g

Burst :

� allows to compute several values into one instant

� formulas can be easily lifted to integers

� impacts causality

This has been studied by Adrien Guatto in his PhD. thesis (2016).

