
Synchronous Reaction Semantics in SOS form

Marc Pouzet

ENS Paris
Marc.Pouzet@ens.fr

MPRI, September 20, 2016

Marc.Pouzet@ens.fr

Reaction semantics

I Define what is a valid synchronous reaction without
considering how it is computed (its internal scheduling).

I Useful to study the semantics of well behave programs. Prove
properties (e.g, equivalence) between two programs.

I In SOS form (Structural Operational Semantics [10]).

I Originaly introduced by Berry & Gonthier for Esterel [1]

I Defined here for a data-flow language.

A Basic Language

D ::= D andD | x = e | local x inD

e ::= op(e1, ..., en) | (e, e) | if e then e else e | i | x
| pre i e | init i

i ::= true | false | ...

op1 ::= not | ...

Equations D; expressions e; immediate values i ; operators op.

Notation shortcut:
e1 -> e2 = if init true then e1 else e2

Reaction semantics
Values: v ::= i

Environnement: R ::= [v1/x1, ..., vn/xn] (∀k , l , k 6= l ⇒ xk 6= xl)

Composition: R1,R2 tq Dom(R1) ∩ Dom(R2) = ∅

Reaction: R ` e1
v→ e2 R ` D

R′
→ D ′

Run: R.h ` D : R ′.h′

History: h ::= ε | R.h
If h is a sequence of length greater than n, we note h(n) its n-th
element.

The synchronous reaction:

I R ` e1
v→ e ′1 means that, under the local environment R, the

expression e1 produces the value v and rewrites to e ′1.

I R ` D
R′
→ D ′ means that, equation D produces R ′ and

rewrites to D ′.

Implicit rules:

Let FV (D) be the list of free variables from D.

I Rules are considered modulo α-conversion (renaming).

local x inD ≡ local y inD[x/y] if y 6∈ FV (D)

I Equations are considered modulo move of local declarations:

local x in (D1 andD2) ≡ (local x inD1) andD2

if x 6∈ FV (D2)

local x in (D1 andD2) ≡ D1 and (local x inD2)
if x 6∈ FV (D1)

local x in local y inD ≡ local y in local x inD
if x 6= y

Reaction rules:

(Silent)

ε ` D : ε

(Sequence)

R ` D
R′
→ D ′ h ` D ′ : h′

R.h ` D : R ′.h′

(var)

R[v/x] ` x
v→ x

(const)

R ` i
i→ i

(Pre)

R ` e1
w→ e2

R ` pre v e1
v→ pre w e2

(op)

∀k ∈ [1..n], R ` ek
vk→ e ′k v = op(v1, ..., vn)

R ` op(e1, ..., en)
v→ op(e ′1, ..., e

′
n)

(If1)

R ` e1
true→ e ′1 R ` e2

v2→ e ′2 R ` e3
v3→ e ′3

R ` if e1 then e2 else e3
v2→ if e ′1 then e ′2 else e ′3

(If2)

R ` e1
false→ e ′1 R ` e2

v2→ e ′2 R ` e3
v3→ e ′3

R ` if e1 then e2 else e3
v3→ if e ′1 then e ′2 else e ′3

(Eq)

R(x) = v R ` e
v→ e ′

R ` x = e
[v/x]→ x = e ′

(Local)

R, [v/x] ` D
R′,[v/x]→ D ′

R ` local x inD
R′
→ local x inD ′

(Init)

R ` init i
i→ init false

(And)

R ` D1
R1→ D ′

1 R ` D2
R2→ D ′

2

R ` D1 andD2
R1,R2→ D ′

1 andD ′
2

An Example

This semantics abstracts the way micro scheduling is done.

Example:

local z in x = z + y and z = (pre 0 x) + 1

Given
h = h0.h1.... = [1/y , 2/x].[2/y , 5/x].[3/y , 9/x].[4/y , 14/y]....

h0 ` z
1→ z h0 ` y

1→ y

h0 ` z + y
2→ z + y

h0, [1/z] ` x = z + y
[2/x]→ x = z + y

(1)

h0, [1/z] `
x = z + y

and

z = (pre 0 x) + 1

[2/x ,1/z]→
x = z + y

and

z = (pre 2 x) + 1

For (1):

h0, [1/z] ` x
2→ x

h0, [1/z] ` pre 0 x + 1
1→ (pre 2 x) + 1

h0, [1/z] ` z = (pre 0 x) + 1
[1/z]→ z = (pre 2 x) + 1

This semantics is magical and not operational!
It does not say how the reaction is made but what is a good
reaction. This is why it has been also called logical semantics.

Rmk: It is also possible to define a micro-step operational
semantics.

Interest of this semantics:
It is useful to compare programs/expressions and to prove that a
compiler is correct.

Some program may have several possible reaction (non
determinacy):

R, [true/x] ` x
true→ x

R ` x = x
[true/x]→ x = x

R, [false/x] ` x
false→ x

R ` x = x
[false/x]→ x = x

Some program may have no reaction:

R, [?/x] ` x + 1
?→ x + 1

R ` x = x + 1
?→

If a program is wrongly typed, it has no reaction. E.g., 1 + true.

Instead of a semantics that give a meaning to too many program,
even non deterministic ones, define a deterministic semantics [13].

Some program are deterministic but are weird: 1

R, [true/tobe] ` tobe
true→ tobe

R, [true/tobe] ` not tobe
false→ not tobe

R ` tobe = tobe ∨ not tobe
[true/tobe]→ tobe = tobe ∨ not tobe

The only solution is tobe = true.

Should the semantics give meaning to weird programs as the one
above?

What is the good criteriom to say that a program is reasonnable or
not?

1This is the so-called “Hamlet” example due to Gérard Berry.

Causality

Causality: analyse the cause and consequences of an event. Track
inconsistencies, critical races between event like, e.g., “this event is
present if it is absent”, or conversely.

Reproduce logical reasonning where computation time is
abstracted.

Yet, the Hamlet program, if wired electricaly it is not
“constructive”, that is, the value of every output signal a
consequence of known facts about the value of input signal.

What would result from the electrical implementation of the
circuit? Certainly not generating 1 from no input.

Causality

Shiple and Berry defined constructive causality of an Esterel
program as proving a boolean formula in constructive logic: only
propagate known fact [12].

This observation has been fundamental! The intuition was that it
coincides with synchronous circuits whose values stabilize in
bounded time. The proof has been done only recently, by
Mendler [8].

Read “The constructive semantics of Esterel” [3].

Find statically checkable conditions to say that a program has a
unique possible reaction and is “reasonnable”.

The Simple Lustre-like Solution:

All feedback loops must cross an explicit delay (pre).

We shall focus on that topic later.

Function definitions

I In Lustre, there are two distinct name spaces.

I One for functions; the other for sequences of values.

d ::= node f (x) = e with D

prog ::= d ... d

D ::= ... | x = f (e)

Semantics for functions

Values: v ::= i

Environment: R ::= [v1/x1, ..., vn/xn]
G ::= [λy1.e1 with D1/f1, ..., λym.em with Dm/fm]

with i 6= j ⇒ fi 6= fj
Reaction: G ,R ` e1

v→ e2

G ,R ` D
R′
→ D ′

Run: G ,R.h ` D : R ′.h′

I G is a global environment of function definitions.

I A node definition d1 = node f1(x1) = e1 with D1 defines
[λy1.e1 with D1/f1].

I A collection of declarations d1, ..., dn defines a global
environment G with:

G ::= [λy1.e1 with D1/f1, ..., λyn.en with Dn/fn]

Function Call

Previous rules are unchanged. We now write G ,R ` e
v→ e ′

instead of R ` e
v→ e ′.

The function call f (e) is replaced by the body of f put in parallel
with the computation of e.

(Call)

G (f) = λy .e2 with D

G ,R ` local y in (x = e2 and y = e1 andD)
R′
→ D ′

G ,R ` x = f (e1)
R′
→ D ′

Slow and Fast Processes

We keep the same parallel composition with processes progressing
in lock-step. Add an explicit silent (or absent) value (abs).
This approach is reminiscent to that of Milner for encoding CCS in
SCCS [9].

Values: v ::= i | abs

Environnement: R ::= [v1/x1, ..., vn/xn] with i 6= j ⇒ xi 6= xj

Reaction: G ,R ` e1
v→ e2

G ,R ` D
R′
→ D ′

Run: R.h ` D : R ′.h′

In the next slide, G is left implicit in all the rules, i.e., we write:

R ` e1
v→ e ′1 R ` D

R′
→ D ′

(Const-abs)

R ` i
abs→ i

(Const)

R ` i
i→ i

(Eq)

R[v/x] ` x
v→ x

(Op-abs)

∀j ∈ [1..n] R ` ej
abs→ e ′j

R ` op(e1, ..., en)
abs→ op(e ′1, ..., e

′
n)

(Op)

∀j ∈ [1..n] R ` ej
ij→ e ′j i = op(i1, ..., in)

R ` op(e1, ..., en)
i→ op(e ′1, ..., e

′
n)

(Pre-abs)

R ` e
abs→ e ′

R ` pre i e
abs→ pre i e ′

(Pre)

R ` e
j→ e ′

R ` pre i e
i→ pre j e ′

(When-abs)

R ` e1
abs→ e ′1 D ` e2

abs→ e ′2

R ` e1 when e2
abs→ e ′1 when e ′2

(When-true)

R ` e1
i→ e ′1 D ` e2

true→ e ′2

R ` e1 when e2
i→ e ′1 when e ′2

(When-false)

R ` e1
i→ e ′1 R ` e2

false→ e ′2

R ` e1 when e2
abs→ e ′1 when e ′2

(Merge-abs)

R ` e1
abs→ e ′1 R ` e2

abs→ e ′2 R ` e3
abs→ e ′3

R ` merge e1 e2 e3
abs→ merge e ′1 e

′
2 e

′
3

(Merge-true)

R ` e1
true→ e ′1 R ` e2

i→ e ′2 R ` e3
abs→ e ′3

R ` merge e1 e2 e3
i→ merge e ′1 e

′
2 e

′
3

(Merge-false)

R ` e1
false→ e ′1 R ` e2

abs→ e ′2 R ` e3
i→ e ′3

R ` merge e1 e2 e3
i→ merge e ′1 e

′
2 e

′
3

Synchronous execution

This semantics is partial, that is, some rules are lacking. E.g.,
there is no rule like:

(Op)

R ` ek
ik→ e ′k ∀j ∈ [1..n] j 6= k R ` ej

abs→ e ′j

R ` op(e1, ..., en)
abs→ op(e ′1, ..., e

′
n)

More generally, if one (or more) input is present while one (or
more) is absent, there is no possible reaction.

This would need to store the present value leading possibly to an
unbounded buffering.

The purpose of the clock calculus is to ensure, at compile time,
that such situation do not arrive.

Determinism/Reactivity

Definition (Synchronized values)

Two reaction environment R1 and R2 are compatible, written
R1 ∼ R2 iff:

(Dom(R1) = Dom(R2))∧(∀x ∈ Dom(R1).(R1(x) = abs)⇔ (R2(x) = abs))

By extension, (h ∼ h′) iff ∀i .h(i) ∼ h′(i).

Definition (Determinim)

D is deterministic iff:

∀h, h1, h2.(h1 ∼ h2)∧(h, h1 ` D : h1)∧(h, h2 ` D : h2)⇒ (h1 = h2)

Definition (Reactivity)

D is reactive iff ∀R, ∃R ′,D ′. R,R ′ ` D
R′
→ D ′

Example: The equation x = x is not deterministic.
Take h such that h(i) = [0/x] and h′ such that h(i) = [1/x].

Higher-order I

The more general case with streams of (stream) functions.

D ::= D andD | x = e | x = e(e)

e ::= ... | λx .e with D

Values: v ::= i | λx .e with D

Environment: R ::= [v1/x1, ..., vn/xn]

Reaction: R ` e1
v→ e2

R ` D
R′
→ D ′

Run: R.h ` D : R ′.h′

Higher-order II

I Previous rules stay unchanged.

I Add rules for function abstraction/application.

(App)

R ` e1
λy .e with D→ e ′1 R ` x = e and y = e2 andD

R′
→ D ′

R ` x = e1(e2)
R′
→ D ′

(Abs)

R ` λx .e with D
λx .e with D→ λx .e with D

(Local)

R, [v/x] ` D
R,[v/x]→ D ′ x 6∈ FV (v)

R ` local x inD
R→ local x inD ′

Control Structures

This language is data-flow only: a set of equations D react forever.
Two new situations can be considered:

I Activate an equation only when a boolean condition is true.

I Preempt an equation according to a boolean condition.

I Re-initialize an equation according to a boolean condition.

These type of constructs is the basis of Esterel.

Read the paper by Berry and Gonthier [1] and Berry [2].

Tardieu [13] gives an alternative presentation of the semantics for
causally correct programs only.

Colaco et al. [6] define the reaction semantics of a data-flow
language with hierarchical state machines (SCADE 6).

Control-structures can be compiled into a data-flow
programs [11, 7].

Modular Reset

We extend the first language with a construction which reset an
expresion e or equation D according to a boolean condition.

D ::= ... | resetD every e

The new predicate for a synchronous reaction becomes:

Reaction: R `k e1
v→ e2 R `k D

R′
→ D ′

Run: R.h `k D : R ′.h′

History: h ::= ε | R.h with k ∈ {0, 1}

Intuition
When k = 1, the expression e or equation D is reset, that is, the
initialization operation init v restarts with value true.
Otherwise, k = 0 (continue)

Reaction semantics

I R `k e1
v→ e ′1 means that, under the local environment R, the

expression e1 produces the value v and rewrites to e ′1.

I R `k D
R′
→ D ′ means that, equation D produces R ′ and

rewrites to D ′.

I k = 1 means e or D is reset.

(Init-false)

H `0 init v
v→ init false

(Init-true)

H `1 init v
true→ init false

(Reset)

H `k e
v→ e ′ H `k∨v D

R′
→ D ′

H `k resetD every e
R′
→ resetD ′ every e ′

with k ∨ true = 1, k ∨ false = k.
Other rules are left unchanged (add the subscript k everywhere)

Questions

I Add a construction to activate a computation only when a
condition is true;

I Define the semantics for hierachical automata.

I How to model processes that terminate, e.g., doD until e ?

I How to model a process that perform a division par zero ?

The industrial language SCADE 6 2 have all the above extensions.

I How to model a mix of imperative features and synchronous
composition as found in Esterel? Read [3].

An alternative to define the semantics is to manipulate streams
and interpret a synchronous program as a stream transformer.

I Read [4].

I Read [5] which shows the correspondance between
co-induction and co-iteration for synchronous functions.

2http://www.esterel-technologies.com/products/scade-suite/

http://www.esterel-technologies.com/products/scade-suite/

G. Berry and G. Gonthier.

The Esterel synchronous programming language, design, semantics,
implementation.

Science of Computer Programming, 19(2):87–152, 1992.

Gérard Berry.

Preemption in concurrent systems.

In FSTTCS, pages 72–93, 1993.

Gérard Berry.

The constructive semantics of pure esterel.

Draft book. Available at: http://www-sop.inria.fr/members/

Gerard.Berry/Papers/EsterelConstructiveBook.pdf, 1999.

Sylvain Boulmé and Grégoire Hamon.

Certifying Synchrony for Free.

In International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR), volume 2250, La Havana, Cuba,
December 2001. Lecture Notes in Artificial Intelligence,
Springer-Verlag.

http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf

Short version of A clocked denotational semantics for
Lucid-Synchrone in Coq, available as a Technical Report (LIP6), at
www.di.ens.fr/∼pouzet/bib/bib.html.

Paul Caspi and Marc Pouzet.

A Co-iterative Characterization of Synchronous Stream Functions.

In Coalgebraic Methods in Computer Science (CMCS’98), Electronic
Notes in Theoretical Computer Science, March 1998.

Extended version available as a VERIMAG tech. report no. 97–07 at
www.di.ens.fr/∼pouzet/bib/bib.html.

Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet.

Mixing Signals and Modes in Synchronous Data-flow Systems.

In ACM International Conference on Embedded Software
(EMSOFT’06), Seoul, South Korea, October 2006.

Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet.

A Conservative Extension of Synchronous Data-flow with State
Machines.

In ACM International Conference on Embedded Software
(EMSOFT’05), Jersey city, New Jersey, USA, September 2005.

Michael Mendler, Thomas R. Shiple, and Gérard Berry.

Constructive boolean circuits and the exactness of timed ternary
simulation.

Form. Methods Syst. Des., 40(3):283–329, June 2012.

Robin Milner.

Communication and Concurrency.

Prentice Hall, 1989.

Gordon Plotkin.

A structural approach to operational semantics.

Technical report, University of Aarhus, Denmark, 1981.

Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry.

Compiling Esterel.

Springer, 2010.

Thomas R. Shiple and Gérard Berry.

Constructive analysis of cyclic circuits.

In Proceedings of the International Design and Test Conference
ITDC 96, Paris, France, 1996.

Olivier Tardieu.

A Deterministic Logical Semantics for Esterel.

In SOS Workshop, London, United Kingdom, August 2004.

