SMT-based Model Checking of Transition Systems

Timothy.Bourke@inria.fr

3 October 2023

Specifying Properties

SMT Solver Basics

Model Checking

Bounded Model Checking and k-induction

Model Checking Lustre Programs: Kind 2

Two types of properties

Safety property: "Something bad never happens"
l.e., a property is invariant and true in any accessible state. E.g.:

- "The variable temp is always less than 101."
- "The variable temp never increases by more than 5 in a single step."

Liveness property: "Something good eventually happens."
I.e., every execution will reach a state where the property holds.

- "If heat is on, temp eventually exceeds 10 ."

Remark:

"If heat is on, temp exceeds 10 within 5 minutes." is a safety property.
And remember that liveness properties are likely to be the least important part of your specification. You will probably not lose much if you simply omit them.

Synchronous Observers

- if $y=F(x)$, we write $o k=P(x, y)$ for the property relating x and y
- and assert $(H(x, y))$ to states an hypothesis on the environment.
node check(x:t) returns (ok:bool); let

$$
\begin{aligned}
& \quad \text { assert } \mathrm{H}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{y}=\mathrm{F}(\mathrm{x}) \\
& \mathrm{ok}=\mathrm{P}(\mathrm{x}, \mathrm{y}) \\
& \text { tel; }
\end{aligned}
$$

If assert remains indefinitely true then ok remains indefinitely true always(assert) \Rightarrow always(ok).

Any safety property can be expressed as a Lustre program. No need to introduce a temporal logic in the language

[^0]
Specifying Properties

SMT Solver Basics

Model Checking

Bounded Model Checking and k-induction

Model Checking Lustre Programs: Kind 2

SAT solvers

Given a boolean formula b with free variables x_{1}, \ldots, x_{n} from propositional logic, find a valuation $V:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$ such that $V(b)=1$.

- initial algorithm by Davis-Putnam-Logemann-Loveland (DPLL); various heuristics. Generalization of SAT to QBF (Quantified Boolean Formula)
- a very active/competitive research/industrial topic (see http://www.sative.org/)
- Now, more interest for SMT (Satisfiability Modulo Theory) for first-order logic (quantified formula + interpreted/non-interpreted functions)
- Close interaction between a SAT solver and ad-hoc solvers (e.g., simplex. method for linear arithmetic constraints)

SMT: Satisfiability Modulo Theories

- SAT = Satisfiability (of Boolean formulas)
- SMT = SAT Modulo Theories
- Input: set of constraints (interpreted in a theory)
- Output: are the constraints satisfiable?
»sat and a model (an assignment to free variables that satisfies the constraints)
» unsat: no model exists
» unknown: could not determine due to resource limits, incompleteness, etcetera.
- Different solvers:
» z3 (see also: docs and version in browser)
»Alt-Ergo
» CVC5
» Yices
- Today we will use Z3 and SMT-LIB.

SMT-LIB 2.6

- SMT-LIB defines a common language for interfacing with SMT solvers
$\left[\begin{array}{l}\text { Barrett, Fontaine, and Tinelli (2021): } \\ \text { The SMT-LIB Standard: Version 2.6 }\end{array}\right]$ https://smtlib.cs.uiowa.edu/
- Developed to facilitate research and development in SMT (in particular, by providing an extensive benchmarking library)
- Lisp-like syntax for
» a many-sorted first-order logic with equality
» solver commands
» declaring theory interfaces
- Solvers like Z3 also provide programmatic interfaces (e.g., Python, OCaml)

Satisfiability: true for some assignment

A .smt2 file is a sequence of commands. (Fig. 3.6, p. $\left.45\left[\begin{array}{l}\text { Baretet, Fontaine, and Tinelli (2021): } \\ \text { The SMT-LIB Standard: Version } 2.6\end{array}\right]\right)$

```
(declare-fun a () Bool) ; uninterpreted function with zero arguments
(declare-const b Bool) ; similar effect, easier to read
(assert (or a b))
(assert (= a false))
(echo "Is (a or b) and (a = false) satisfiable?")
(check-sat)
(get-model)
```

Try z3 a_or_b.smt2...
z3 looks for a model (an interpretation of the functions) that satisfies all the constraints.

Validity: true for all assignments

```
What about proving one of De Morgan's laws? }\neg(P\veeQ)\Leftrightarrow\negP\wedge\neg
    (declare-const P Bool)
    (declare-const Q Bool)
    (assert (= (not (or P Q)) (and (not P) (not Q))))
    (check-sat)
z3 says sat. Have we proved the law?
```


Validity: true for all assignments

```
What about proving one of De Morgan's laws? }\neg(P\veeQ)\Leftrightarrow\negP\wedge\neg
    (declare-const P Bool)
    (declare-const Q Bool)
    (assert (= (not (or P Q)) (and (not P) (not Q))))
    (check-sat)
z3 says sat. Have we proved the law?
```

```
(declare-const P Bool)
```

(declare-const P Bool)
(declare-const Q Bool)
(declare-const Q Bool)
(assert (not (= (not (or P Q)) (and (not P) (not Q)))))
(assert (not (= (not (or P Q)) (and (not P) (not Q)))))
(check-sat)
(check-sat)
Now z3 says unsat. Have we proved the law?

```

\section*{Validity: true for all assignments}
```

What about proving one of De Morgan's laws? }\neg(P\veeQ)\Leftrightarrow\negP\wedge\neg
(declare-const P Bool)
(declare-const Q Bool)
(assert (= (not (or P Q)) (and (not P) (not Q))))
(check-sat)
z3 says sat. Have we proved the law?

```
```

(declare-const P Bool)

```
(declare-const P Bool)
(declare-const Q Bool)
(declare-const Q Bool)
(assert (not (= (not (or P Q)) (and (not P) (not Q)))))
(assert (not (= (not (or P Q)) (and (not P) (not Q)))))
(check-sat)
(check-sat)
Now z3 says unsat. Have we proved the law?
Yes. There are no values for \(P\) and \(Q\) such that the law is not true.
```


Satisfiability and Validity

satisfiable $(b) \stackrel{\text { def }}{=} \exists V, V(b)=1$

$$
\operatorname{valid}(b) \stackrel{\text { def }}{=} \forall V, V(b)=1
$$

$$
\operatorname{valid}(b)=\neg \neg(\forall V, V(b)=1)
$$

$$
=\neg(\exists V, \neg(V(b)=1))
$$

$$
=\neg \text { satisfiable }(\neg b)
$$

Satisfiability and Validity

satisfiable $(b) \stackrel{\text { def }}{=} \exists V, V(b)=1$

$$
\begin{aligned}
\operatorname{valid}(b) & \stackrel{\text { def }}{=} \forall V, V(b)=1 \\
\operatorname{valid}(b) & =\neg \neg(\forall V, V(b)=1) \\
& =\neg(\exists V, \neg(V(b)=1)) \\
& =\neg \operatorname{satisfiable}(\neg b)
\end{aligned}
$$

satisfiable $(b)=\neg \neg(\exists V, V(b)=1)$

$$
\begin{aligned}
& =\neg(\forall V, \neg(V(b)=1)) \\
& =\neg \operatorname{valid}(\neg b)
\end{aligned}
$$

Satisfiability and Validity

satisfiable $(b) \stackrel{\text { def }}{=} \exists V, V(b)=1$

$$
\begin{aligned}
\operatorname{valid}(b) & \stackrel{\text { def }}{=} \forall V, V(b)=1 \\
\operatorname{valid}(b) & =\neg \neg(\forall V, V(b)=1) \\
& =\neg(\exists V, \neg(V(b)=1)) \\
& =\neg \operatorname{satisfiable}(\neg b)
\end{aligned}
$$

To determine $\operatorname{valid}(P \wedge Q \Rightarrow R)$, ask satisfiable $(P \wedge Q \wedge \neg R)$ and require unsat.

Satisfiability and Validity

satisfiable $(b) \stackrel{\text { def }}{=} \exists V, V(b)=1$

$$
\begin{aligned}
\operatorname{valid}(b) & \stackrel{\text { def }}{=} \forall V, V(b)=1 \\
\operatorname{valid}(b) & =\neg \neg(\forall V, V(b)=1) \\
& =\neg(\exists V, \neg(V(b)=1)) \\
& =\neg \operatorname{satisfiable}(\neg b)
\end{aligned}
$$

To determine $\operatorname{valid}(P \wedge Q \Rightarrow R)$, ask satisfiable $(P \wedge Q \wedge \neg R)$ and require unsat.

$$
\begin{aligned}
(A \Rightarrow B & \stackrel{\text { def }}{=} \neg A \vee B) \\
\operatorname{valid}(P \wedge Q \Rightarrow R) & =\neg \operatorname{satisfiable}(\neg(\neg(P \wedge Q) \vee R)) \\
& =\neg \text { satisfiable }((P \wedge Q) \wedge \neg R)
\end{aligned}
$$

If sat, try (get-model). Can also use (check-sat-assuming ((and P Q) R)).

Interacting with the solver

- Typical to run several (check-sat) commands in series.
- Use (push) and (pop) to manage the environment of functions and assertions.
(declare-const P Bool)
(declare-const Q Bool)
(push)
(assert (not $(=(\operatorname{not}(o r P Q))(\operatorname{and}(\operatorname{not} P)(\operatorname{not} Q))))$
(echo "Checking: ! (P or Q) $<=>$! P and ! Q (unsat = valid)")
(check-sat)
(pop)
(push)
(assert (not $(=(\operatorname{not}(\operatorname{and} P Q))(\operatorname{or}(\operatorname{not} P)(\operatorname{not} Q))))$
(echo "Checking: ! P and Q) <=> ! P or ! Q (unsat = valid)")
(check-sat)
(pop)
- Usually interact with the solver using a programmatic interface.

Query results determine future queries.

- Solvers are designed to work incrementally.

Functions

- Functions declared with declare-fun are uninterpreted.
- Functions from theories, like xor, are interpreted.

```
See https://smtlib.cs.uiowa.edu/theories-Core.shtml
(declare-fun f (Bool Bool) Bool)
(assert (and (= (f false false) false)
    (= (f false true) true)
    (= (f true false) true)
    (= (f true true) false)))
(declare-const a Bool)
(declare-const b Bool)
(assert (not (= (f a b) (xor a b))))
(check-sat)
```


Functions

- Functions declared with declare-fun are uninterpreted.
- Functions from theories, like xor, are interpreted.

```
See https://smtlib.cs.uiowa.edu/theories-Core.shtml
(declare-fun f (Bool Bool) Bool)
(assert (and (= (f false false) false)
    (= (f false true) true)
    (= (f true false) true)
    (= (f true true) false)))
```

(declare-const a Bool)
(declare-const b Bool)
(assert (not $(=(f a b)(x o r a b)))$
(check-sat)

- Can also define functions:

```
(define-fun f ((x Bool) (y Bool)) Bool (xor x y))
```


Terms and Formulas

```
<qual_identifier\rangle ::= \langleidentifier\rangle | ( as 〈identifier\rangle \langlesort\rangle)
<var_binding\rangle ::= (\langlesymbol\rangle\langleterm\rangle)
\langlesorted_var\rangle ::= (\langlesymbol\rangle \langlesort\rangle)
\langlepattern\rangle ::= \langlesymbol\rangle | (\langlesymbol\rangle\langlesymbol\rangle}\mp@subsup{}{}{+}
<match_case\rangle ::= ( \langlepattern\rangle\langleterm\rangle)
\langleterm\rangle ::= \langlespec_constant\rangle
\langlequal_identifier>
( \langlequal_identifier\rangle \term\rangle+}\mp@subsup{}{}{+}
( let ( \langlevar_binding\rangle+ ) \term\rangle)
( forall (\langlesorted_var\rangle+})\langleterm\rangle
( exists (\langlesorted_var\rangle+})\langleterm\rangle
( match \langleterm\rangle ( \langlematch_case\rangle}\mp@subsup{}{}{+})\mathrm{ )
(! \term\rangle\langleattribute\rangle+}
(p. 27, \(\left[\begin{array}{l}\text { Barrett, Fontaine, and Tinelli (2021): } \\ \text { The SMT-LIB Standard: Version } 2.6\end{array}\right]\) )
```

- Satisfiability without quantifiers is NP-Complete
- With quantifiers it is undecidable.
- The effectiveness of quantifier elimination depends on the shape of formulas.
- Take care with your encodings!

Exercise: model checking 1-bit adders

How to be sure that full_add and full_add_h are equivalent?

Implement the following interface so that it returns true exactly when two full adder implementations return the same value for the same inputs.

- - file fulladder.lus
node equivalence(a,b,c:bool) returns (ok:bool);
var o1, c1, o2, c2: bool;
let

$$
\begin{aligned}
& (o 1, c 1)=\text { full_add }(a, b, c) ; \\
& (o 2, c 2)=\text { full_add_h(a,b,c); } \\
& o k=(o 1=o 2) \text { and }(c 1=c 2)
\end{aligned}
$$

tel;

Specifying Properties

SMT Solver Basics

Model Checking

Bounded Model Checking and k-induction

Model Checking Lustre Programs: Kind 2

Model Checking: (extremely) partial overview

1981 Explicit state enumeration

$\left[\begin{array}{l}\text { E. M. Clarke and Emerson (1981): Design } \\ \text { and Synthesis of Synchronization Skeletons } \\ \text { using Branching Time Temporal Logic }\end{array}\right]\left[\begin{array}{l}\text { Queille and Sifakis (1982): Specification } \\ \text { and Verification of Concurrent Systems } \\ \text { in CESAR }\end{array}\right]$

1992 BDD-based algorithms

[Burch, E. Clarke, McMillan, Dill, and Hwang (1992):
Symbolic Model Checking: 10^{20} States and Beyond

1999 Bounded Model Checking

[Biere, Cimatti, E. Clarke, and Zhu (1999): Symbolic Model Checking without BDDs

2000 K-induction

$\left[\begin{array}{l}\text { Sheeran, Singh, and Stålmarck (2000): Checking } \\ \text { Safety Properties Using Induction and a SAT-Solver }\end{array}\right]$
2003 Interpolation-based
[McMillan (2003): Interpolation and SAT-based model checking]
2011 IC3 Algorithm
[Bradley (2011): SAT-Based Model Checking without Unrolling]

Model checking of Lustre

- Lesar: based on BDDs
[Halbwachs, Lagnier, and Ratel (1992): Programming and verifying real-time systems by means of the synchronous data-flow language LUSTRE
- Kind 2: based on SMT/k-induction/IC3
[Champion, Mebsout, Sticksel, and Tinelli (2016): The Kind 2 Model Checker]
- DV of (Ansys) Scade based on Prover SAT/k-induction

Model checking: forward method

The set of reachable states never intersects the set of error states

Model checking: forward method

The set of reachable states never intersects the set of error states

The set of reachable states never intersects the set of error states

Model checking: forward method

The set of reachable states never intersects the set of error states

Model checking: forward method

The set of reachable states never intersects the set of error states

Model checking: backward method

The states that can reach an error state do not include the initial states

Model checking: backward method

The states that can reach an error state do not include the initial states

Model checking: backward method

The states that can reach an error state do not include the initial states

Model checking: backward method

The states that can reach an error state do not include the initial states

Verifying safety properties of reactive systems

- Published in 1995
[Manna and Pnueli (1995): Temporal
[Verification of Reactive Systems: Safety]
- Companion to
[Manna and Pnueli (1992): The Temporal
Logic of Reactive and Concurrent Systems
- Builds on Floyd's inductive invariants
- Temporal logic formulas as 'proof patterns'

The basic 'pattern' for showing invariance

For an assertion φ,
B1. $\quad \Theta \rightarrow \varphi$
B2. $\{\varphi\} \mathcal{T}\{\varphi\}$
$\square \varphi$

Fig. 1.1. Rule INV-B (basic invariance).

The verification condition (or proof obligation) of φ and ψ, relative to transition τ, is given by the state formula

$$
\rho_{\tau} \wedge \varphi \quad \rightarrow \quad \psi^{\prime}
$$

We adopt the notation

$$
\{\varphi\} \tau\{\psi\}
$$

as an abbreviation for this verification condition.

The basic 'pattern' for showing invariance

For an assertion φ,

Fig. 1.1. Rule INv-B (basic invariance). then for every transition:

- assume the property of the pre state (φ)
- show the property of the post state $\left(\varphi^{\prime}\right)$

The verification condition (or proof obligation) of φ and ψ, relative to transition τ, is given by the state formula

$$
\rho_{\tau} \wedge \varphi \quad \rightarrow \quad \psi^{\prime}
$$

We adopt the notation

$$
\{\varphi\} \tau\{\psi\}
$$

as an abbreviation for this verification condition.

Exercise: proving invariance of a simple transition system

- Consider a simple transition system with two integer state variables x and y : $\operatorname{init}(x, y):=(x=1) \wedge(y=1)$ $\operatorname{trans}\left(x, y, x^{\prime}, y^{\prime}\right):=\left(x^{\prime}=x+1\right) \wedge\left(y^{\prime}=y+x\right)$
- And the safety property $\operatorname{prop}(x, y)=y \geq 1$.
- Encode this system and use Z3 to prove that the property is invariant.

General rule for showing invariance

For assertions φ, p,

$$
\begin{array}{ll}
\text { I1. } & \varphi \rightarrow p \\
\text { I2. } & \Theta \rightarrow \varphi \\
\text { I3. } & \{\varphi\} \mathcal{T}\{\varphi\} \\
\hline & \square p
\end{array}
$$

Fig. 1.5. Rule INv (general invariance).

Not all invariants are inductive invariants.

Inductive invariants and model checking

- This idea works for manual/interactive proof.
- What about automatic proof (model checking)?
- (BTW, note that SMT solvers do not themselves do induction.)
- k-induction: strengthen P with information from last k steps.
[Sheeran, Singh, and Stålmarck (2000): Checking Safety Properties Using Induction and a SAT-Solver
- IC3: automate 'discovery' of strengthenings
[Bradley (2011): SAT-Based Model Checking without Unrolling]
- Generic algorithms
» work with SAT solvers on boolean transition systems, or
» with SMT solvers on richer transition systems.
» avoid or minimize quantifiers, look for efficient encodings

Specifying Properties

SMT Solver Basics

Model Checking

Bounded Model Checking and k-induction

Model Checking Lustre Programs: Kind 2

k-induction

- Iterate BMC. Explained as a succession of algorithms.
[Sheeran, Singh, and Stålmarck (2000): Checking Safety Properties Using Induction and a SAT-Solver]
- Focus completely on invariant properties (AG f)

```
node ring_counter()
returns (a, b, c : bool);
let
    a = true fby c;
    b = false fby a;
    c = false fby b;
```


tel

k-induction: Algorithm 1

```
Algorithm 1 First algorithm to check if system is \(P\)-safe
    \(i=0\)
    while True do
        if not \(\operatorname{Sat}\left(I\left(s_{0}\right) \wedge \operatorname{loopFree}\left(s_{[0 . . i]}\right)\right)\) or not \(\operatorname{Sat}\left(\left(\operatorname{loopFree}\left(s_{[0 . . i]}\right) \wedge \neg P\left(s_{i}\right)\right)\right.\) then
            return True
        end if
        if \(\operatorname{Sat}\left(I\left(s_{0}\right) \wedge \operatorname{path}\left(s_{[0 . . i]}\right) \wedge \neg P\left(s_{i}\right)\right)\) then
            return Trace \(c_{[0 . . i]}\)
        end if
        \(i=i+1\)
    end while
```

$$
\operatorname{path}\left(s_{[0 . . n]}\right) \hat{=} \bigwedge_{0 \leq i<n} T\left(s_{i}, s_{i+1}\right)
$$

$\operatorname{loopFree}\left(s_{[0 . . n]}\right) \hat{=} \operatorname{path}\left(s_{[0 . . n]}\right) \wedge \bigwedge_{0 \leq i<j \leq n} s_{i} \neq s_{j}$
The restriction to loop-free paths is necessary for completeness.

- Check for existence of loop-free path.
- Check for existence of bad path.

k-induction: Algorithm 1

```
Algorithm 1 First algorithm to check if system is \(P\)-safe
    \(i=0\)
    while True do
        if not \(\operatorname{Sat}\left(I\left(s_{0}\right) \wedge \operatorname{loopFree}\left(s_{[0 . . i]}\right)\right)\) or not \(\operatorname{Sat}\left(\left(\operatorname{loopFree}\left(s_{[0 . . i]}\right) \wedge \neg P\left(s_{i}\right)\right)\right.\) then
            return True
        end if
        if \(\operatorname{Sat}\left(I\left(s_{0}\right) \wedge \operatorname{path}\left(s_{[0 . . i]}\right) \wedge \neg P\left(s_{i}\right)\right)\) then
            return Trace \(c_{[0 . . i]}\)
        end if
        \(i=i+1\)
    end while
```

$$
\operatorname{path}\left(s_{[0 . . n]}\right) \hat{=} \bigwedge_{0 \leq i<n} T\left(s_{i}, s_{i+1}\right)
$$

$\operatorname{loopFree}\left(s_{[0 . n]}\right) \hat{=} \operatorname{path}\left(s_{[0 . . n]}\right) \wedge \bigwedge_{0 \leq i<j \leq n} s_{i} \neq s_{j}$
The restriction to loop-free paths is

k-induction: Algorithm 1

```
Algorithm 1 First algorithm to check if system is \(P\)-safe
    \(i=0\)
    while True do
        if not \(\operatorname{Sat}\left(I\left(s_{0}\right) \wedge \operatorname{loopFree}\left(s_{[0 . . i]}\right)\right)\) or not \(\operatorname{Sat}\left(\left(\operatorname{loopFree}\left(s_{[0 . . i]}\right) \wedge \neg P\left(s_{i}\right)\right)\right.\) then
            return True
        end if
        if \(\operatorname{Sat}\left(I\left(s_{0}\right) \wedge \operatorname{path}\left(s_{[0 . . i]}\right) \wedge \neg P\left(s_{i}\right)\right)\) then
            return Trace \(c_{[0 . . i]}\)
        end if
        \(i=i+1\)
    end while
```

$$
\operatorname{path}\left(s_{[0 . . n]}\right) \hat{=} \bigwedge_{0 \leq i<n} T\left(s_{i}, s_{i+1}\right)
$$

$\operatorname{loopFree}\left(s_{[0 . . n]}\right) \hat{=} \operatorname{path}\left(s_{[0 . . n]}\right) \wedge \bigwedge_{0 \leq i<j \leq n} s_{i} \neq s_{j}$
The restriction to loop-free paths is
 necessary for completeness.

k-induction: Algorithm 1

```
Algorithm 1 First algorithm to check if system is \(P\)-safe
    \(i=0\)
    while True do
        if not \(\operatorname{Sat}\left(I\left(s_{0}\right) \wedge \operatorname{loopFree}\left(s_{[0 . . i]}\right)\right)\) or not \(\operatorname{Sat}\left(\left(\operatorname{loopFree}\left(s_{[0 . . i]}\right) \wedge \neg P\left(s_{i}\right)\right)\right.\) then
            return True
        end if
        if \(\operatorname{Sat}\left(I\left(s_{0}\right) \wedge \operatorname{path}\left(s_{[0 . . i]}\right) \wedge \neg P\left(s_{i}\right)\right)\) then
            return Trace \(c_{[0 . . i]}\)
        end if
        \(i=i+1\)
    end while
```

$$
\operatorname{path}\left(s_{[0 . n]}\right) \hat{=} \bigwedge_{0 \leq i<n} T\left(s_{i}, s_{i+1}\right) \quad \underset{\text { init }}{s_{0} \rightarrow s_{1} \rightarrow s_{2} \rightarrow \cdots \rightarrow s_{i} \exists \checkmark}
$$

$\operatorname{loopFree}\left(s_{[0 . . n]}\right) \hat{=} \operatorname{path}\left(s_{[0 . . n]}\right) \wedge \bigwedge_{0 \leq i<j \leq n} s_{i} \neq s_{j}$
The restriction to loop-free paths is

$$
\exists \checkmark s_{0} \rightarrow \cdots \rightarrow s_{i-2} \rightarrow s_{i-1} \rightarrow s_{\neg P}^{\text {Error }}
$$ necessary for completeness.

k-induction: Algorithm 1

```
Algorithm 1 First algorithm to check if system is \(P\)-safe
    \(i=0\)
    while True do
        if not \(\operatorname{Sat}\left(I\left(s_{0}\right) \wedge \operatorname{loopFree}\left(s_{[0 . . i]}\right)\right)\) or not \(\operatorname{Sat}\left(\left(\operatorname{loopFree}\left(s_{[0 . . i]}\right) \wedge \neg P\left(s_{i}\right)\right)\right.\) then
            return True
        end if
        if \(\operatorname{Sat}\left(I\left(s_{0}\right) \wedge \operatorname{path}\left(s_{[0 . . i]}\right) \wedge \neg P\left(s_{i}\right)\right)\) then
            return Trace \(c_{[0 . . i]}\)
        end if
        \(i=i+1\)
    end while
```

$$
\operatorname{path}\left(s_{[0 . . n]}\right) \hat{=} \bigwedge_{0 \leq i<n} T\left(s_{i}, s_{i+1}\right)
$$

$\operatorname{loopFree}\left(s_{[0 . . n]}\right) \hat{=} \operatorname{path}\left(s_{[0 . . n]}\right) \wedge \bigwedge_{0 \leq i<j \leq n} s_{i} \neq s_{j}$
The restriction to loop-free paths is necessary for completeness.

$$
\exists \checkmark s_{0} \rightarrow \cdots \rightarrow s_{i-2} \rightarrow s_{i-1} \rightarrow s_{i}^{\text {Error }}
$$

k-induction: Algorithm 2

```
Algorithm 1 First algorithm to check if system is P}P\mathrm{ -safe
i=0
    if not Sat (I(s (s) ^loopFree(s[0..i]}))\mathrm{ or not Sat ((loopFree (s[0..i]})\wedge\negP(\mp@subsup{s}{i}{}))\mathrm{ then
        return True
    end if
    if Sat}(I(\mp@subsup{s}{0}{})\wedge\operatorname{path}(\mp@subsup{s}{[0..i]}{})\wedge\negP(\mp@subsup{s}{i}{}))\mathrm{ then
        return Trace co..i]
    end if
    i=i+1
    end while
```

$$
\begin{array}{r}
\operatorname{path}\left(s_{[0 . . n]}\right) \hat{=} \bigwedge_{0 \leq i<n} T\left(s_{i}, s_{i+1}\right) \\
\operatorname{loopFree}\left(s_{[0 . . n]}\right) \hat{=} \operatorname{path}\left(s_{[0 . . n]}\right) \wedge \bigwedge_{0 \leq i<j \leq n} s_{i} \neq s_{j}
\end{array}
$$

```
Algorithm 2 An improved algorithm to check if system is \(P\)-safe
    \(i=0\)
    while True do
        if \(\operatorname{not} \operatorname{Sat}\left(I\left(s_{0}\right) \wedge\right.\) all. \(\left.\neg I\left(s_{[1 . . i]}\right) \wedge \operatorname{loopFree}\left(s_{[0 . . i]}\right)\right)\)
        or not \(\operatorname{Sat}\left(\left(\right.\right.\) loopFree \(\left(s_{[0 . . i]}\right) \wedge\) all. \(\left.P\left(s_{[0 . .(i-1)]}\right) \wedge \neg P\left(s_{i}\right)\right)\) then
            return True
        end if
        if \(\operatorname{Sat}\left(I\left(s_{0}\right) \wedge \operatorname{path}\left(s_{[0 . . i]}\right) \wedge \neg P\left(s_{i}\right)\right)\) then
            return Trace \(c_{[0 . . i]}\)
        end if
        \(i=i+1\)
    end while
```

- Exclude forward paths that loop back through initial states.
- Exclude backward paths that loop back through error states.
- I.e., tighten the termination conditions.

k-induction: Algorithm 3

```
Algorithm 2 An improved algorithm to check if system is P-safe
l=0
    if not Sat (I(so)}\wedge\mathrm{ all. }\negI(\mp@subsup{s}{[1..i]}{})\wedge\operatorname{loopFree (s}\mp@subsup{s}{[0..i]}{})
    or not Sat((loopFree(s}([0..i])\wedge\mathrm{ all. P (s s[0..(i-1)]})\wedge\neg\negP(\mp@subsup{s}{i}{}))\mathrm{ then
        return True
    end if
    if Sat}(I(\mp@subsup{s}{0}{})\wedge\operatorname{path}(\mp@subsup{s}{[0..i]}{})\wedge\negP(\mp@subsup{s}{i}{}))\mathrm{ then
        return Trace c}\mp@subsup{c}{[0..i]}{
    end if
    i=i+1
end while
```

$$
\operatorname{path}\left(s_{[0 . . n]}\right) \hat{=} \bigwedge_{0 \leq i<n} T\left(s_{i}, s_{i+1}\right)
$$

$$
\operatorname{loopFree}\left(s_{[0 . . n]}\right) \hat{=} \operatorname{path}\left(s_{[0 . . n]}\right) \wedge \bigwedge_{0 \leq i<j \leq n} s_{i} \neq s_{j}
$$

Algorithm 3 An algorithm that need not iterate from 0
$i=$ some constant which can be greater than zero
while True do
if $\operatorname{Sat}\left(I\left(s_{0}\right) \wedge \operatorname{path}\left(s_{[0 . . i]}\right) \wedge \neg \operatorname{all} . P\left(s_{[0 . i]}\right)\right)$ then return Trace $c_{[0 . . i]}$
end if
if $\operatorname{not} \operatorname{Sat}\left(I\left(s_{0}\right) \wedge\right.$ all. $\left.\neg I\left(s_{[1 \ldots(i+1)]}\right) \wedge \operatorname{loopFree}\left(s_{[0 . .(i+1)]}\right)\right)$
or not Sat $\left(\left(\operatorname{loopFree}\left(s_{[0 . .(i+1)]}\right) \wedge\right.\right.$ all. $\left.P\left(s_{[0 . . i]}\right) \wedge \neg P\left(s_{i+1}\right)\right)$ then return True
end if
$i=i+1$
end while

- Start an any i
- Swap order of checks (ifs)
- Check proposition along entire path: $\forall_{0 \leq j \leq i}, P\left(s_{j}\right)$
- Extend loop-free check to $i+1$

k-induction: Algorithm 4

```
Algorithm 3 An algorithm that need not iterate from 0
    i= some constant which can be greater than zero
    while True do
        if Sat }(I(\mp@subsup{s}{0}{})\wedge\operatorname{path}(\mp@subsup{s}{[0..i]}{})\wedge\neg\mathrm{ all.P }(\mp@subsup{s}{[0..i]}{}))\mathrm{ then
        return Trace c}\mp@subsup{c}{[0..i]}{
    end if
    if not Sat }(I(\mp@subsup{s}{0}{})\wedge\mathrm{ all. }\negI(\mp@subsup{s}{[1..(i+1)]}{})\wedge\operatorname{loopFree}(\mp@subsup{s}{[0..(i+1)]}{})
    or not Sat ((loopFree (s[0..(i+1)]})\wedge\mathrm{ all. P(s[0..i]})\wedge\negP(\mp@subsup{s}{i+1}{}))\mathrm{ then
        return True
    end if
    i=i+1
    end while
```

$$
\begin{array}{r}
\operatorname{path}\left(s_{[0 . . n]}\right) \hat{=} \bigwedge_{0 \leq i<n} T\left(s_{i}, s_{i+1}\right) \\
\operatorname{loopFree}\left(s_{[0 . . n]}\right) \hat{=} \operatorname{path}\left(s_{[0 . . n]}\right) \wedge \bigwedge_{0 \leq i<j \leq n} s_{i} \neq s_{j}
\end{array}
$$

Algorithm 4 A forwards version of the algorithm
$i=$ some constant which can be greater than zero while True do
if $\operatorname{Sat}\left(\neg\left(I\left(s_{0}\right) \wedge \operatorname{path}\left(s_{[0 . . i]}\right) \rightarrow\right.\right.$ all.P $\left.\left.\left(s_{[0 . . i]}\right)\right)\right)$ then return Trace $c_{[0 . i]}$
end if
if Taut $\left(\neg I\left(s_{0}\right) \leftarrow\right.$ all. $\neg I\left(s_{[1 . .(i+1)]}\right) \wedge$ loopFree $\left.\left(s_{[0 . .(i+1)]}\right)\right)$ or $\operatorname{Taut}\left(\left(\operatorname{loopFree}\left(s_{[0 . .(i+1)]}\right) \wedge\right.\right.$ all. $\left.P\left(s_{[0 . . i]}\right) \rightarrow P\left(s_{i+1}\right)\right)$ then return True
end if
$i=i+1$
end while

- Reformulate checks as implications
- The first check is the base case of the induction.
- The second is the transition case, and also a check that a loop-free path of length i exists.

k-induction and completeness

- The algorithm is complete for finite transition systems.
- Diameter $=$ length of the longest shortest path in transition system.

$$
\operatorname{shortest}\left(s_{[0 . . n]}\right) \hat{=} \operatorname{path}\left(s_{[0 . . n]}\right) \wedge \neg\left(\bigvee_{0 \leq i<n} \operatorname{path}_{i}\left(s_{0}, s_{n}\right)\right)
$$

- Two extra algorithms that only consider shortest paths, but they require quantifier elimination.

Specifying Properties

SMT Solver Basics

Model Checking

Bounded Model Checking and k-induction

Model Checking Lustre Programs: Kind 2

Model checking Lustre programs: Kind 2

- http://kind2-mc.github.io/kind2/ (or use web interface: http://kind.cs.uiowa.edu:8080/app/)
- SMT-based Model Checker for Lustre: BMC, k-induction, IC3, ...
- Specify properties to check as comments:
--\%PROPERTY ok;

```
> kind2 toggles.lus
kind2 v1.1.0-214-g00b3d21d
```


Analyzing compare
with First top: "compare"
subsystems
| concrete: toggle2, toggle1
<Success> Property ok is valid by inductive step after 0.164s.

Summary of properties:
ok: valid (at 1)

$>$ kind2 --enable BMC --enable IND --lus_main compare toggles.lus

Kind 2

- Consider integers (not machine words)
- and infinite-precision rationals (not floating-point)
- Optimize existing techniques for Lustre programs and features of modern SMT solvers.

Encoding Lustre in SMT

- Represent streams as uninterpreted functions $\mathbb{N} \rightarrow \tau$
- Examples:

$$
\begin{array}{ll}
\mathrm{x}=\mathrm{y}+\mathrm{z} & \forall n: \mathbb{N}, x(n)=y(n)+z(n) \\
\mathrm{x}=\mathrm{y}->\mathrm{y}+\operatorname{pre} \mathrm{z} & \forall n: \mathbb{N}, x(n)=\operatorname{ite}(n=0, y(0), y(n)+z(n-1))
\end{array}
$$

Encoding Lustre in SMT [Hosen and Tinelli (cooe): Sceling Up the Fomal Verifiction]

- Represent streams as uninterpreted functions $\mathbb{N} \rightarrow \tau$
- Examples:

$$
\begin{array}{ll}
\mathrm{x}=\mathrm{y}+\mathrm{z} & \forall n: \mathbb{N}, x(n)=y(n)+z(n) \\
\mathrm{x}=\mathrm{y}->\mathrm{y}+\operatorname{pre} \mathrm{z} & \forall n: \mathbb{N}, x(n)=\operatorname{ite}(n=0, y(0), y(n)+z(n-1))
\end{array}
$$

- Let N be a node with stream variables $x=\left\langle x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{q}\right\rangle$ (x_{1}, \ldots, x_{p} are inputs, and y_{1}, \ldots, y_{q} are outputs)
- $\Delta(n)=\left\{\begin{aligned} y_{1}(n)= & t_{1}[\times(n), \times(n-1), \ldots, \times(n-d)] \\ & \vdots \\ y_{q}(n)= & t_{q}[\times(n), \times(n-1), \ldots, \times(n-d)]\end{aligned}\right.$
node thermostat (actual_temp, target_temp, margin: real)
returns (cool, heat: bool);
let

```
    cool = (actual_temp - target_temp) > margin;
    heat = (actual_temp - target_temp) < -margin;
```

tel
node therm_control (actual: real; up, down: bool) returns (heat, cool: bool); var target, margin: real;
let
margin $=1.5$;
target $=70.0->$ if down then (pre target) -1.0
else if up then (pre target) +1.0
else pre target;
(cool, heat) $=$ thermostat (actual, target, margin);
tel

$$
\Delta(n)=\left\{\begin{aligned}
m(n) & =1.5 \\
t(n) & =\text { ite }(n=0,70.0, \text { ite }(d(n), t(n-1)-1.0, \ldots)) \\
c(n) & =(a(n)-t(n))>m(n) \\
h(n) & =((a(n)-t(n))<-m(n)
\end{aligned}\right.
$$

SMT-based k-induction

$$
\begin{align*}
& \Delta_{0} \wedge \Delta_{1} \wedge \cdots \wedge \Delta_{k} \models_{\mathcal{I L}} \quad P_{0} \wedge P_{1} \wedge \cdots \wedge P_{k} \tag{1}\\
& \Delta_{\mathrm{n}} \wedge \Delta_{\mathrm{n}+1} \wedge \cdots \wedge \Delta_{\mathrm{n}+(k+1)} \wedge \quad \models_{\mathcal{I L}} \quad P_{\mathrm{n}+(k+1)} \tag{2}\\
& P_{\mathrm{n}} \wedge P_{\mathrm{n}+1} \wedge \cdots \wedge P_{\mathrm{n}+k}
\end{align*}
$$

where $k \geq 0$ and n is an uninterpreted integer constant.

Kind 2 optimizations: path compression

$C_{n, k}$ is a predicate over state variables that is satisfied iff no two configurations in a path have the same state and none of them, except possibly the first is the initial state.

$$
\begin{align*}
& \Delta_{\mathrm{n}} \wedge \Delta_{\mathrm{n}+1} \wedge \cdots \wedge \Delta_{\mathrm{n}+(k+1)} \wedge \\
& P_{\mathrm{n}} \wedge P_{\mathrm{n}+1} \wedge \cdots \wedge P_{\mathrm{n}+k} \wedge C_{\mathrm{n}, k}
\end{align*} \quad \models_{\mathcal{I} \mathcal{L}} \quad P_{\mathrm{n}+(k+1)}
$$

Allows the addition of a termination condition.

$$
\Delta_{0} \wedge \cdots \wedge \Delta_{k} \quad \models_{\mathcal{I L}} \quad \neg C_{0, k+1}
$$

Kind 2 optimizations: abstraction

- Drop equations defining variables that are not mentioned in the property P. Sound: those variables are unconstrained (like inputs).
- Add them back one-by-one if checking fails. Take one (removed) variable appearing in counter-example and recursively add removed variables from its defining expression (work towards input variables).

Summary

- Express programs, (safety) properties, and assumptions on the environment in a single language.
- Model-checking ideal:
» 'push-button' verification gives ok or counter-example;
» no need to understand why (i.e., write invariants).
- SAT-based techniques for BMC, complete with k-induction.
- Extend SAT to SMT to handle integers and directly encode Lustre programs.
- Lots of tools for automating induction and interfacing with SMT solvers
» Mikino tutorial [Champion, oliveira, and Didier (2022):]

- Just the tip of the iceberg (IC3/PDR, interactive theorem provers, ...)

References I

- Barnett, M., B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino (Nov. 2005). "Boogie: A Modular Reusable Verifier for Object-Oriented Programs". In: Proc. 4th Int. Symp. Formal Methods for Components and Objects (FMCO 2005). Vol. 4111. LNCS. Amsterdam, The Netherlands: Springer, pp. 364-387.
- Barrett, C., P. Fontaine, and C. Tinelli (May 2021). The SMT-LIB Standard: Version 2.6.
- Biere, A., A. Cimatti, E. Clarke, and Y. Zhu (Mar. 1999). "Symbolic Model Checking without BDDs". In: 5th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 1999). Ed. by W. R. Cleaveland. Vol. 1579. LNCS. Amsterdam, The Netherlands: Springer, pp. 193-207.
- Bobot, F., J.-C. Filliâtre, C. Marché, and A. Paskevich (Aug. 2011). "Why3: Sheperd your herd of provers". In: Boogie 2011: First Int. Workshop on Intermediate Verification Languages. Wrocław, Poland, pp. 53-64.
- Bradley, A. R. (Jan. 2011). "SAT-Based Model Checking without Unrolling". In: Proc. 12th Int. Conf. on on Verification, Model Checking, and Abstract Interpretation (VMCAI 2011). Ed. by R. Jhala and D. Schmidt. Vol. 6538. LNCS. Austin, TX, USA: Springer, pp. 70-87.

References II

- Burch, J., E. Clarke, K. McMillan, D. Dill, and J. Hwang (June 1992). "Symbolic Model Checking: 10^{20} States and Beyond". In: Information and Computation 98.2, pp. 142-170.
- Champion, A., A. Mebsout, C. Sticksel, and C. Tinelli (July 2016). "The Kind 2 Model Checker". In: Proc. 28th Int. Conf. on Computer Aided Verification (CAV 2016), Part II. Ed. by S. Chaudhuri and A. Farzan. Vol. 9780. LNCS. Toronto, Canada: Springer, pp. 510-517.
- Champion, A., S. de Oliveira, and K. Didier (June 2022). "Mikino: Induction for Dummies". In: $33^{\text {iemes }}$ Journées Francophones des Langages Applicatifs (JFLA 2022). Ed. by C. Keller and T. Bourke. Saint-Médard-d'Excideuil, France, pp. 254-260.
- Clarke, E. M. and E. A. Emerson (May 1981). "Design and Synthesis of Synchronization Skeletons using Branching Time Temporal Logic". In: Workshop on Logics of Programs. Ed. by D. Kozen. Vol. 131. LNCS. Yorktown Heights, NY, USA: Springer, pp. 52-71.

References III

- Hagen, G. and C. Tinelli (Nov. 2008). "Scaling Up the Formal Verification of Lustre Programs with SMT-based Techniques". In: Proc. 8th Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD 2008). Ed. by A. Cimatti and R. B. Jones. IEEE. Portland, OR, USA, Article 15.
- Halbwachs, N., F. Lagnier, and P. Raymond (June 1993). "Synchronous observers and the verification of reactive systems". In: Proc. 3rd Int. Conf. on Algebraic Methodology and Software Technology (AMAST'93). Ed. by M. Nivat, C. Rattray, T. Rus, and G. Scollo. Twente: Workshops in Computing, Springer Verlag.
- Halbwachs, N., J.-C. Fernandez, and A. Bouajjani (Apr. 1993). "An executable temporal logic to express safety properties and its connection with the language Lustre". In: Proc. 6th Int. Symp. Lucid and Intensional Programming (ISLIP'93). Quebec, Canada.
- Halbwachs, N., F. Lagnier, and C. Ratel (Sept. 1992). "Programming and verifying real-time systems by means of the synchronous data-flow language LUSTRE". In: IEEE Trans. Software Engineering 18.9, pp. 785-793.

References IV

- Lamport, L. (2002). Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison Wesley.
- Manna, Z. and A. Pnueli (1992). The Temporal Logic of Reactive and Concurrent Systems. Springer.
- - (1995). Temporal Verification of Reactive Systems: Safety. Springer.
- McMillan, K. (July 2003). "Interpolation and SAT-based model checking". In: Proc. 15th Int. Conf. on Computer Aided Verification (CAV 2003). Ed. by W. A. Hunt Jr. and F. Somenzi. Vol. 2725. LNCS. Boulder, CO, USA: Springer, pp. 1-13.
- Queille, J.-P. and J. Sifakis (Apr. 1982). "Specification and Verification of Concurrent Systems in CESAR". In: Proc. 5th Int. Symp. Programming. Ed. by M. Dezani-Ciancaglini and U. Montanari. Vol. 137. LNCS. Turin, Italy: Springer, pp. 337-351.
- Raymond, P. (July 1996). "Recognizing regular expressions by means of dataflow networks". In: Proc. 23rd Int. Colloq. on Automata, Languages and Programming. Ed. by F. Meyer auf der Heide and B. Monien. LNCS 1099. Paderborn, Germany: Springer, pp. 336-347.

References V

- Raymond, P., Y. Roux, and E. Jahier (2008). "Lutin: A Language for Specifying and Executing Reactive Scenarios". In: EURASIP Journal of Embedded Systems.
- Sheeran, M., S. Singh, and G. Stålmarck (Nov. 2000). "Checking Safety Properties Using Induction and a SAT-Solver". In: Proc. 3rd Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD 2000). Ed. by W. A. Hunt Jr. and S. D. Johnson. IEEE. Austin, TX, USA, pp. 127-144.
- Swamy, N., C. Hrițcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J. K. Zinzindohoue, and S. Zanella Béguelin (Jan. 2016). "Dependent Types and Multi-monadic Effects in F*". In: Proc. 43rd ACM SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL 2016). St. Petersburg, FL, USA: ACM Press, pp. 256-270.

[^0]: Halbwachs, Lagnier, and Raymond (1993): Synchronous observers and the verification of reactive systems
 [Halbwachs, Lagnier, and Ratel (1992): Programming
 and verifying real-time systems by means of the syn- ;
 chronous data-flow language LUSTRE

