
Type-based Clock Calculi

Marc Pouzet

ENS Paris
Marc.Pouzet@ens.fr

MPRI, October 2023

Marc.Pouzet@ens.fr

Different interpretations of the words “synchronous” and “clocks”
exist.

Kahn Process Networks
A set of processes running independently and synchronizing
through FIFOs [5].

In this context, what does it mean for two streams to be
“synchronous” or two processes to run “synchronously”?

▶ The Synchronous Data-flow Model (SDF) model of
Messerschmitt & Lee [6] defines relative ratio between input
reads and output writes of a process.

▶ E.g., “Every time f read 2 input on channel x and 3 inputs on
channel y, it produces 5 outputs on channel z”.

▶ Express constraints of relative input reads and write as
balanced equations.

▶ A SDF network is correct (alive = deadlock free and
bounded) when balanced equations have a solution.

▶ It ensures that a static schedule exists and a run with
bounded buffer whose maximum size can be computed [7].

▶ Since [6], various SDF extensions have been considered.

Periodically sampled systems

Consider that parallel processes run in lock-step — when one
process make a step, the others makes a step.

There exist a global time scale shared by all processes, e.g. 1ms.

“synchrony” can be interpreted as:
Two periodically sampled signals can be synchronized on
the gcd of their period.

E.g., if x is sampled every 10ms and y every 15ms, the signal
z = x + y needs to be computed every 5ms. z is sampled every
5ms.

In both interpretations, “synchrony” is a matter of relative speed
(or rate) of production or change of value.

Synchronous Kahn Networks

synchrony of synchronous languages has a more general and
powerful meaning.
That is, the two previous situations are particular cases.

A clock is a set of totally ordered instants. There exist
a global clock so that every signal is defined according to
this clock.

A Kahn network is synchronous if it can be executed without any
buffering mechanism.

Example: Synchronous Circuits

A synchronous circuit behave as if it all operator were running in
lock-step, reading one input, producing one output.

In a synchronous circuit, it is possible to mimic the absence of a
value by adding an enable bit: every wire s is paired with a
boolean b, true when s is valid.

What is a Clock

The clock of a signal defines the instants where the signal is
defined. It is its time domain as opposed to the domain of values.

If D is a set of instants, equation z = x + y means:

∀t ∈ D.z(t) = x(t) + y(t)

D is equiped with a total order. If D is a set of instants, or clock,
and D ′ ⊆ D, D ′ is called a sub-clock of D.

Some operators can read or produce values at a subset of instants.

E.g., x when c returns a signal which is defined on a subclock
D ′ ⊂ D if x and c have clock D. It produces a signal which is
defined on time t ∈ D ′ if x(t) is defined, c(t) is defined and is true.

whereas merge takes two signals defined at complementary
instants.

What is a Clock

The clock calculus is a type system on these time domains. It
associates a clock type to an expression e which indicates when e
produces a value.

When the program type checks, it can be executed synchronously
without any buffering.

▶ Clocks are useful to mix slow and fast processes;

▶ while ensuring the absence of buffering.

From the programming language point-of-view:

▶ Clocks help specifying and reasonning about reactive
processes.

▶ Clocks are useful to generate good code.
▶ In a way similar to types in programming languages.

▶ A strong constraint on the programmer but increases safety.
▶ It helps undestanding what the program is doing.

Clocks, in practice
The problem is not “easy” in the general case. E.g.,:

(e1 when c1) + (e2 when c2)

is synchronous iff c1 and c2 are equal. If the language contains
boolean expressions, it is NP-complete. If it contains boolean
expressions with registers, it is PSPACE-complete. If it contains
unbounded arithmetics, it is undecidable. In practice:

▶ Give sufficient conditions to insure that a program can be
executed synchronously.

▶ Clock equality: structural equality (Lucid Synchrone);
boolean equivalence (Signal).

▶ Clock inference: Signal, Lucid Synchrone.

▶ Clock verification: Lustre.

Remark:
This is a very general problem and tools like Simulink also provides
a static checking of rates/clocks of block diagrams.

A small stream language

f , e ::= e e | let x = e in e | x | i
| e fby e | merge e e e
| e -> e | e when e
| rec x .e | λx .e

▶ Streams and stream function.

▶ Regular typing is not addressed here, causality neither.

▶ Check only the operations are executed on their proper clock.

Finite and Infinite Streams
Let T be a set of value.

▶ If n ∈ N, T n is the set of sequences of length n.
▶ If x ∈ T n, and 1 ≤ i ≤ n, x(i) is the i-th element of T n. It is

not defined otherwise.
▶ If v ∈ T and s ∈ T n, v .s ∈ T n+1 is the stream with

(v .s)(1) = v and (v .s)(i) = s(i − 1), for 1 ≤ i ≤ n + 1.
▶ T 0 contains the empty sequence noted ϵ.
▶ The Kleene set T ∗ = ∪n∈NT n is the set of finite sequences.
▶ Tω = limn→∞T n is the set of infinite sequences.
▶ The set of finite and infinite streams is:

T∞ = T ∗ ∪ Tω

The Prefix Order
The binary relation ≤p⊆ T∞ × T∞ is the smallest such that:

▶ For all s ∈ T∞, ϵ ≤p s.

▶ For all s1, s2, if s1 ≤p s2 then forall v ∈ T , v .s1 ≤p v .s2

Clocked Streams
Let Tabs = T + {abs}, the set T complemented with a “absent”
value.

Clocks
Let x ∈ T∞

abs . The clock Clock(x) ∈ Bool∞ of x is a boolean
stream:

Clock(ϵ) = ϵ
Clock(abs.s) = false.Clock(s)
Clock(v .s) = true.Clock(s)

Clocked Stream
The set of clocked streams whose clock is s is defined:

ClockedStream(T , c) = {s ∈ T∞ | Clock(s) ≤p c}

s ∈ ClockedStream(T ,C) means
∀i ∈ Dom(s), (s(i) = abs)⇔ (c(i) = false)

The set is prefix closed, i.e., if c is of length n, we allow
ClockedStream(T , c) to contains all shorter streams.

Static Checking
Intuition: associate a type to every expression. For a stream
expression e, this type is interpreted as a boolean expression s
whose value if true when e produce a present value.

The clock type language:

σ ::= ∀α1, ..., αn.cl
cl ::= ∀x : cl .cl | cl × cl | s
s ::= s on e | α

H ::= [x1 : σ1, ..., xn : σn]
where for all i , j st j ≤ i , xi ̸∈ FV (clj)

judgment ::= H ⊢ e : cl

Programs are considered modulo α-conversion (renaming)

▶ A dependent type system.

▶ ∀x : cl1.cl2 is written cl1 → cl2 when x ̸∈ FV (cl2)

Initial Conditions

H0 = [pre : ∀α.α→ α,
-> : ∀α.α→ α→ α,
when : ∀α.α→ ∀x : α.α on x
merge : ∀α.∀x : α.α on x → α on not x → α

Instantiation, generalisation:

▶ Free clock variables: FV (cl). Lifted to environments: FV (H).

▶ Free expression variables: fv(cl). Lifted to environments:
fv(H).

cl [s1/α1, ..., sn/αn] ∈ Instanciate(∀α1, ..., αn.cl)

Generalize(H, cl) = ∀α1, ..., αm.cl
where {α1, ..., αn} = FV (cl)\FV (H)

Polymorphism is limited: a clock variable can be instantiated by a
clock type s which concerns signals only.

The system

(Const)

H ⊢ i : s

(Var)

cl ∈ Instanciate(σ)

H, x : σ ⊢ x : cl

(op)

H ⊢ e1 : s H ⊢ e2 : s

H ⊢ op(e1, e2) : s

(abst)

H, x : cl ⊢ e : cl ′ x ̸∈ fv(H)

H ⊢ λx .e : ∀x : cl .cl ′

(app)

H ⊢ f : ∀x : cl .cl ′ H ⊢ e : cl

H ⊢ f e : cl ′[e/x]

(rec)

H, x : cl ⊢ e : cl x ̸∈ fv(H)

H ⊢ rec x .e : cl

(let)

H ⊢ e1 : cl1 H, x : Generalize(H, cl1) ⊢ e2 : cl2

H ⊢ let x = e1 in e2 : cl2

Pairs

(fst)

H ⊢ fst : ∀α1, α2.α1 × α2 → α1

(snd)

H ⊢ snd : ∀α1, α2.α1 × α2 → α2

(product)

H ⊢ e1 : cl1 H ⊢ e2 : cl2

H ⊢ (e1, e2) : cl1 × cl2

Polymorphism
▶ Polymorphism is limited: fst takes two streams and returns a

stream since α denotes a variable which can only be
instantiated by a clock expression of the form s on e.

▶ Pairs can be treated in a more general manner by extending
the type language.

σ ::= ∀β1, ..., βn.∀α1, ..., αn.cl
cl ::= ∀x : cl .cl | cl × cl | s | β
s ::= s on e | α

▶ Then, fst and snd get clock signatures:

(fst)

H ⊢ fst : ∀β1, β2.β1 × β2 → β1

(snd)

H ⊢ snd : ∀β1, β2.β1 × β2 → β2

Polymorphism

An alternative solution is to keep a simpler clock type language.

σ ::= ∀β1, ..., βn.cl
cl ::= ∀x : cl .cl | cl × cl | β | cl on e

Yet, the meaning of some combinations must be defined (and is, at
least unclear). E.g.,

▶ (cl1 × cl2) on e;

▶ (∀x : cl1.cl2) on e;

▶ ...

These situations can be rejected by the regular type system or
taken into account by merging the type system and the clock
calculus.

Extension: clock abstraction

How can we write a function (node) that returns a stream sampled
on a condition c computed locally?
In Lustre, the condition must be returned as an output of the
function.

node hide(x: int) returns (o: bool; (y:int) when o);

let o = x >= 0;

y = x when o;

tel;

This corresponds to an existential quantification:

hide : ∀α.α→ Σ(o : α).α on o

(return)

H ⊢ e1 : cl1 H ⊢ e : cl2[e1/x]

H ⊢ (e1, e2) : Σ(x : cl1).cl2

(fst)

H ⊢ e : Σ(x : cl1).cl2

H ⊢ fst e : cl1

(snd)

H ⊢ e : Σ(x : cl1).cl2

H ⊢ snd e : cl2[fst e/x]

The Valued Signals of Esterel
The language Esterel provides pure and valued signals. A pure
signal is nothing but a boolean. A valued signal carries both a
value and a presence bit. Using clocks, it can be encoded by a
dependent pair:

α sig = Σ(c : α).α on c

made of:
▶ An enable bit c ;
▶ and a stream present when c is true.

Add two operations: one to abstract the enable bit; one to open it.

Clock abstraction
The equation:

emit x = e

defines the valued signal x by abstracting the clock of e.

(Emit)

H ⊢ e : s on c

H ⊢ emit x = e : [x : s sig]

Accessing an abstract clock

let x on c = e1 in e2 access the signal e1.

(Let-sig)

c ̸∈ fv(H) c ̸∈ fv(cl)
H ⊢ e1 : s sig H, c : s, x : s on c ⊢ e2 : cl

H ⊢ let x on c = e1 in e2 : cl

The rule ensures that no hypothesis on c can be made and it must
not escape from the block.

Historical note: The idea of “clocks as (dependent) types” was
introduced xsin ICFP’96 (Caspi & Pouzet). It was implemented in
Lucid Synchrone V1 (1996-1998).

Oversampling

In Lucid Synchrone, Version 1.0 (1998), it was possible to write
an oversampling function whose input clock could depend only its
output, provided there was no instantaneous dependence.
E.g., take f and terminated two length preserving functions.

let node oversampling(x) = ok, o where

rec cx = merge (true fby ok) x

((0 fby cx) when not (true fby ok))

and o = f(cx)

and ok = terminated(o)

val oversampling :: ’a on true fby ok -> (ok: ’a) * ’a

This program mimics an internal loop that reads an input from
time to time but produce an output at every instant.

Oversampling

The type Πx : cl1.cl2 expresses that the clock of output depends
on the value of the input.

The type Σx : cl1.cl2 expresses that the clock of the output
depends on the value of the first component of the pair.

How to express the clock signature of a function where the clock
of an input depends on previous values of itself?

Introduce a type which replaces Πx : cl1.cl2 and Σx : cl1.cl2.

Causaly correct clock signatures

The type of a function f with n inputs and m output can be given
the signature:

(x1 : cl1)× ...× (xn : cln)→ (xn+1 : cln+1)× ...× (xn+m : cln+m)

where xi (for i ∈ [1..n]) is quantified universally; (xi) (for
i ∈ [n + 1..n +m]) are quantified existentially.

The signature must be syntactically causal:

▶ xi can only appear in clj for j > i .

▶ unless it appears under a pre or fby.

that is, the clock of an input can depend on the previous value of
an output.

A funny example: sorting two input streams
An example due to Ben Lippmeier (Gost motion,
https://www.gh.st).
Consider two sorted integer input streams left and right.
Define a node sort which, given left and right returns a sorted
stream which merge the two input streams.

(* Lucid Synchrone V1.1 *)

let current c default x = where

rec o = merge c x ((default fby o) when not c)

let sort(left, right) = (c, o) where

rec mleft = current (true fby c) left 0

and mright = current (true fby (not c)) right 0

and c = mleft < mright

and o = if c then mleft else mright

The Lucid Synchrone V1 compiler computes:

val current :: (c:’a) -> ’a -> ’a on c -> ’a

val sort :: (’a on true fby c) * (’a on true fby not c)

-> (c : ’a) * ’a

https://www.gh.st

Properties of clock calculus

Theorem (Correctness)

Well clocked programs can be executed in a synchronous manner.

The precise formulation and proof was obtained in a very elegant
manner by Boulme and Hamon [Boulme & Hamon, LPAR’01] by
making a shallow embedding in Coq.

▶ For well clocked programs, annotate constants with their
clock, e.g.,: H ⊢ 42 : b becomes 42[b] where b will be a
boolean stream.

▶ Annotated expressions can now be given a synchronous
semantics, that is, operations are applied to clocked streams.

▶ The clock typing rules are a direct consequence of the clocked
semantics.

▶ If expressions are represented as Coq terms, clock rules are
enforced by the typing rules of Coq.

Use of clocks

For code generation, clocks are used for control optimization. An
expression with clock type s is only executed with s is true.

The explicit representation of the absent value can be removed.

Transform programs that manage streams into programs that
manage streams with clocks annotations:

H ⊢ e : cl ⇒ e ′

expression e with clock cl is transformed into an expression e ′

Annotating Expressions with their Clock

The basic language is extended with explicit annotations. pres is an
enable bit. This bit is associated to every operation and register.

e ::= ipres | oppres(e, e) | x
| preprese | e ->pres e

| rec x .e
| (e, e)
| λα1, ..., αn.e
| λx .e | e(e)
| fst e | snd e
| pres

pres ::= pres on e | α | true

Transformation

To produce a program where expressions are annotated with their
clock.

λx .(0 fby x) + 2 : ∀α.α→ α

is translated into:

λα.λx .(0α fby x) + 2α)

▶ An abstraction at every generalization point.

▶ An application at every instantiation point.

▶ This mechanism is necessary because several clock variables
can be present in a clock scheme.

▶ In practice, the clock is only useful for stateful operations
(pre, -> and fby).

The Program Transformation

(Const)

H ⊢ s ⇒ ce

H ⊢ i : s ⇒ i [ce]

(Var)

cl , (c1, ..., cn) ∈ Instanciate(σ)

H, x : σ ⊢ x : cl ⇒ x c1 ... cn

(op)

H ⊢ s ⇒ ce H ⊢ e1 : s ⇒ c1 H ⊢ e2 : s ⇒ c2

H ⊢ op(e1, e2) : s ⇒ opce (c1, c2)

(abst)

H, x : cl ⊢ e : cl ′ ⇒ c x ̸∈ fv(H)

H ⊢ λx .e : ∀x : cl .cl ′ ⇒ λx .c

(app)

H ⊢ f : ∀x : cl .cl ′ ⇒ fc H ⊢ e : cl ⇒ ec

H ⊢ fe : cl ′[e/x]⇒ fc ec

(rec)

H, x : cl ⊢ e : cl ⇒ c x ̸∈ fv(H)

H ⊢ rec x .e : cl ⇒ rec x .c

Instanciation, Generalization:

cl [s1/α1, ..., sn/αn], (s1, ..., sn) ∈ Instanciate(∀α1, ..., αn.cl)

Generalize(H, cl) = ∀α1, ..., αm.cl , (α1, ..., αn)
where {α1, ..., αn} = FV (cl)\FV (H)

(let)

σ, (α1, ..., αn) = Generalize(H, cl1)
H ⊢ e1 : cl1 ⇒ c1 H, x : σ ⊢ e2 : cl2 ⇒ c2

H ⊢ let x = e1 in e2 : cl2 ⇒ let x = λα1, ..., αn.c1 in c2

What is the operator On?

If s is a clock expression and e is a boolean expression, s on e is
called a sub-clock of s.
s on e is true whenever e is present and true. e must be on clock s.
Thus, if s on e is true, then is s.

(ON)

H ⊢ s ⇒ cs H ⊢ e : s ⇒ ce

H ⊢ s on e ⇒ cs on ce

(CLOCK-var)

H ⊢ α⇒ α

Algorithm and implementation choices

The very first description of this clock type system was presented
at ICFP’96 [2].

▶ Clock type inference based on the algorithm W of ML.
▶ First order unification between clock, structural.

▶ cl1 on e1 ≡ cl2 on e2 if cl1 ≡ cl2
▶ e1 and e2 syntactically equal. The following is rejected:

let f x =

let z = x = 0 in

(1 when z) + (2 when (x = 0)

▶ Dependences for functions (∀x : cl1.cl2) must be in prenex
form. Only the first signature is possible:

let f x g = (g x) + (1 when x)

f : (x:a) -> (a -> a on x) -> a on x

f : (x:a) -> ((y:a) -> a on y) -> a on x

Comparison with the Lustre Clock Calculus

The system was implemented in Lucid Synchrone Version 1
(1996). It was kept upto Version 2 (2002).

▶ The ReLuC compiler of SCADE/Lustre (Esterel-Technologies)
implemented a clock calculus close to the presented one.

▶ Clock verification instead of inference.

▶ A restriction in the clock type language. Clock scheme of the
form ∀α.cl with a single clock variable.

▶ This is the base clock of the node.

let f (x,y) = (x+1, y+2)

f : (’a * ’b) -> (’a * ’b) ← in Lucid Synchrone
f : (’a * ’a) -> (’a * ’a) ← in Lustre

▶ no oversampling in Lustre

let rec half = true -> not (pre half)

let stuttering x = o where

rec o = merge half x ((0 -> pre o) when not half)

f :: ’a on half -> ’a

▶ no polymorphic constant (they are all on the base clock of the
node). The following program is rejected:

let rec half = true -> pre (not (half))

let f x = x when half when half

f : ’a -> ’a on half on half

Clock polymorphism (constants)

▶ Un stream defined at top level can be seen as a constant
process (with no input).

let rec half = true -> pre (not half)

is a short-cut for (i.e, it is compiled into):

let process half () = half where

rec half = true -> pre (not half) in half

▶ every instance of half has its own clock, thus:

let f x = x when half when half

is a short-cut for:

let f x =

(x when process half())

when (process half(() when process half()))

Conclusion

▶ A dependent-type system. In practice, restrict boolean
expressions that appear in clock types (in s on e).

▶ The first version of the ReLuC compiler (at
Esterel-Technologies) was based on this type system.

▶ It is possible to do a shalow embedding in Coq [Boulme &
Hamon, LPAR’01]

▶ In 2003, we found a way to get something even simpler with a
clock calculus that is amost the ML type system [Colaco and
Pouzet, EMSOFT’03].

▶ This system was the basis of the clock calculus of Scade 6.

▶ This simpler system was reused and extended in two
directions: the modeling and checking of periodic clocks
[Julien Forget’s PhD. thesis], the theory of N-synchrony
[Florence Plateau’s PhD. thesis, POPL’06 [3], etc.]

Sylvain Boulmé and Grégoire Hamon.

Certifying Synchrony for Free.

In International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR), volume 2250, La Havana, Cuba,
December 2001. Lecture Notes in Artificial Intelligence,
Springer-Verlag.

Short version of A clocked denotational semantics for
Lucid-Synchrone in Coq, available as a Technical Report (LIP6), at
www.di.ens.fr/∼pouzet/bib/bib.html.

Paul Caspi and Marc Pouzet.

Synchronous Kahn Networks.

In ACM SIGPLAN International Conference on Functional
Programming (ICFP), Philadelphia, Pensylvania, May 1996.

Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti,
Florence Plateau, and Marc Pouzet.

N-Synchronous Kahn Networks: a Relaxed Model of Synchrony for
Real-Time Systems.

In ACM International Conference on Principles of Programming
Languages (POPL’06), Charleston, South Carolina, USA, January
2006.

Jean-Louis Colaço and Marc Pouzet.

Clocks as First Class Abstract Types.

In Third International Conference on Embedded Software
(EMSOFT’03), Philadelphia, Pennsylvania, USA, october 2003.

Gilles Kahn.

The semantics of a simple language for parallel programming.

In IFIP 74 Congress. North Holland, Amsterdam, 1974.

E. A. Lee and D. G. Messerschmitt.

Static scheduling of synchronous data flow programs for digital
signal processing.

IEEE Trans. on Computers, 36(2), 1987.

Thomas M Park.

Bounded Scheduling of Process Networks.

PhD thesis, University of California at Berkeley, 1995.

