
Clocks in Kahn Process Networks

Marc Pouzet

École normale supérieure

MPRI

Course notes

October 2023

Kahn Process Networks

A system is defined by a set of operators that run in parallel and communicate

with FIFO queues.

It can be represented by a set of equations :

z, t = Q(y)

y = P (x, r)

r = M(t)

z = F (x)

What is the meaning (semantics) of these two sets of equations :

Meaning of z, t, y, P , Q, M ? Knowing them, what is the meaning of F ?

Modularity : the two (left and right) sets of equations should define the same

relation between x and z, i.e., naming a set of equations should not change the

semantics of the system.

Kahn Networks [Kahn’74, Kahn’75]

In the 70’s Kahn showed that the semantics of deterministic parallel processes

communicating through (possibly) unbounded buffers is a stream function.

P

R

Q
x y z

tr

— A set of sequential deterministic processes (i.e., sequential programs)

written in an imperative language : P, Q, M,...

— They communicate asynchronously via message passing into FIFOs

(buffers) using two primitives get/put with the following assumptions :

— Read is blocking on the empty FIFO ; sending is non blocking.

— Channels are supposed reliable (communication delays are bounded).

— Read (waiting) on a single channel only, i.e., the program :

if (a is not empty) or (b is not empty) then ...

is FORBIDDEN

Concretely :

— A buffer channel is defined by two primitives, get, to wait (pop) a value

from a buffer and put, to send (push) a value.

— Parallel composition can either be implemented with regular processes

(“fork”) or lightweight processes (“threads”).

— Historically, Gilles Kahn was interested in the semantics of Unix pipes

and Unix processes communicating through FIFOs.

E.g., take OCaml :

type ’a buff = { put: ’a -> unit; get: unit -> ’a }

val buffer : unit -> ’a buff

buffer () creates a buffer associated to a read and write functions.

Either unbounded size (using lists) or statically bounded size. Add a possible

status bit : IsEmptyBuffer and IsFullBuffer.

Implementation

Here is a possible implementation of the previous set of processes (kahn.ml).

(* Process P *)

let p x r y () =

y.put 0; (* init *)

let memo = ref 0 in

while true do

let v = x.get () in

let w = r.get () in

memo := if v then 0 else !memo + w;

y.put !memo

done
(* Process Q *)

let q y t z () =

while true do

let v = y.get () in

t.put v;

z.put v

done

(* Process M *)

let m t r () =

while true do

let v = t.get () in

r.put (v + 1)

done

(* Put them in parallel. *)

let main x z () =

let r = buffer () in let y = buffer () in

let t = buffer () in

Thread.create (p x r y) ();

Thread.create (q y t z) ();

Thread.create (m t r) ()

Question :

— Provide an implementation of the function buffer in OCaml (using

modules Thread, Mutex, or Unix and Sys).

Questions :

— What is the semantics of p, q, m and main ?

— What does it change when removing line (* init *) ?

— Would you be able to prove that the program main is non blocking, i.e, if

x.get () never blocks then z.put () never blocks ?

— Is there a statically computable bound for the size of buffers without

leading to blocking ?

— Would it be possible to statically schedule this set of processes, that is,

to generate an equivalent sequential program ?

These are all undecidable questions in the general case (see [Thomas Park’s

PhD. thesis, 1995], among others).

Kahn Process Networks and variants have been (and are still) very popular, both

practically, and theoretically as it conciliates parallelism and determinacy.

Kahn Process Networks

Kahn Principle : The semantics of process networks communicating through

unbounded FIFOs (e.g., Unix pipe, sockets) ?

P

R

Q
x y z

tr

— message communication into FIFOs (send/wait)

— reliable channels, bounded communication delay

— blocking wait on a channel. The following program is forbidden

if (A is present) or (B is present) then ...

— a process = a continuous function (V ∞)n → (V ′∞)m.

Lustre :

— Lustre has a Kahn semantics (no test of absence)

— A dedicated type system (clock calculus) to guaranty the existence of

an execution with no buffer (no synchronization)

Course notes - Marc Pouzet 8/73

Kahn Process Networks

(+) : Simple semantics : a process defines a function (determinism) ;

composition is function composition

(+) : Modularity : a network is a continuous function

(+) : Asynchronous distributed execution : easy ; no centralized scheduler

(+/-) : Time invariance : no explicit timing ; but impossible to state that two

events happen at the same time.

(-) : Ressources : KPN can run with unbounded memory or have deadlock.

The parallel composition of two bounded memory/deadlock free KPN may be

unbounded/deadlock.

x = x0 x1 x2 x3 x4 x5 ...

f(x) = y0 y1 y2 y3 y4 y5 ...

f(x) = y0 y1 y2 y3 y4 y5 ...

Course notes - Marc Pouzet 9/73

Kahn Process Networks

Some restrictions must be imposed for KPN to be used for real-time/embedded

applications where ressources (time and memory) matter.

KPNs were quite successful to model for video apps (TV boxes) : Sally (Philips

NatLabs), StreamIt (MIT), Xstream (ST-micro) with various “synchronous”

restriction à la SDF (Edward Lee)

More generally, we are interested here in stream programming :

— A stream models a time evolving value ;

— The time line is the set of natural numbers ;

— A system is a stream function, that is, a function from streams to

streams.

Course notes - Marc Pouzet 10/73

A small dataflow kernel

Expression (e), constants (i), functions applied pointwise (op(e1, ..., en)),

data-flow primitives.

e ::= e fby e | op(e, ..., e) | x | v

| merge e e e | e when e

op ::= + | − | not | ...

Definition of stream functions, equations :

d ::= node f(p) = p with D

p ::= x, ..., x | x

D ::= x = e | D andD | var x in D

Course notes - Marc Pouzet 11/73

Dataflow Primitives

x x0 x1 x2 x3 x4 x5

y y0 y1 y2 y3 y4 y5

x+ y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 x5 + y5

x fby y x0 y0 y1 y2 y3 y4

h 1 0 1 0 1 0

x′ = x whenh x0 x2 x4

z z0 z1 z2

merge h x′ z x0 z0 x2 z1 x4 z2

Sampling :

� if h is a boolean sequence, x whenh produces a sub-sequence of x

� merge h x z combines two sub-sequences

Course notes - Marc Pouzet 12/73

Kahn Semantics

— If V is a set, V n is the set of sequences of length n made by

concatenating elements from V . V ⋆ = ∪∞n=0V
n is the Kleene star

operation.

— V ∞ = V ∗ ∪ V ω is the set of finite and infinite sequences.

— ǫ is the empty sequence.

— v.s is a sequence whose first element is v and tail is s.

— The set (V ∞,≤, ǫ), with ≤ the prefix order between sequences, ǫ the

minimum element, is a complete partial order (cpo). a

— The Kleene theorem applies : if f : V ∞ → V ∞ is a continuous function,

the equation x = f(x) has a least fix-point x∞ = limn→∞(fn(ǫ)).

Every operator is interpreted as a stream. If x 7→ s1 and y 7→ s2 then the value

of x+ y is lift2(+)(s1, s2)

Course notes - Marc Pouzet 13/73

a. The minimal element is usually written ⊥.

Kahn Semantics

lift0(v) = v.lift0(v)

lift1(op)(v.s) = op(v).lift1(op)(s)

lift1(op)(ǫ) = ǫ

lift2(op)(v1.s1, v2.s2) = op(v1, v2).lift
2(op)(s1, s2)

lift2(op)(s1, s2) = ǫ if s1 = ǫ or s2 = ǫ

fby(s1)(s2) = ǫ if s1 = ǫ

fby(v1.s1)(s2) = v1.s2

Course notes - Marc Pouzet 14/73

Kahn Semantics

when(v.s, 1.c) = v.when(s, c)

when(v.s, 0.c) = when(s, c)

when(s1, s2) = ǫ if s1 = ǫ or s2 = ǫ

merge(1.c, v.s1, s2) = v.merge(c, s1, s2)

merge(0.c, s1, v.s2) = v.merge(c, s1, s2)

merge(1.c, ǫ, s2) = ǫ

merge(0.c, s1, ǫ) = ǫ

merge(ǫ, s1, s2) = ǫ

All those functions are continuous [2].

Course notes - Marc Pouzet 15/73

An other formulation - sequences

Represent a sequence as a function from an initial segment of N to V .

Initial segment : I ⊆ N is an initial segment when :

∀n,m ∈ N.(n ∈ I) ∧ (m ≤ n)⇒ (m ∈ I)

E.g., ∅, {0, 1, 2} are initial segment ; {0, 42} is not.

Lemma : For any subset A of N, there exists a strictly increasing, one-to-one

function φA between an initial segment IA of N and A.

A signal u is a sequence (un)n∈N , finite or not, indexed on an initial segment N .

Course notes - Marc Pouzet 16/73

lift0(v) = (u)n∈N with ∀n ∈ N.un = v

lift1(op)((un)n∈N) = (vn)n∈N with ∀n ∈ N.vn = op(vn)

lift2(op)((un)n∈N , (vn)n∈N) = (wn)n∈N with ∀n ∈ N.wn = op(un, vn)

fby((un)n∈N)((vn)n∈N) = (wn)n∈N with w0 = u0

and ∀n ∈ N\{0}.wn = vn−1

If (hn)n∈N is a boolean sequence, define :

Nh = {k ∈ N | hk = 1}

and

Nh = {k ∈ N | hk = 0}

Nh with Nh form a partition of N .

Course notes - Marc Pouzet 17/73

when((un)n∈N , (hn)n∈N) = (vn)n∈IN
h

with vn = uφNh
(n)

merge((hn)n∈N , (un)n∈INh
, (vn)n∈IN

h

) = (wn)n∈N with wn = unif n ∈ Nh

and wn = vnif n ∈ Nh

The base clock is the constant sequence base such that ∀n ∈ N, basen = 1.

Course notes - Marc Pouzet 18/73

An encoding in Haskell

constant v n = v

lift1 op x n = op(x(n))

notl x = lift1 not

lift2 op x y n = op (x(n)) (y(n))

lift3 op x y z n = op (x(n)) (y(n)) (z(n))

x fby y 0 = x(0)

x fby y n = y(n-1)

x when h n = x(I(h)(n+1))

merge h x y n = if h(n) then x(O(h)(n)) else y(O(notl h)(n)

where I and O are (respectively) the index and cumulative functions.

Course notes - Marc Pouzet 19/73

The index and cumulative functions

I and O functions If h is a boolean stream, O(h)(n) is the sum of 1 till index

n ; I(h)(n) is the index of the n-th 1 in h.

O(h)(n) =
n
∑

i=0

h(i) I(h)(n) = min{k ∈ N | Oh(k) = n}

O(h)(n) = h(n) + (if n = 0 then 0 else 0(h)(n-1))

I(h)(n) = I’(h)(0)(n)

I’(h)(i)(n) = if h(i) then if n = 1 then i

else I’(h)(i+1)(n-1)

else I’(h)(i+1)(n)

It is very possible that I(n) be undefined (no value in N). E.g.,

(x when (constant false))(n). The domain of a signal x (values of n for

which x(n) exists) is an initial section.

Course notes - Marc Pouzet 20/73

An encoding of sequences in Ocaml (see companion file)

type ’a sequence = int -> ’a

let const v n = v

let extend f x n = (f(n)) (x(n))

let lift1 f x = extend (const f) x

let lift2 f x y = extend (extend (const f) x) y

let lift3 f x y z = extend (extend (extend (const f) x) y) z

let notl x = lift1 (fun x -> not x) x

let plusl x y = lift2 (+) x y

let minusl x y = lift2 (-) x y

let andl x y = lift2 (&&) x y

let eql x y = lift2 (=) x y

(* The [if/then/else] of Lustre *)

let mux x y z = lift3 (fun x y z -> if x then y else z) x y z

Course notes - Marc Pouzet 21/73

Cont. (unit delay)

let pre v x n = if n = 0 then v else x(n-1)

let fby x y n = if n = 0 then x 0 else y(n-1)

let next x n = x (n+1)

Course notes - Marc Pouzet 22/73

Cont. (index/cumulative functions)

(* cumulative and index functions *)

(* [cumul(h)(n)] returns the sum of ones in h up to index n *)

let rec cumul(h)(n) = (if h(n) then 1 else 0) +

(if n = 0 then 0 else cumul(h)(n-1))

(* [index(h)(n)] returns the index of the n-th one in h *)

let rec index(h)(n) = index_aux(h)(0)(n)

and index_aux(h)(i)(n) =

if h(i) then if n = 1 then i else index_aux(h)(i+1)(n-1)

else index_aux(h)(i+1)(n)

(* reset. [reset(h)(n)] returns the greatest *)

(* index i in [0..n] where h(i) = true; if there is no, returns 0 *)

let reset(h)(n) =

let rec o n = if n = 0 then 0 else if h n then n else o(n-1) in

o(n)

Course notes - Marc Pouzet 23/73

Cont. (filtering/merging - when/merge)

(* filtering and merge *)

let whenc x h n = x(index(h)(n+1))

let when_notc x h n = x(index(notl h)(n+1))

let merge h x y n = if h(n) then x(cumul(h)(n)) else y(cumul(notl h)(n))

(* Fixpoint operator over sequences *)

let fix : (’a sequence -> ’a sequence) -> ’a sequence =

fun f n -> let rec o n = f o n in o n

(* the bottom element [eps ()] *)

let rec eps n = eps n

Course notes - Marc Pouzet 24/73

Cont. (examples)

(* Examples *)

let half () = let rec half n = pre false (notl half) n in half

let from v =

let rec f n = pre 0 (plusl f (const 1)) n in f

let incr v x n = pre v (plusl x (const 1)) n

let from v = fix (incr (v(0)))

let sum x =

(* [The concrete syntax in Zelus is: let rec y = (0 fby y) + x in y] *)

fix (fun y -> plusl (pre 0 y) x)

Course notes - Marc Pouzet 25/73

Cont. examples

(* Deadlock / infinite loop *)

(* to test, type [deadlock 42] *)

let id x n = x n

let deadlock n = fix id n

(* to test, type [deadlock 42] *)

let deadlock n =

let x = const true in

whenc x (const false) n

(* non synchronous *)

let unbounded =

let x = const true in

let h = half () in

andl (whenc x h) x

Course notes - Marc Pouzet 26/73

Cont. examples

(* semantics of a simple language with a control structure and a reset *)

(* model a conditional that activate one block when a condition is true;

*- activate the other when the condition is false *)

let cond_act c f g x =

(* cond_act c f g x = merge c (f (x when c)) (g (x whenot c))) *)

fun n -> merge c (f (whenc x c)) (g (when_notc x c))

(* after. [after x k] returns the sub-sequence of x that starts at index k *)

let after x k = fun n -> x (n+k)

(* model a modular reset.

*- take a system [f] and input [x];

*- run f x; every time [c] is true, restart [f] with the remaining inputs *)

let reset_act f x c = fun n -> let k = reset c n in f (after x k)(n-k)

Course notes - Marc Pouzet 27/73

Comments

A denotational semantics and reference interpreter in a few lines of OCaml (or

any general purpose language).

Yet, it is totally useless in practice.

Think of the (exponential) time (and memory) to compute Fibonacci :

let rec fibo(n) = if n <= 1 then 1 else fibo(n-1) + fibo(n-2)

whereas it denotes a simple stream equation (written in Zélus) which can be

implemented with two registers and run in constant time.

let rec pfibo = 1 fby (fibo + pfibo)

and fibo = 1 fby pfibo in fibo

Rmq : (1) it cannot be defined in Coq (unless using a trick, e.g., “fuel”) ; (2)

yet, it can be used for a relational semantics ; anwering questions like (3) is this

program deadlocks ? (4) is this program be implemented in bounded time and

space ? are difficult.

Course notes - Marc Pouzet 28/73

An Implementation in Haskell using a Lazy Data-structure

module Streams where

data ST a = Cons a (ST a) deriving Show

-- lifting constants

constant x = Cons x (constant x)

-- pointwise application

extend (Cons f fs) (Cons x xs) = Cons (f x) (extend fs xs)

-- delays

(Cons x xs) ‘fby‘ y = Cons x y

pre x y = Cons x y

-- sampling

(Cons x xs) ‘when‘ (Cons True cs) = (Cons x (xs ‘when‘ cs))

(Cons x xs) ‘when‘ (Cons False cs) = xs ‘when‘ cs

merge (Cons True c) (Cons x xs) y = Cons x (merge c xs y)

merge (Cons False c) x (Cons y ys) = Cons y (merge c x ys)

An embedding in Haskell

function definition/applications are the regular ones ; mutually recursive

definitions of streams are represented as mutually recursive definitions of values.

We can write many usefull examples and benefit from features of the host

language.

lift2 f x y = extend (extend (constant f) x) y

plusl x y = lift2 (+) x y

-- integers greaters than n

from n =

let nat = n ‘fby‘ (plusl nat (constant 1)) in nat

-- resetable counter

reset_counter res input =

let output = ifthenelse res (constant 0) v

v = ifthenelse input

(pre 0 (plusl output (constant 1)))

(pre 0 output)

in output

Multi-periodic systems

every n =

let o = reset_counter (pre 0 o = n - 1)

(constant True)

in o

filter n top = top when (every n)

hour_minute_second top =

let second = filter (constant 10) top in

let minute = filter (constant 60) second in

let hour = filter (constant 60) minute in

hour,minute,second

Over-sampling (with fixed step)

Compute the sequence (on)n∈IN such that o2n = xn and o2n+1 = xn.

-- the half clock

half = (constant True) ‘fby‘ notl half

-- double its input

stutter x =

o = merge half x ((pre 0 o) when notl half) in o

— over-sampling : the internal rate is faster than the rate of inputs

— this is still a real-time program

— why is it rejected in Lustre ?

Over-sampling with variable step

Compute the root of an input x (using Newton method)

un = un−1/2 + x/2un−1

u1 = x

eps = constant 0.001

root input =

let ic = merge ok input (pre 0 ic) when notl ok)

uc = (pre 0 uc) / 2 + (ic / 2 * pre 0 uc)

ok = true -> uc - pre 0 uc <= eps

output = uc when ok

in output

This example mimics an internal while loop (example due to Paul Le Guernic)

Where are the monsters ?

A stream is represented as a lazy data-structure. Nonetheless, lazyness allows

streams to be build in a strange manner.

Structural (Scott) order :

⊥ ≤struct v, (v : w) ≤struct (v
′ : w′) iff v ≤struct v

′ and w ≤struct w
′.

The following programs are perfectly correct in Haskell (with a unique

non-empty solution)

hd (x:y) = x

tl (x:y) = y

incr (x:y) = (x+1) : incr y

one = 1 : one

x = (if hd(tl(tl(tl(x)))) = 5 then 3 else 4) : 1 : 2 : 3 : one

output = (hd(tl(tl(tl(x))))) : (hd(tl(tl(x)))) : (hd(x)) : output

The values are :

— x = 4 : 1 : 2 : 3 : 1 : ...

— output = 3 : 2 : 4 : 3 : 2 : 4 : ...

These stream may be constructed lazilly :

— x0 = ⊥, x1 = ⊥ : 1 : 2 : 3 : un, x2 = 4 : 1 : 2 : 3 : one.

— output0 = ⊥, output1 = 3 : 2 : 4 : ...

An other example (due to Paul Caspi) :

nat = zero ‘fby‘ (incr nat)

ifn n x y = if n <= 9 then hd(x) : ifn (n+1) (tl(x)) (tl(y)) else y

if9 x y = ifn 0 x y

x = if9 (incr (tl x)) nat

We have x = 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 11, 12, 13, 14, 15,

Are they reasonnable programs ? Streams are constructed in a reverse manner

from the future to the past. We say that they are not “causal”.

This is because the structural order between streams allows to fill the holes in

any order, e.g. :

(⊥ : ⊥) ≤ (⊥ : ⊥ : ⊥ : ⊥) ≤ (⊥ : ⊥ : 2 : ⊥) ≤ (⊥ : 1 : 2 : ⊥) ≤ (0 : 1 : 2 : ⊥)

It is also possible to build streams with intermediate holes (undefined values in

the middle) through the final program is correct :

half = 0.⊥.0.⊥...

fail = fail

half = 0:fail:half

fill x = (hd(x)) : fill (tl(tl x))

ok = fill half

We need to model causality, that is, stream should be produced in a sequential

order. We take the prefix order introduced by Kahn :

Prefix order :

x ≤ y if x is a prefix of y, that is : ⊥ ≤ x and v.x ≤ v.y if x ≤ y

Causal function :

A function is causal when it is monotonous for the prefix order :

x ≤ y ⇒ f(x) ≤ f(y)

All the previous program will get the value ⊥ in the Kahn semantics.

Kahn Semantics in Haskell

It is possible to remove possible non causal streams by forbidding values of the

form ⊥.x. In Haskell, the annotation !a states that the value with type a is

strict (6= ⊥).

module SStreams where

-- only consider streams where the head is always a value (not bot)

data ST a = Cons !a (ST a) deriving Show

constant x = Cons x (constant x)

extend (Cons f fs) (Cons x xs) = Cons (f x) (extend fs xs)

(Cons x xs) ‘fby‘ y = Cons x y

(Cons x xs) ‘when‘ (Cons True cs) = (Cons x (xs ‘when‘ cs))

(Cons x xs) ‘when‘ (Cons False cs) = xs ‘when‘ cs

merge (Cons True c) (Cons x xs) y = Cons x (merge c xs y)

merge (Cons False c) x (Cons y ys) = Cons y (merge c x ys)

This time, all the previous non causal programs have value ⊥ (stack overflow).

Some “synchrony” monsters

✲

✲ even ✲

&

✲

✲

If x = (xi)i∈IN then even(x) = (x2i)i∈IN and x&even(x) = (xi&x2i)i∈IN .

Unbounded FIFOs !

� must be rejected statically

� every operator is finite memory through the composition is not : all the

complexity (synchronization) is hidden in communication channels

� the Kahn semantics does not model time, i.e., impossible to state that

two event arrive at the same time

Course notes - Marc Pouzet 38/73

Synchronous (Clocked) streams

Complete streams with an explicit representation of absence (abs).

x : (V abs)∞

Clock : the clock of x is a boolean sequence

IB = {0, 1}

CLOCK = IB∞

clock ǫ = ǫ

clock (abs .x) = 0.clock x

clock (v.x) = 1.clock x

Synchronous streams :

ClStream(V, cl) = {s/s ∈ (V abs)∞ ∧ clock s ≤prefix cl}

An other possible encoding : x : (V × IN)∞

Course notes - Marc Pouzet 39/73

Dataflow Primitives

Constant :

i#(ǫ) = ǫ

i#(1.cl) = i.i#(cl)

i#(0.cl) = abs .i#(cl)

Point-wise application :

Synchronous arguments must be constant, i.e., having the same clock

+# (s1, s2) = ǫ if si = ǫ

+# (abs .s1, abs .s2) = abs.+# (s1, s2)

+# (v1.s1, v2.s2) = (v1 + v2).+
(s1, s2)

Course notes - Marc Pouzet 40/73

Partial definitions

What happens when one element is present and the other is absent ?

Constraint their domain :

(+) : ∀cl : CLOCK.ClStream(int, cl)×ClStream(int, cl)→ ClStream(int, cl)

i.e., (+) expect its two input stream to be on the same clock cl and produce an

output on the same clock

These extra conditions are types which must be statically verified

Remark (notation) : Regular types and clock types can be written separately :

— (+) : int× int→ int ← its type signature

— (+) :: ∀cl.cl × cl → cl ← its clock signature

In the following, we only consider the clock type.

Course notes - Marc Pouzet 41/73

Sampling

s1 when
s2 = ǫ if s1 = ǫ or s2 = ǫ

(abs .s) when# (abs .c) = abs .s when# c

(v.s) when# (1.c) = v.s when# c

(v.s) when# (0.c) = abs .x when# c

merge c s1 s2 = ǫ if one of the si = ǫ

merge (abs.c) (abs .s1) (abs.s2) = abs .merge c s1 s2

merge (1.c) (v.s1) (abs .s2) = v.merge c s1 s2

merge (0.c) (abs .s1) (v.s2) = v.merge c s1 s2

Course notes - Marc Pouzet 42/73

Examples

base = (1) 1 1 1 1 1 1 1 1 1 1 1 1 ...

x x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ...

h = (10) 1 0 1 0 1 0 1 0 1 0 1 0 ...

y = x whenh x0 x2 x4 x6 x8 x10 x11 ...

h′ = (100) 1 0 0 1 0 0 1 ...

z = y whenh′ x0 x6 x11 ...

k k0 k1 k2 k3 ...

merge h′ z k x0 k0 k1 x6 k2 k3 ...

let clock five =

let rec f = true fby false fby false fby false fby f in f

let node stutter x = o where

rec o = merge five x ((0 fby o) whenot five) in o

stutter(nat) = 0.0.0.0.1.1.1.1.2.2.2.2.3.3...

Course notes - Marc Pouzet 43/73

Sampling and clocks

� x when# y is defined when x and y have the same clock cl

� the clock of x when# c is written cl on c : “c moves at the pace of cl”

s on c = ǫ if s = ǫ or c = ǫ

(1.cl) on (1.c) = 1.cl on c

(1.cl) on (0.c) = 0.cl on c

(0.cl) on (abs.c) = 0.cl on c

We get :

when : ∀cl.∀x : cl.∀c : cl.cl on c

merge : ∀cl.∀c : cl.∀x : cl on c.∀y : cl on not c.cl

Written instead :

when : ∀cl.cl→ (c : cl)→ cl on c

merge : ∀cl.(c : cl)→ cl on c→ cl on not c→ cl

Course notes - Marc Pouzet 44/73

Checking Synchrony

The previous program is now rejected.

✲

✲ even ✲

&

✲

✲

This is a now a typing error

let even x = x when half

let non_synchronous x = x & (even x)

^^^^^^^

This expression has clock ’a on half,

but is used with clock ’a

Final remarks :

— We only considered clock equality, i.e., “two streams are either

synchronous or not”

— Clocks are used extensively to generate efficient sequential code

Course notes - Marc Pouzet 45/73

From Synchrony to Relaxed Synchrony a

— can we compose non strictly synchronous streams provided their clocks

are closed from each other ?

— communication between systems which are “almost” synchronous

— model jittering, bounded delays

— Give more freedom to the compiler, generate more efficient code,

translate into regular synchronous code if necessary

Course notes - Marc Pouzet 46/73

a. Joint work with Albert Cohen, Marc Duranton, Louis Mandel and Florence Plateau

(PhD. Thesis at https://www.lri.fr/~mandel/lucy-n/~plateau/)

A typical example : Picture in Picture

not incrust

incrust

SDHD

HD

HD

downscaler

when

merge

Incrustation of a Standard Definition (SD) image in a High Definition (HD)

one

� downscaler : reduction of an HD image (1920×1080 pixels)

to an SD image (720×480 pixels)

� when : removal of a part of an HD image

� merge : incrustation of an SD image in an HD image

Question :

� buffer size needed between the downscaler and the merge nodes ?

� delay introduced by the picture in picture in the video processing

chain ?

Course notes - Marc Pouzet 47/73

Too restrictive for video applications

?

t+

w
h

e
n

w
h

e
n

y

z

x

0 1

1 10 0

?

z

y

� streams should be synchronous

� adding buffer (by hand) difficult and error-prone

� compute it automatically and generate synchronous code

relax the associated clocking rules

Course notes - Marc Pouzet 49/73

N-Synchronous Kahn Networks

z

buff[1]

1 1 1 1 1 1 1 1

1 1 1 1 11 1 1

0 0 0 0 0 0

0 00 0 0 0 0

y

— based on the use of infinite ultimately periodic sequences

— a precedence relation cl1 <: cl2

Course notes - Marc Pouzet 50/73

Ultimately periodic sequences

Q2 for the set of infinite periodic binary words.

(01) = 01 01 01 01 01 01 01 01 01 . . .

0(1101) = 0 1101 1101 1101 1101 1101 1101 1101 . . .

— 1 for presence

— 0 for absence

Definition :

w ::= u(v) where u ∈ (0 + 1)∗ and v ∈ (0 + 1)+

Course notes - Marc Pouzet 51/73

Clocks and infinite binary words

Instants

N
u
m
b
er

of
on

es

20191817161514131211109876543210

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

w1

Ow(i) = cumulative function of 1 from w

Course notes - Marc Pouzet 52/73

Clocks and infinite binary words

Instants

N
u
m
b
er

of
on

es

20191817161514131211109876543210

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

Ow3

buffer size(w1, w2) = maxi∈N(Ow1
(i)−Ow2

(i))

sub-typing w1 <: w2

def
⇔ ∃n ∈ N, ∀i, 0 ≤ Ow1

(i)−Ow2
(i) ≤ n

Course notes - Marc Pouzet 53/73

Clocks and infinite binary words

Instants

N
u
m
b
er

of
on

es

20191817161514131211109876543210

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

Ow3

buffer size(w1, w2) = maxi∈N(Ow1
(i)−Ow2

(i))

sub-typing w1 <: w2

def
⇔ ∃n ∈ N, ∀i, 0 ≤ Ow1

(i)−Ow2
(i) ≤ n

synchronizability w1 ⊲⊳ w2

def
⇔ ∃b1, b2 ∈ Z,∀i, b1 ≤ Ow1

(i)−Ow2
(i) ≤ b2

precedence w1 � w2

def
⇔ ∀i, Ow1

(i) ≥ Ow2
(i)

Course notes - Marc Pouzet 54/73

Multi-clock

c ::= w | c on w w ∈ (0 + 1)ω

c on w is a sub-clock of c, by moving in w at the pace of c. E.g.,

1(10) on (01) = (0100).

base 1 1 1 1 1 1 1 1 1 1 ... (1)

p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

base on p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

p2 0 1 0 1 0 1 ... (01)

(base on p1) on p2 0 1 0 0 0 1 0 0 0 1 ... (0100)

For ultimately periodic clocks, precedence, synchronizability and equality are

decidable (but expensive)

Course notes - Marc Pouzet 55/73

Come-back to the language

Pure synchrony :

� close to an ML type system (e.g., SCADE 6)

� structural equality of clocks

H ⊢ e1 : ck H ⊢ e2 : ck

H ⊢ op(e1, e2) : ck

Relaxed Synchrony :

� we add a sub-typing rule :

H ⊢ e : ck on w w <: w′

(SUB)

H ⊢ buffer(e) : ck on w′

� defines synchronization points when a buffer is inserted

� the basis of the language Lucy-N (Plateau and Mandel).

Course notes - Marc Pouzet 56/73

What about non periodic systems ?

� The same idea : synchrony + properties between clocks. Insuring the

absence of deadlocks and bounded buffering.

� The exact computation with periodic clocks is expensive. E.g.,

(10100100) on 03600(1) on (101001001) =

09600(104107107102)

� Motivations :

1. To treat long periodic patterns. To avoid an exact computation.

2. To deal with almost periodic clocks. E.g., α on w where

w = 00.((10) + (01))∗

(e.g. w = 00 01 10 01 01 10 01 10 . . .)

Idea : manipulate sets of clocks ; turn questions into arithmetic ones

Course notes - Marc Pouzet 57/73

Abstraction of Infinite Binary Words

Instants

N
u
m
b
er

of
on

es

1211109876543210

9

8

7

6

5

4

3

2

1

0

Ow1

a1 =
〈

1
5 ,

7
5

〉 (

3
5

)

A word w can be abstracted by two lines : abs(w) =
〈

b0, b1
〉

(r)

concr
(〈

b
0
, b

1
〉

(r)
)

def
⇔

w, ∀i ≥ 1, ∧
w[i] = 1 ⇒ Ow(i) ≤ r × i+ b1

w[i] = 0 ⇒ Ow(i) ≥ r × i+ b0

Course notes - Marc Pouzet 58/73

Abstraction of Infinite Binary Words

Instants

N
u
m
b
er

of
on

es

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

a4 =
〈

3, 143

〉 (

1
3

)

Instants

N
u
m
b
er

of
on

es

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

a5 =
〈

−14
3 ,−3

〉 (

2
3

)

Course notes - Marc Pouzet 59/73

Abstract Clocks as Automata

Instants

N
u
m
b
er

of
on

es

1211109876543210

9

8

7

6

5

4

3

2

1

0

Ow1

a1 =
〈

1
5 ,

7
5

〉 (

3
5

)

4, 22, 2

1, 1

5, 34, 3

3, 2

2, 1

1, 0

1

1

0

1

0
1

0

1

0

1

a1 =
〈

1

5
, 7

5

〉 (

3

5

)

� set of states {(i, j) ∈ N2} : coordinates in the 2D-chronogram

� finite number of state equivalence classes

� transition function δ :

δ(1, (i, j)) = nf (i+ 1, j + 1) if j + 1 ≤ r × i+ b1

δ(0, (i, j)) = nf (i+ 1, j + 0) if j + 0 ≥ r × i+ b0

� allows to check/generate clocks

Course notes - Marc Pouzet 60/73

Abstract Relations

Instants

N
u
m
b
er

of
on

es
1211109876543210

9

8

7

6

5

4

3

2

1

0

Ow1

a1 =
〈

1
5 ,

7
5

〉 (

3
5

)

Ow2

a2 =
〈

−6
5 ,−

2
5

〉 (

3
5

)

Synchronizability : r1 = r2 ⇔
〈

b01, b
1
1

〉

(r1) ⊲⊳
∼
〈

b02, b
1
2

〉

(r2)

Precedence : b12 − b01 < 1 ⇒
〈

b01, b
1
1

〉

(r) �∼
〈

b02, b
1
2

〉

(r)

Subtyping : a1 <:∼ a2 ⇔ a1 ⊲⊳∼ a2 ∧ a1 �∼ a2

� proposition : abs(w1) <:∼ abs(w2) ⇒ w1 <: w2

� buffer : size(a1, a2) =
⌊

b11 − b02
⌋

Course notes - Marc Pouzet 61/73

Abstract Operators

Composed clocks : c ::= w | not w | c on c

Abstraction of a composed clock :

abs(not w) = not∼ abs(w)

abs(c1 on c2) = abs(c1) on
∼ abs(c2)

Operators correctness property :

not w ∈ concr(not∼ abs(w))

c1 on c2 ∈ concr(abs(c1) on
∼ abs(c2))

Course notes - Marc Pouzet 62/73

Abstract Operators

Instants

N
u
m
b
er

of
on

es

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

a4 =
〈

3, 143

〉 (

1
3

)

a5 =
〈

−14
3 ,−3

〉 (

2
3

)

not∼ operator definition :

� not∼
〈

b0, b1
〉

(r) =
〈

−b1,−b0
〉

(1− r)

Course notes - Marc Pouzet 63/73

Abstract Operators

4, 03, 0

7, 16, 1

9, 2

12, 311, 3

15, 414, 4

18, 517, 5

21, 620, 6

23, 722, 7

26, 825, 8

25, 9

24, 823, 822, 8

21, 720, 7

19, 618, 617, 6

16, 515, 514, 5

13, 412, 411, 4

10, 39, 3

8, 27, 26, 2

5, 14, 13, 1

2, 01, 0
0 0

1

0 0 0

1

0 0 0

1

0 0

1

0 0 0

1

0 0 0

1

0 0 0

1

0 0

1

0 0 0

1

0

0

1 1

0

1 1

0

1 1

0

1 1

0

1 1

0

1 1

1

0

1 1

0

1 1

a1 on∼ a2 =
〈

1

5
, 7

5

〉 (

3

5

)

on∼
〈

− 6

5
,− 2

5

〉 (

3

5

)

on∼ operator definition :

〈 b01 , b11 〉 (r1)

on∼ 〈 b02 , b12 〉 (r2)

= 〈 b01 × r2 + b02 , b11 × r2 + b12 〉 (r1 × r2)

with b01 ≤ 0, b02 ≤ 0

Course notes - Marc Pouzet 64/73

Modeling Jitter

Instants

N
u
m
b
er

o
f
o
n
es

14131211109876543210

6

5

4

3

2

1

0

〈

0, 23

〉 (

1
3

)

Instants

N
u
m
b
er

o
f
o
n
es

14131211109876543210

6

5

4

3

2

1

0

〈

−1
3 ,

3
3

〉 (

1
3

)

� set of clock of rate r = 1
3 and jitter 1 can be specified by

〈

− 1
3 ,

3
3

〉 (

1
3

)

�

〈

− 1
3 ,

3
3

〉 (

1
3

)

= 〈−1, 1〉 (1) on∼
〈

0, 2
3

〉 (

1
3

)

� f :: ∀α.α→ α on∼
〈

− 1
3 ,

3
3

〉 (

1
3

)

Course notes - Marc Pouzet 65/73

Formalization in a Proof Assistant

By Louis Mandel and Florence Plateau

Most of the properties have been proved in Coq

� example of property

Property on_absh_correctness:

forall (w1:ibw) (w2:ibw),

forall (a1:abstractionh) (a2:abstractionh),

forall H_wf_a1: well_formed_abstractionh a1,

forall H_wf_a2: well_formed_abstractionh a2,

forall H_a1_eq_absh_w1: in_abstractionh w1 a1,

forall H_a2_eq_absh_w2: in_abstractionh w2 a2,

in_abstractionh (on w1 w2) (on_absh a1 a2).

� number of Source Lines of Code

� specifications : about 1600 SLOC

� proofs : about 5000 SLOC

Course notes - Marc Pouzet 66/73

Back to the Picture in Picture Example

not incrust

incrust

SDHD

HD

HD

downscaler

when

merge

� abstraction of downscaler output :

abs((10100100) on 03600(1) on (172007201720072007201720072007201720))

=
〈

0, 7

8

〉 (

3

8

)

on∼ 〈−3600,−3600〉 (1) on∼ 〈−400, 480〉
(

4

9

)

=
〈

−2000,− 20153

18

〉 (

1

6

)

� minimal delay and buffer :

delay buffer size

exact result 9 598 (≈ time to receive 5 HD lines) 192 240 (≈ 267 SD lines)

abstract result 11 995 (≈ time to receive 6 HD lines) 193 079 (≈ 268 SD lines)

This is implemented in Lucy-N http://lucy-n.org by Louis Mandel.

Course notes - Marc Pouzet 67/73

Parallel implementation and integer clocks

Parallel processes communicating through a buffer

gf

int f_out;

while (1) {

f_step (f_mem, &f_out);

fifo.push(f_out);

}

int g_in;

while (1) {

fifo.pop(&g_in);

v = g_step (g_mem, g_in);

}

Buffers allow to desynchronize the execution

Course notes - Marc Pouzet 69/73

FIFO with batching

To pop, the consumer has to check for the availability of data. This check is

expensive. It is better to communicate by chunks.

Batch :

� the consumer can read in the fifo only when batch values are available

� the producer can write in the fifo only when batch rooms are available

Batch size : 001 Cycles/push : 23.07 Bandwidth : 589.45 MB/s

Batch size : 002 Cycles/push : 15.79 Bandwidth : 861.40 MB/s

Batch size : 004 Cycles/push : 12.06 Bandwidth : 1127.83 MB/s

Batch size : 008 Cycles/push : 10.00 Bandwidth : 1359.69 MB/s

Batch size : 016 Cycles/push : 7.51 Bandwidth : 1810.58 MB/s

Batch size : 032 Cycles/push : 7.33 Bandwidth : 1855.32 MB/s

Batch size : 064 Cycles/push : 7.33 Bandwidth : 1855.20 MB/s

Batching : reduce the synchronization with the FIFO

Course notes - Marc Pouzet 70/73

Integer clocks

α on (2)α on (2)
f g

Burst :

� allows to compute and communicate several values within one instant

� formulas can be easily lifted to integers

Course notes - Marc Pouzet 71/73

Integer clocks

α on (2)α on (2)
f g

Burst :

� allows to compute several values into one instant

� formulas can be easily lifted to integers

� impacts causality

This has been studied by Adrien Guatto in his PhD. thesis (2016).

Course notes - Marc Pouzet 72/73

Type based clock calculus

Lucid Synchrone

— stream Kahn semantics, clocks, functions possibly higher-order

— study (implement) extensions of Lustre

— experiment things, manage all the compilation chain and write programs !

— Version 1 (1995), Version 2 (2001), V3 (2006)

Quite fruitful :

— the Scade 6 language and its compiler (first release in 2008) incorporates

several features from Lucid Synchrone

— the LCM language at Dassault-Systm̀es (Delmia Automation) based on

the same principles

— several features reused in Stimulus, a language for requirement

simulation.

Références

[1] Sylvain Boulmé and Grégoire Hamon. Certifying Synchrony for Free. In International Conference
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), volume 2250, La Havana,
Cuba, December 2001. Lecture Notes in Artificial Intelligence, Springer-Verlag. Short version of A clo-
cked denotational semantics for Lucid-Synchrone in Coq, available as a Technical Report (LIP6), at
www.di.ens.fr/∼pouzet/bib/bib.html.

[2] P. Caspi. Clocks in dataflow languages. Theoretical Computer Science, 94 :125–140, 1992.

[3] Paul Caspi and Marc Pouzet. Synchronous Kahn Networks. In ACM SIGPLAN International Conference
on Functional Programming (ICFP), Philadelphia, Pensylvania, May 1996.

[4] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence Plateau, and Marc Pouzet.
N -Synchronous Kahn Networks : a Relaxed Model of Synchrony for Real-Time Systems. In ACM Inter-
national Conference on Principles of Programming Languages (POPL’06), Charleston, South Carolina,
USA, January 2006.

[5] Albert Cohen, Louis Mandel, Florence Plateau, and Marc Pouzet. Abstraction of Clocks in Synchronous
Data-flow Systems. In The Sixth ASIAN Symposium on Programming Languages and Systems (APLAS),
Bangalore, India, December 2008.

[6] Jean-Louis Colaço and Marc Pouzet. Clocks as First Class Abstract Types. In Third International Confe-
rence on Embedded Software (EMSOFT’03), Philadelphia, Pennsylvania, USA, october 2003.

[7] Louis Mandel, Florence Plateau, and Marc Pouzet. Lucy-n : a n-Synchronous Extension of Lustre. In
10th International Conference on Mathematics of Program Construction (MPC’10), Manoir St-Castin,
Québec, Canada, June 2010. Springer LNCS.

[8] Louis Mandel, Florence Plateau, and Marc Pouzet. Static Scheduling of Latency Insensitive Designs with
Lucy-n. In International Conference on Formal Methods in Computer-Aided Design (FMCAD), Austin,
Texas, USA, October 30 – November 2 2011.

[9] Florence Plateau. Modèle n-synchrone pour la programmation de réseaux de Kahn à mémoire bornée.
PhD thesis, Université Paris-Sud 11, Orsay, France, 6 janvier 2010.

