ABSTRACT

We present ReactiveML, a programming language dedicated to the implementation of complex reactive systems as found in graphical user interfaces, video games or simulation problems. The language is based on the reactive model introduced by Boussinot. This model combines the so-called synchronous model found in Esterel which provides instantaneous communication and parallel composition with classical features found in asynchronous models like dynamic creation of processes.

The language comes as a conservative extension of an existing call-by-value ML language and it provides additional constructs for describing the temporal part of a system. The language receives a behavioral semantics à la Esterel and a transition semantics describing precisely the interaction between ML values and reactive constructs. It is statically typed through a Milner type inference system and programs are compiled into regular ML programs. The language has been used for programming several complex simulation problems (e.g., routing protocols in mobile ad-hoc networks).

Categories and Subject Descriptors: F.4.1 [MATHEMATICAL LOGIC AND FORMAL LANGUAGES]: Mathematical Logic–Lambda calculus and related systems; D.3.1 [PROGRAMMING LANGUAGES]: Formal Definitions and Theory–Syntax, Semantics; D.3.2 [PROGRAMMING LANGUAGES]: Language Classifications–Applicative (functional) languages, Concurrent, distributed, and parallel languages

General Terms: Languages

Keywords: Functional programming, reactive programming, semantics.

1. INTRODUCTION

Synchronous programming [4] has been introduced in the 80’s as a way to design and implement safety critical real-time systems. It is founded on the ideal zero delay model where communications and computations are supposed to be instantaneous. In this model, time is defined logically as the sequence of reactions of the system to input events. The main consequence of this model is to conciliate parallelism—allowing for a modular description of the system—and determinism. Moreover, techniques were proposed for this parallelism to be statically compiled, i.e., parallel programs are translated into purely sequential imperative code in terms of transition systems [5, 15].

Synchronous languages are restricted to the domain of real-time systems and their semantics has been specifically tuned for this purpose. In particular, they forbid important features like recursion or dynamically allocated data in order to ensure an execution in bounded time and memory. In the 90’s, Boussinot observed that it was possible to conciliate the basic principles of synchronous languages with the dynamic creation of processes if the system cannot react instantaneously to the absence of an event. In this way, logical inconsistencies which may appear during the synchronous composition of processes disappear as well as the need of complex causality analysis to statically reject inconsistent programs. This model was called the synchronous reactive model (or simply reactive) and identified inside SL [11], a synchronous reactive calculus derived from Esterel. Later on, the JUNIOR [16] calculus was introduced as a way to give a semantics to the SUGARCUBES [12], this last one being an embedding of the reactive model inside JAVA. This model has been used successfully for the implementation of complex interactive systems as found in graphical user interfaces, video-games or simulation problems [13, 12, 1] and appears as a competitive alternative to the classical thread-based approach.

From these first experiments, several embedding of the reactive model have been developed [7, 12, 26, 28]. These implementations have been proposed in the form of libraries inside general purpose programming languages. The “library” approach was indeed very attractive because it gives access to all the features of the host language and it is relatively light to implement. Nonetheless, this approach can lead to confusions between values from the host language used for programming the instant and reactive constructs. This can lead to re-entrance phenomena which are usually detected by run-time tests. Moreover, signals in the reactive model are subject to dynamic scoping rules, making the reasoning on programs hard. Most importantly, implementations of the reactive model have to compete with traditional (mostly sequential) implementation techniques of complex simulation problems. This calls for specific compilation, optimization
and program analysis techniques which can be hardly done with the library approach.

The approach we choose is to provide concurrency at language level. We enrich a strict ML language with new primitives for reactive programming. We separate regular ML expressions from reactive ones through the notion of a process. An ML expression is considered to be an atomic (timeless) mechanism whereas a process is a state machine whose behavior depends on the history of its inputs. It is made of regular ML expressions and reactive expressions. Regular ML expressions are executed as is without any computational impact whereas reactive expressions are compiled in a special way. We introduce two semantics for the language. The first one is a behavioral semantics in the style of the logical behavioral semantics of Esterel. This semantics defines what is a valid reaction no matter how this reaction is actually computed. In order to derive an execution mechanism, we introduce a transition semantics and prove it to be equivalent. Compared to existing semantics for the reactive model (e.g., Junior), these two semantics express precisely the interaction between values from the host language and reactive constructs. Moreover, the language is statically typed through a Milner type system. Compared to the library approach, we believe that the language approach leads to a safer and a more natural programming. In particular, the language provides a notion of signals with regular scope properties. Moreover, some parts of a program can be compiled as interpreted, leading to a far more efficient execution.

Section 2 illustrates the expressiveness of the language on some simple examples. A synchronous reactive calculus based on Boussinot’s model is defined in section 3. We embed this kernel inside a call-by-value ML kernel. Section 4 presents its behavioral semantics and establishes its two main properties: in a given environment, a program is determinist and always progress. Section 5 presents a transition semantics and an equivalence theorem. Section 6 presents the type system which comes as a natural extension of the ML type system of the host language. Implementation issues are addressed in section 7. In section 8, we discuss related works and conclude.

2. LANGUAGE OVERVIEW

2.1 A Short Introduction to ReactiveML

ReactiveML is built above OCAML [19] such that every OCAML program (without objects, labels and functors) is a valid program and ReactiveML code can be linked to any OCAML library. A program is a set of definitions. Definitions introduce, like in OCAML, types, values or functions. ReactiveML adds the process definition. Processes are state machines whose behavior can be executed through several instants. They are opposed to regular OCAML functions which are considered to be instantaneous. Let us consider the process hello_world that prints “hello” at the first instant and “world” at the second one (the pause statement suspends the execution until the next instant):

```ocaml
let process hello_world =
    print_string "hello;";
```

This process can be called by writing: run hello_world.

Communication between parallel processes is made by broadcasting signals. A signal can be emitted (emit), awaited (await) and we can test its presence (present). The following process emits the signal z every time x and y are synchronous.

```ocaml
let process together x y z =
    loop
        present x then present y then (emit z; pause)
    end
```

Unlike Esterel, it is impossible to react instantaneously to the absence of an event. Thus, the following program:

```ocaml
let process together x y z =
    loop
        present x then () else emit x
    end
```

Now, we can write the edge front detector, a typical construct appearing in control systems. The behavior of the process edge is to emit s_out when s_in is present and it was absent in the previous instant.

```ocaml
let process edge s_in s_out =
    loop
        present s_in then pause
        else (await immediate s_in;
            emit s_out)
    end
```

While s_in is present, the process emits no value. When s_in is absent, no value is emitted at that instant and the control passes through the else branch. At the next instant, the process waits for the presence of s_in. When s_in is present then s_out is emitted (since s_in was necessary absent at the previous instant). The immediate keywords states that s_in is taking into account even if s_in appears at the very first instant.

We now introduce the two main control structures of the language: the construction do c when s suspends the execution of a process c when the signal s is absent whereas do c until s interrupts the execution of c when s is present. We illustrate these two constructions on a suspend_resume process which control the instant where a process is executed.

We first define a process sustain parameterized by a signal s. sustain emits the signal s at every instant.

```ocaml
let process sustain s = loop emit s; pause end
```

We define now an other typical primitive. switch is a two states Moore machine which is parameterized by two signals, s_in and s_out. Its behavior is to start the emission

```ocaml
```
of s_{out} when s_{in} is emitted and to sustain this emission while s_{in} is absent. When s_{in} is emitted again, the emission of s_{out} is stopped and the process returns in its initial state.

\[
\text{let process } \text{switch } s_{\text{in}} s_{\text{out}} = \\
\text{loop} \\
\text{await immediate } s_{\text{in}} ; \\
\text{pause} ; \\
\text{do } \text{run} \ (\text{sustain } s_{\text{out}}) \text{ until } s_{\text{in}} \text{ done} \\
\]

We define now the process \text{suspend/_resume} parameterized by a signal s and a process p. This process awaits the first emission of s to start the execution of p. Then, each emission of s alternatively suspends the execution of p and resumes it. We implement this process with the parallel composition of (1) a \text{do/_when} construction that executes p only when the signal s_{active} is present and (2) the execution of a switch that controls the emission of s_{active} with the signal s.

\[
\text{let process } \text{suspend/_resume } s \ p = \\
\text{signal } s_{\text{active}} \text{ in} \\
\text{do } p \ \text{when } \text{active} \ | | \\
\text{run} \ (\text{switch } s \ \text{active})
\]

Notice that \text{suspend/_resume} is an example of a higher-order process since it takes a process p as a parameter.

\text{REACTIVEML} also provides valued signals. They can be emitted (\text{emit signal value}) or awaited to get the associated value (\text{await signal (pattern) in expression}). Different values can be emitted during an instant, it is called multi-emission. \text{REACTIVEML} adopts an original solution for that: when a valued signal is declared, we have to define how to combine values emitted during the same instant. This is achieved with the construction:

\[
\text{signal name default value gather function in expression}
\]

The behavior of multi-emission is illustrated in Fig. 1. We assume signal s declared with the default value d and the gathering function f. If values $v1$, ..., vn are emitted during an instant, then all the \text{await} receive the value v at the next instant.\(^2\) Getting the value associated to a signal is delayed\(^2\)

\[
v = (f \ vn \ldots (f \ v2 \ (f \ v1 \ d)) \ldots)
\]

\[
\text{emit } s \ v1 \\
\text{emit } s \ v2 \\
\ldots \\
\text{emit } s \ vn \\
\]

\[
\text{f} \\
\text{d} \\
\]

\[
\text{await } s(x) \text{ in } ... \\
\text{...} \\
\text{...} \\
\text{...} \\
\text{...}
\]

Figure 1: Multi-emission on signal s, combined with function f, gives the value v at the next instant.

to avoid causality problems. Indeed, as opposed to \text{ESTEREL} and following the reactive approach of Boussinot, the following program \text{await } s(x) \text{ in } \text{emit } s(x+1) \text{ is causal: the integer value } x \text{ of } s \text{ (potentially resulting from the combination of several values) is only available at the end of the instant. Thus, if } x = 42 \text{ during the current reaction, the program will emit } s(43) \text{ in the following reaction. Notice that this is different from awaiting the signal presence which executes its continuation in the same instant.}

The type of the emitted values and the type of the combination’s result can be different. This information is reported in the type of signals. If τ_1 is the type of the emitted values on a signal s and τ_2 is the one of the combination, then s has type (τ_1, τ_2) \text{event}.

If we want to define a signal s_{sum} that computes the sum of the emitted values, then we can write:

\[
\text{signal } s_{\text{sum}} \text{ default } 0 \text{ gather } (+) \text{ in } ... \\
\text{in this case, the program } \text{await } s_{\text{sum}}(x) \text{ in } \text{print_int } x \text{ awaits the first instant in which } s_{\text{sum}} \text{ is emitted and then, at the next instant, prints the sum of the values emitted. } s_{\text{sum}} \text{ has type } (\text{int, int}) \text{event}.
\]

An other very useful signal declaration is the one that collects all the values emitted during the instant which is written simply:

\[
\text{signal } s \text{ in } ... \\
\text{as a short-cut for:}
\]

\[
\text{signal } s \text{ default Multiset.empty gather Multiset.add in } ... \\
\text{Here, the default value is the empty set and the gathering function, the addition of an element in a multiset.}^3
\]

\[2\text{.2 The Sieve of Eratosthenes}

We consider the sieve of Eratosthenes as it can be found in [18] and is a classical in reactive calculus (see [8], for example). The Eratosthenes sieve is an interesting program because it combines signals, synchronous parallel composition and dynamic creation.

We first write the process integers which generates the sequence of naturals from an integer value n.

\[
\text{let rec process } \text{integers } n \ s_{\text{out}} = \\
\text{emit } s_{\text{out}} \ n ; \\
\text{pause} ; \\
\text{run} \ (\text{integers } (n+1) \ s_{\text{out}}) \\
\text{val } \text{integers} : \text{int -> (int, 'a) event -> process}
\]

It is a recursive process that is parameterized by an integer n and a signal s_{out}. Recursive calls are made through a run. We can notice that there is no instantaneous recursion because of the (pause) statement. The type of the process is inferred by the compiler.

Now, we define the process filter which removes all the multiple of some prime number. For this purpose, we define an auxiliary function not_multiple. not_multiple is a regular Ocaml function which can be used in any other Ocaml expression or reactive process.

\[
\text{let not_multiple } n \ p = \text{n mod p} < 0 \\
\text{val not_multiple : int -> int -> bool}
\]

\[3\text{In the actual implementation, emitted values are gathered in a list.}
let process filter prime s_in s_out =
 loop
 await s_in(n) in
 if not_multiple n prime then emit s_out n
 end
val filter : int -> ('a, int) event -> (int, 'a) event -> process

It is an error to write a reactive construction (such as pause)
in a regular OCaml expression and the compiler rejects it.
For example, the function let f x = pause; x is rejected.
Now, the process shift creates a new filter process
for each newly discovered prime number. We can notice
that dynamic creation is done through recursion. Therefore,
as opposed to conventional synchronous programming
languages, REACTIVEML does not ensure an execution in
bounded time and memory but this is not a surprise.

let rec process shift s_in s_out =
 emit s_out prime; (* emit a discovered prime *)
 signal s default 0 gather fun x y -> x in
 run (filter prime s_in s) || run (shift s s_out)
val shift : (int, int) event -> (int, 'a) event -> process

Finally, we define the process output which prints the
prime numbers and the main process sieve.

let process output s_in =
 loop await s_in (prime) in print_int prime end
val output : (int, int) event -> process

let process sieve =
 signal nat default 0 gather fun x y -> x in
 signal prime default 0 gather fun x y -> x in
 run (integers 2 nat) || run (shift nat prime)
 || run (output prime)
val sieve : process

The gathering functions of the signals nat and prime keep
only one of the emitted values.

2.3 Higher Order and Scope Extrusion

We present now an example where processes are emitted
on signals. We encode the construction Jr.Dynapar("add",
Jr.Halt()) of JUNIOR introduced in [2] for the programming
of Agent systems. This process receives some processes on
the signal add and executes them in parallel.

let rec process dynapar add =
 await add (p) in
 run p || run (dynapar add)

The emission of processes with free signals can lead to a
scope-extrusion problem, a classical phenomenon in process
calculi [23]. It can be illustrated on the typical example of
a process which emits a process p1 and awaits an acknowledgment
of its execution in order to execute a process p2.

let process send add p1 p2 =
 signal ack in
 emit add (process (run p1; emit ack));
 end

The expression process (run p1; emit ack) is the definition
of an anonymous process that executes p1 and emits ack. In this process, the signal ack is free when it is emitted on add. ack is a local signal and add has a bigger scope, so
ack escapes its scope.

3. A SYNCHRONOUS REACTIVE CALCULUS IN ML

We introduce a reactive kernel in which programs given
in the introduction can be translated easily,⁴ This kernel is
built above a call-by-value functional language with an ML
syntax. Expressions (e) are made of variables (x), immediate
constants (c), pairs (e,e), abstractions (λx.e), applications
(e e), local definitions (let x = e in e), recursions
(recx = e), processes (proc e), a sequence (e;e), a parallel
synchronous composition of two expressions (e|e), a loop
(loop e), a signal declaration (signal x default e gather
e1 in e) with a default value e1 and a combination function
e2, a test of presence (present e then e else e), an emission
of a valued signal (emit e e), an instantiation of a process
definition (run e), a preemption (do e until e), a suspension
(do e when e) and the access to the value of a signal
let e(x) in e.

e ::= x | c | (e,e) | λx.e | e | recx = e | proc e
 | e;e | e|e | loop e | present e then e else e
 | signal x default e gather e1 in e | emit e e
 | let x = e in e | let e(x) in e | run e
 | do e until e | do e when e

c ::= true | false | () | 0 | ... | + | - | ...

In order to separate regular ML programs from reactive
constructs, expressions (e) must verify some well formation rules
given figure 2. For this purpose, we define the predicate
k ⊢ e where e is an expression and k ∈ {0,1}. We shall
say that an expression e is instantaneous (or combinatorial)
when 0 ⊢ e can be derived whereas 1 ⊢ e means that e is re-
active (or sequential to follow classical circuit terminology).
A sequential expression is supposed to take time. The rules
are defined figure 2. A rule given in the context k ⊢ e is
a short-cut for the two rules 0 ⊢ e and 1 ⊢ e. So, for example,
it means that a variable or a constant can be used in
any context. An abstraction (λx.e) can also be used in an
instantaneous expression or in a process but its body must
bbe combinatorial. For a process definition (proc e) the body
is typed with the context 1. All the ML expressions are well
formed in any context and the expressions like run, loop, or
present can be used only in a process. We can notice
that there is no rules which conclude that an expression is well
formed only in a context 0. Hence, all the combinatorial
expressions can be used in a process.

This rules implies some choices in the design of the language.
For example, we could allow reactive expressions to

⁴For example, the definition let process f x = e1 in e2 is a
short-cut for let f = λx.proc e1 in e2 and let f x = e1 in e2
stands for let f = λx.e1 in e2.
Indeed, as opposed to Esterel and following SL [11], the absence of a signal can only be decided at the end of the current reaction. Since \(x \) is not emitted, \texttt{present} \(x \) will evaluate to false at the end of the reaction so the instruction \(() \) will be executed during the next reaction. The \texttt{await/immediate} constructs awaits for the presence of a signal. Awaiting a valued signal can be written \texttt{await} \(s(x) \) in \(e \). The access construction \texttt{let} \(s(x) \) in \(e \) awaits for the end of the instant to get the value transmitted on the signal \(s \) and starts the execution of \(e \) on the next instant. When \(s \) is not emitted, \(x \) takes the default value of \(s \).

4. BEHAVIORAL SEMANTICS

In this section we formalize the execution of a Reacti-veML program. We base it on a behavioral semantics, in the style of the \textit{logical behavioral semantics} of Esterel [5]. We define the semantics in two steps. We define the semantics of instantaneous computations (for which \(0 \vdash e \)) before giving the semantics of sequential computations. Notice that sequential does not mean imperative but it is used like in the circuit terminology. An expression is sequential when its execution can take several instants.

4.1 Instantaneous Computations

Instantaneous expressions (such that \(0 \vdash e \)) are regular ML expressions which receive a standard operational semantics. For this purpose, we define the set of values \((v) \) such that:

\[
\nu ::= c \mid n \mid (v,v) \mid \lambda x.e \mid \texttt{proc} e
\]

A value can be an immediate constant \(c \), a signal value \(n \) (belonging to a numerable set \(N \)), an abstraction \(\lambda x.e \) or a value process \(\texttt{proc} e \).

For every instantaneous expression \(e \), we define the predicate \(e \Downarrow v \) stating that \(e \) evaluates to the value \(v \). We use the notation \(e[x \leftarrow v] \) for the substitution of \(x \) by \(v \) in the expression \(e \).

\[
\begin{align*}
e1, e2 &\Downarrow v & e[x \leftarrow \texttt{rec} x = e] &\Downarrow v \\
\end{align*}
\]

Figure 2: Well formation rules

appear in a pair, and thus write:

\[
k \vdash e_1, k \vdash e_2 \quad \implies \quad k \vdash (e_1, e_2)
\]

but in this case, the expression \texttt{emit} \(s \), \texttt{pause} may have several semantics. If the evaluation order is from left to right, the signal \(s \) is emitted during the first instant while with an evaluation order from right to left the signal is emitted at the second instant. An other choice is to execute both expressions in parallel. We found it more clear to forbid the use of reactive expressions in a pair such that the evaluation order does not matter. A pair will only compose instantaneous computations.

The \texttt{await} is essentially a two-level language, separating regular ML expressions used for describing instantaneous computations and reactive constructs for describing the reactive part of a system. In this way, regular ML program shall be executed as is without any computational impact whereas reactive programs will be treated specially. Compilation issues will be discussed in section 7.

Using this kernel, we can derive other operators like the following:

\[
\begin{align*}
\texttt{emit} e &\triangleq \texttt{emit} e () \\
\texttt{present} e_1 \texttt{then} e_2 &\triangleq \texttt{present} e_1 \texttt{then} e_2 () \\
\texttt{signal} s \texttt{in} e &\triangleq \texttt{signal} s \texttt{default} \emptyset \texttt{gather} \lambda x.y.\{x \in y \} \texttt{in} e \\
\texttt{pause} &\triangleq \texttt{signal} x \texttt{in} \texttt{present} x \texttt{else} () \\
\texttt{await} &\triangleq \texttt{do} () \texttt{when} s \\
\texttt{await} s(x) \texttt{in} e &\triangleq \texttt{await} \texttt{immediate} s; \texttt{let} s(x) \texttt{in} e
\end{align*}
\]

In ReactiveML, signals are always valued. Thus, a pure signal (in the Esterel sense) is implemented with a valued signal with value \(() \). At the declaration point of a signal, the programmer must provide a default value \(e_1 \) and corresponding to the instants where the signal is not emitted and a combination function \(e_2 \). This combination function is used to combine all the values emitted during the same reaction. The construction \texttt{signal} \(s \texttt{in} p \) is a shortcut for the signal declaration that collects all the values emitted in a multiset. \(\emptyset \) stands for an empty multiset and \(\varpi \) is the union (if \(m_1 = \{v_1, \ldots, v_n\} \) and \(m_2 = \{v_1', \ldots, v_k'\} \) then \(m_1 \uplus m_2 = \{v_1, \ldots, v_n, v_1', \ldots, v_k'\} \)).

Indeed, as opposed to Esterel and following SL [11], the presence of a signal can only be decided at the end of the current reaction. Since \(x \) is not emitted, \texttt{present} \(x \) will evaluate to false at the end of the reaction so the instruction \(() \) will be executed during the next reaction. The \texttt{await/immediate} constructs awaits for the presence of a signal. Awaiting a valued signal can be written \texttt{await} \(s(x) \) in \(e \). The access construction \texttt{let} \(s(x) \) in \(e \) awaits for the end of the instant to get the value transmitted on the signal \(s \) and starts the execution of \(e \) on the next instant. When \(s \) is not emitted, \(x \) takes the default value of \(s \).

4.2 Sequential Computations

The behavioral semantics describes the reaction of an expression to some input signal. We start with some auxiliary definitions.
Let \mathcal{N}, a numerable set of names and $N_1 \subseteq \mathcal{N}$, $N_2 \subseteq \mathcal{N}$. The composition $N_1 \cdot N_2$ is the union of the two set and is defined only if $N_1 \cap N_2 = \emptyset$.

A signal environment S is a function:

$$S ::= [(d_1, g_1, m_1)/n_1, \ldots, (d_k, g_k, m_k)/n_k]$$

A name n_i is associated to a triple (d_i, g_i, m_i) where d_i stands for the default value of n_i, g_i stands for a combination function and m_i is the multiset of values emitted during a reaction. If $S(n_i) = (d_i, g_i, m_i)$, we shall write $S^+(n_i) = d_i$, $S^0(n_i) = g_i$ and $S^-(n_i) = m_i$.

We use the notation $(n \in S)$ when the signal n is present (that is, $S^+(n) \neq \emptyset$) and $(n \not\in S)$ when the signal is absent (that is, $S^-(n) = \emptyset$).

An event E is a function from names to multisets of values.

$$E ::= [m_1/n_1, \ldots, m_k/n_k]$$

We take the convention that if $n \not\in \text{Dom}(E)$ then $E(n) = \emptyset$. We define the union of two events E_1, E_2 as the event $E = E_1 \cup E_2$ such that:

$$\forall n \in \text{Dom}(E_1) \cup \text{Dom}(E_2) : E(n) = E_1(n) \cup E_2(n)$$

And $E = E_1 \cap E_2$ is the intersection of E_1 and E_2:

$$\forall n \in \text{Dom}(E_1) \cap \text{Dom}(E_2) : E(n) = E_1(n) \cap E_2(n)$$

The $+$ operator adds a value v to the multiset of values associated to a signal n in a signal environment S.

$$(S + [v/n])(n') = \begin{cases} S(n') & \text{if } n' \neq n \\ S^+(n), S^0(n), S^-(n) \cup \{v\} & \text{if } n' = n \end{cases}$$

And we define the order relation \subseteq on events and lift it to signal environments:

$$E_1 \subseteq E_2 \iff \forall n \in \text{Dom}(E_1) : E_1(n) \subseteq E_2(n)$$

$$S_1 \subseteq S_2 \iff S^n_1 \subseteq S^n_2$$

The reaction of an expression e into e' is defined in a transition relation of the form:

$$N \vdash e \xrightarrow{E, b} S \xrightarrow{e'}$$

N stands for a set of fresh signal names, S stands for a signal environment containing input, output and local signals and E is the event made of signals emitted during the reaction. b is a boolean value which is true if e' has finished.

The execution of the program is a succession of reactions (potentially infinite). The execution is finished when the termination status b is true. At each instant, the program reads some inputs (I_1) and produces some outputs (O_1) (local signals). The execution of an instant is defined by the smallest signal environment S_1 (for the order \subseteq) such that:

$$N_1 \vdash e_1 \xrightarrow{E_1, b} S_1 \xrightarrow{e'_1}$$

where:

$$O_1 \subseteq I_1 \text{ and } (I_1 \cup E_1) \subseteq S^n_1$$

$$S^n_1 \subseteq S^n_{i+1} \text{ and } S^n_0 \subseteq S^n_{i+1}$$

$$\forall n \in N_{i+1}, n \not\in \text{Dom}(S_i)$$

The smallest S denotes the signal environment in which the number of present signals is the smallest. This set contains input as well as output signals (this is the property of instantaneous broadcasting of events, that is, all the emitted signal are seen during the current reaction). The conditions $S^n_i \subseteq S^n_{i+1}$ and $S^n_0 \subseteq S^n_{i+1}$ mean that the default value and gathering function associated to a signal stay the same during several reactions. We can notice that it is only necessary to keep this information for signals which are still alive at the end of the reaction (they do appear in e_1'). The condition $\forall n \in N_{i+1}, n \not\in \text{Dom}(S_i)$ means that N_i is a set of fresh names.

The behavioral semantics is defined in figure 3. Let us comment the rules.

- The rules for the sequence illustrate the use of the termination status b. The expression e_2 is executed only if e_1 terminates instantaneously ($b = \text{true}$).
- The behavior of the parallel composition is to execute e_1 and e_2 and to terminate when both branches have terminated.
- The loop is defined by unfolding. The termination status false guaranty that there is no instantaneous loop.
- $\text{signal } x \text{ default } e_1 \text{ gather } e_2 \text{ in } e$ declare a new signal. The default value (e_1) and the gathering function (e_2) associated to x are evaluated at the signal declaration. The name x is substituted by a fresh name n in e. $\text{emit } e_1 \text{ } e_2$ evaluates e_1 into a new signal n and adds the result of the evaluation of e_2 to the multiset of emitted values on n.
- $\text{let } e(x) \text{ in } e_1$ is used to get the value associated to a signal. e must be evaluated in a signal n and v is the combination of all the values emitted on n during the instant. The function fold is defined as follows:

$$\text{fold } f (\{v_1\} \cup m) v_2 = \text{fold } f m (f v_1 v_2)$$

$$\text{fold } f \emptyset v = v$$

The reaction of the program substitutes x by v in e_1. The body is executed at the next instant. This instruction takes one instant because, in the reactive approach, all the emitted signal are known at the end of instant only.
- $\text{let } x = e_1 \text{ in } e_2$ evaluates e_1 into v and substitutes x by v in e_2. Then it evaluates e_2.
- $\text{The unit expression } () \text{ does nothing and terminates instantaneously}$.
- In a present test, if the signal is present the then branch is executed in the instant, otherwise the else branch is executed at the next instant.
- The do/when corresponds to the suspend construction of Esterel. The difference is that the suspension is not made on the presence of a signal but on the absence. This is due to the reactive approach: the reaction of a signal cannot depend instantaneously on the absence of a signal.
- The behavior of do/until is the same as the kill of SL. This is a weak preemption that takes one instant. Indeed, we cannot have strong preemption to avoid causality problems. For example with a strong preemption the following expression is not causal: $\text{do await } s \text{ until } s \text{ done; emit } s$.

\[N \vdash e_1 \frac{E_1, false}{S} e'_1 \]
\[N \vdash e_1; e_2 \frac{E_1, false}{S} e'_1; e'_2 \]
\[N \vdash e \frac{E, false}{S} e' \]
\[N \vdash \text{loop } e \frac{E, false}{S} e'; \text{loop } e \]
\[e_1 \downarrow n \quad e_2 \downarrow v \]
\[\emptyset \vdash \text{emit } e_1 e_2 \frac{\{(e/n), true\}}{S} () \]
\[\emptyset \vdash () \frac{\emptyset, true}{S} () \]
\[\emptyset \vdash \text{do } e_1 \text{ when } e \frac{\emptyset, false}{S} \text{ do } e_1 \text{ when } n \]
\[e \downarrow n \quad n \notin S \]
\[N \vdash \text{do } e_1 \text{ until } e \frac{E, b}{S} e'_1 () \]
\[e \downarrow n \quad n \notin S \]
\[N \vdash \text{do } e_1 \text{ when } e \frac{E, false}{S} \text{ do } e'_1 \text{ when } n \]
\[e \downarrow n \quad n \notin S \]
\[N \vdash \text{proc } e_1 \frac{E, b}{S} e'_1 \]
\[N \vdash \text{run } e \frac{E, b}{S} e'_1 \]

\[\text{then there exists a (unique) smallest signal environment } (\neg S) \text{ such that} \]
\[\exists E, N, b : N \vdash e \frac{E, b}{S} e' \]

The proof of this lemma is based on the following lemma which states that if an expression can react in two different environments then it can react in the intersection of these environments. This lemma is based on the absence of instantaneous reaction to the absence of a signal. Indeed contrary to ESTEREL the absence of a signal can not generate the emission of other signals. For example, in ESTEREL the following program emits s2 if s1 is absent, but in REACTIVEML the emission of s2 is delayed to the next instant such that the absence can emit signals during the instant:

LEMMMA 1. For every expression \(e \), the behavioral semantics of \(e \) is deterministic, i.e.: \[\forall e, \forall S, \forall N : \]
\[\text{if } \forall n \in \text{Dom}(S) : S^g(n) = f \text{ and } f(x, f(y, z)) = f(y, f(x, z)) \text{ and } N \vdash e \frac{E_1, b_1}{S} e'_1 \text{ and } N \vdash e \frac{E_2, b_2}{S} e'_2 \]
\[\text{then } (E_1 = E_2 \land b_1 = b_2 \land e'_1 = e'_2) \]

The associativity and commutativity of the functioning group expresses the fact that the order of emissions during an instant is not specified. It is a strong constraint. But even if it is not satisfied a program can be deterministic. For example if there is no multi-emissions the grouping function does not have to be associative and commutative.

LEMMMA 2. For every expression \(e \), let \(S \) such that
\[S = \{ S \mid \exists E, N, b : N \vdash e \frac{E, b}{S} e' \} \]

5. OPERATIONAL SEMANTICS

The previous semantics is not operational since it express what the reaction should verify and not how reactions are computed. In particular, the signal environment has to be guessed. We present now a small step semantics where the reaction build the signal environment. An instant is made into two steps. The first one is an extension of the reduction
the suspension. The body of a
is not a value to avoid inductive reductions. The last rule is
in any context. The second rule defines the execution of
the relation of head reduction (\(\rightarrow\)) figure 4.

- The let's axiom substitutes \(x\) by \(v\) in \(e\).
- The rule of the sequence remove the left branch when
this is a value.
- When the two branches of a parallel are values, the
parallel is reduced into the value (\(\)).
- The loop duplicates its body.
- The run instruction applied to a process definition ex-
cutes it.
- \(\text{emit } n\) \(v\) is reduced into (\(\) and adds \(v\) to the multiset
of values emitted on \(n\).
- The present construction can be reduced only if the
signal is present in the environment.
- The declaration of a signal \(x\) substitutes \(x\) by \(n\) in \(e\).
\(n\) is a fresh name taken in \(\mathcal{N}\). \(n\) is added to the signal
environment with the default value \(v_1\) and the gathering
function \(v_2\). Initially, the multiset of values associated
to \(n\) is empty.
- When the body of a do/while construct is a value, it
means that it reaction is finished. So, the do/while
construct can be reduced into (\(\).
- The do/when can be reduced into (\(\) only when its
body is a value and when the signal is present.

From this axioms, we define the reduction \(\rightarrow\):

\[
\begin{align*}
\frac{e/S \rightarrow e'/S'}{\Gamma(e)/S \rightarrow \Gamma(e'/S')} & \quad \text{Let's axiom} \\
\frac{e_\text{env} \parallel \langle e \rangle}{\Gamma(e)/S \rightarrow \Gamma(e)/S} & \quad \text{The loop}
\end{align*}
\]

where \(\Gamma\) is a context with one hole. With the first rule, if
an expression \(e\) reduces to \(e'\), then \(e\) can be reduced in
any context. The second rule defines the execution of
combinatorial expressions. \(e_\text{env}\) must be an expression which
is not a value to avoid infinite reductions. The last rule is
the suspension. The body of a do/when can be executed
only if the signal is present.

The contexts are defined as follow:

\[
\Gamma ::= \cdot | \text{let } x = \Gamma \text{ in } e | \Gamma ; e \\
\Gamma \mid e \mid e \mid \Gamma \mid \text{run } \Gamma | \text{emit } \Gamma \mid \text{emit } e \mid \Gamma \\
\text{let } \Gamma(x) \text{ in } e | \text{present } \Gamma \text{ then } e \text{ else } e \\
\text{signal } x \text{ default } \Gamma \text{ gather } e \text{ in } e \\
\text{signal } x \text{ default } e \text{ gather } \Gamma \text{ in } e \\
\text{do } e \text{ until } \Gamma \mid \text{do } \Gamma \text{ until } n \mid \text{do } e \text{ when } \Gamma
\]

The contexts for the parallel composition show that the eval-
uation order is not specified. In the implementation of Re-
activeML, the scheduling is fixed such that the execution
is always deterministic but this is not specified.

5.2 End of Instant’s Reaction

The reactive model is based on the absence of instantaneous
reaction to the absence of a signal such that the treat-
ment of the absence to prepare the reaction for the next
instant can only be done at the end of instant.

The reaction of an instant is stopped when there is no
more \(\rightarrow\) reductions possible. From this point, the signal en-
vironment cannot change, there is no more signal emission.
So, all the signals not emitted are consider to be absent.

The rules for the end of instant’s reaction are of the form:

\[
S \leftarrow e \rightarrow_{eoi} e'
\]

and are defined figure 5. We can notice that the rules are not given for all the expressions because
they are applied only when the program cannot be reduced
with \(\rightarrow\). Let’s comment the rules of figure 5:

- Values do not change at the end of an instant.
- The reaction of the parallel composition is the reaction of
the two branches.
- Only the left branch of the sequence reacts because the
right branch is not activated during the instant.
- If there is a present instruction, the signal is con-
sidered to be absent. So the else branch has to be
executed at the next instant.
- The let \(n(x)\) in \(e\) gets the values associated to the sig-
nal \(n\) and combines them with the function \(f\) \(g\) \(m\) \(d\) to
obtain the value \(v\). Then \(x\) is substituted by \(v\) in \(e\)
for the next instant. If \(n\) has not been emitted \(v\) is
equal to \(d\)
- The preemption occurs at the end of instant. If the
signal that control the do/while is present, the expres-
sion has to be preempted. In this case, the do/while
is rewritten into (\(\).
- For the do/when, if the signal is present then the body
must be activated at the end of instant. If the signal
is absent, the body is not activated because it has not
been activated during the instant.

5.3 Execution of a Program

The reaction of an instant is defined by the relation:

\[
e_i/S_i \Rightarrow e'_i/S'_i
\]

If we note \(I_i\) the inputs of the reaction and \(O_i\) the outputs,
the signal environment have the following properties. All the
signals that are not in \(I_i\) are initially absent \((S_i' = I_i)\). The
outputs are a subset of the signal environment at the end of
the reaction \((O_i \subset S_i')\). The default values and the gathering
functions are kept for an instant to the other \((S_i'' \subseteq S_i''+1\)
and \(S_i'' \subseteq S_i''+1\). The execution of an instant is made of two steps. The
reduction of \(e_i\) until a fix point is reached. Then there is the
end of instant’s reaction.

\[
e_i/S_i \rightarrow_\Rightarrow e'_i/S'_i \quad S_i' \rightarrow e'_i \rightarrow e''_i
\]

Where \(e/S \rightarrow e'/S'\) if \(e/S \rightarrow e'/S'\) and \(e'/S' \neq\). The relation \(\rightarrow\) is
the reflexive and transitive closure of \(\rightarrow\).
5.4 Equivalence

In this section we show the equivalence between the two semantics.

We start with the proof that if an expression \(e \) reacts into an expression \(e' \) with the small step semantics then it can react in the same signal environment with the big step semantics.

Lemma 4. For every \(S_{\text{init}} \) and \(e \) such that \(e/S_{\text{init}} \Rightarrow e'/S \) then there exists \(N, b \) such that \(N \vdash e \xrightarrow{S} \text{true} \) with \(E = S^n \setminus S_{\text{init}} \).

Proof. By induction on the number of \(\Rightarrow \) reductions in \(e/S_{\text{init}} \Rightarrow e'/S \).

- If there is no \(\Rightarrow \) reduction possible, we have to prove that the reduction \(\Rightarrow_{\text{cont}} \) is the same that the big step semantics (cf. lemma 5).
- If there is at least one \(\Rightarrow \) reduction, we have to prove that one \(\Rightarrow \) reduction followed by a big step reaction is equivalent to one big step reaction (cf. lemma 6).

The proof is based on the following properties:

Lemma 5. If \(e/S \not\Rightarrow \) and \(S \vdash e \Rightarrow_{\text{cont}} e' \) then there exists \(N, b \) such that \(N \vdash e \xrightarrow{S} \text{true} \) and \(E \) such that \(E \notin S^n \setminus S_{\text{init}} \).

Proof. The proof is made by structural induction. We have just to notice that if an expression \(e \) reacts with the big step semantics into \(e' \) and the termination status is true \((N \vdash e \xrightarrow{S} \text{true} \) and \(E \) such that \(E \notin S^n \setminus S_{\text{init}} \)) then \(e' \) behaves as \(\) (for any \(N, S' \)).

Lemma 6. If \(e/S_0 \Rightarrow e_1/S_1 \) and \(N \vdash e \xrightarrow{S} e' \) with \(S_1 \subseteq S \) then \(N \vdash e \xrightarrow{E,b,S} e' \) with \(E = E' \cup (S_1 \setminus S_0) \)

Proof. The proof is made into two parts. First we prove the same property for the \(\Rightarrow \) reduction. Then we show that this is true in any context.

Now the following lemma shows that if an expression can react with the two semantics then the signal environment and the expression obtained at the end of the reaction are the same.

Lemma 7. For every \(S_{\text{init}} \) and \(e \) such that:
- \(N_1 \vdash e \xrightarrow{E_1,b_1} e_1 \) where \(S_1 \) is the small signal environment such that \(S_{\text{init}} \subseteq S_1 \).
- \(e/S_{\text{init}} \Rightarrow e_2/S_2 \)
- \(\forall n \in \text{Dom}(S_2): S_2^n(n) = f \) and \(f(x,y,z) = f(y,x,z) \), then \(e_1 = e_2 \) and \(S_1 = S_2 \).

Proof. With lemma 4, there exists \(N_2, E_2 \) and \(b_2 \) such that \(N_2 \vdash e \xrightarrow{E_2,b_2} e_2 \) and we can notice, by construction, \(S_2 \) is the smallest signal environment such that \(S_{\text{init}} \subseteq S_2 \).

\(N_1 \) and \(N_2 \) are the sets of fresh names use during the reactions. With some renaming, we can have a set \(N \) such that \(N \vdash e \xrightarrow{E_1,b_1} e_1 \) and \(N \vdash e \xrightarrow{E_2,b_2} e_2 \).

With lemma 2, we know that there is a unique smallest signal environment in which an expression can react with the big step semantics so \(S_1 = S_2 \). Now with the determinism (lemma 1) we have \(E_1 = E_2, b_1 = b_2 \) and \(e_1 = e_2 \).

The details of the proofs are given in an extended version of the paper [21].

\[^{5}\text{It is available at www.spi.lip6.fr/~mandel/rml.}\]
6. STATIC TYPING

We provide a type system as a conservative extension of the Milner type system of ML [22]. In doing so, we have to deal with signals and in particular values which can be transmitted on signals. The type language is:

\[
\sigma ::= \forall \alpha_1, \ldots, \alpha_n. \tau \\
\tau ::= T \mid \tau \rightarrow \tau \mid \tau \times \tau \mid \text{process} \mid (\tau, \tau) \text{event} \\
T ::= \text{int} \mid \text{bool} \mid \ldots
\]

Types are separated in regular types (\(\tau\)) and type schemes (\(\sigma\)). A type (\(\tau\)) may be a basic type (\(T\)), a type variable (\(\alpha\)), a function type (\(\tau_1 \to \tau_2\)), a product type (\(\tau_1 \times \tau_2\)) or a process type (\(\text{process}\)) or the type of a signal ((\(\tau_1, \tau_2\) \text{event}). In the type of a signal, \(\tau_1\) is the type of the emitted value and \(\tau_2\) is the type of the read value (obtained after collecting all the emitted values during an instant).

A typing environment \(H\) has the following form:

\[
H ::= [x_1 : \sigma_1; \ldots; x_k : \sigma_k]
\]

The instantiation and generalization are defined like the following:

\[
\tau'[\tau_1/\alpha_1, \ldots, \tau_n/\alpha_n] \leq \forall \alpha_1, \ldots, \alpha_n. \tau \\
\text{Gen}(\tau, H) = \forall \alpha_1, \ldots, \alpha_n. \tau \\
\text{where } \{\alpha_1, \ldots, \alpha_k\} = \text{FV}(\tau) - \text{FV}(H)
\]

Expressions are typed in an initial typing environment \(TC\) such that:

\[
TC = [\text{true : bool; fst : \forall \alpha, \beta. } \alpha \times \beta \to \alpha; \ldots]
\]

Expressions are typed by asserting the judgment \(H \vdash e : \tau\) which states that the expression \(e\) has type \(\tau\) in the typing environment \(H\). The predicate is defined in figure 6.

The typing rules for ML expressions are not modified. In the typing of \(\text{signal}\), the default value (\(e_1\)) has the type of the associated value and the gathering function (\(e_2\)) is a function of an emitted value and of the combination of the previous emitted values and returns the new combination. The rule for \(\text{emit}\) checks that the first argument has a signal type, and that the first parameter of this type and the type of the value emitted are the same. \(\text{let } e_1(x) \text{ in } e\) gets the value associated to a signal. So, if \(e_1\) has type \((\tau, \tau)\) \text{event}, \(x\) must have type \(\tau'\). The instantiation \(\text{run}\) \(e\) is applied to a process. Finally, the \(\text{present, until}\) and \(\text{when}\) constructions can be applied to any signal.

The safety of the type system is proved with standard techniques [25].

7. IMPLEMENTATION, EXPERIMENTS

We followed a very pragmatic approach in the design of the language and efficiency was one of our major concerns. We built ReactiveML as an extension of a subset of OCAML (without objects, labels and functors) which can mix reactive processes and regular OCAML expressions. We choose OCAML with the following idea in mind: OCAML will provide modular data and control structures for programming the algorithmic part of the system whereas reactive constructs will provide modular control structures for describing the temporal aspect. The compilation of a ReactiveML program processes as follows: programs are first typed before being translated into OCAML code. This code can in turn be linked with other ReactiveML programs or OCAML libraries. This translation leaves unchanged regular ML expressions (only the type information is used) whereas every reactive construction is translated into a combinator defined in OCAML. Reactive programs can finally be executed by linking them with an ad-hoc OCAML library.

As opposed to classical synchronous programs, reactive programs are no more statically scheduled. Programs are rather scheduled dynamically or interpreted according to the actual dependences between instructions reading or emitting signals in the programs. The scheduling strategy we have implemented is a \textit{greedy} strategy reminiscent to a technique introduced by Hazard [6], known as one of the most efficient scheduling technique for JUNIOR. The precise description of the scheduling technique we have implemented in ReactiveML is outside the scope of this paper. Let us give an intuitive presentation.

The scheduling is based on the use of waiting queues such that an action is fired only when the signal it is waiting for is emitted. During the execution, the interpreter keeps track of the set \(W\) of actions waiting for the presence of a signal during one instant. When \(W\) is not empty at the end of the instant, pertinent informations are transfered to the next instant.

In order to implement a \textit{greedy} scheduling technique, we associate two waiting queues for every signal. One queue is used for instructions waiting only one instant (e.g., \(\text{present}\)) and the other queue is used for instructions that can wait for more than one instant (e.g., \(\text{do/when}\)). Thus, if the execution of some code is stopped on the test of a signal then the code to be executed is recorded in the appropriate waiting queue. Otherwise, its continuations are put in the set of actions to be executed in the current instant (\(C\)). Therefore the execution of an instant consists in the execution of all the ready actions of \(C\). The end of the instant is decided when \(C\) is empty. Instructions which are in the short-term waiting queues can be treated to prepare the next instant.

With this scheduling strategy, a fast access to signals (for presence information and waiting queues) is crucial. Almost all implementations of the reactive approach use dedicated hash tables during the execution for representing the signal environment. In our implementation signals are represented as regular values which are automatically garbage collected by OCAML when possible. Moreover, the presence information and associated waiting queues is done in constant time. The efficient representation of signals together with the absence of busy waiting during the execution are central in order to be able to program real-size problems.

Several applications have been written in ReactiveML, ranging from simple graphical systems to complex simulation problems. In particular, we have rewritten classical cellular automata programs written in Loft by Boussinot [10] to serve as benchmarks for testing the efficiency of our implementation. This example puts emphasis on the absence of busy waiting. Quiescent cells are stopped on the waiting of an activation signal such that only active cells are executed. Figure 7 compares the execution times given for Loft, ReactiveML and an imperative version written in OCAML. The imperative version scans the array of cells with \(\text{for}\) loops. The numbers show that ReactiveML and the Loft library written in Care both are as fast.

The main application written in ReactiveML is a simula-

[6]Through being well known in the synchronous community, this technique has unfortunately never been published so far and can only be appreciated through a careful reading of the code.
tor of a complex network routing protocol for mobile ad-hoc networks [3, 20], done in collaboration with F. Benbadis (from the Network team at LIP6, Paris). Mobile ad-hoc networks are highly dynamic networks characterized by the absence of physical infrastructure. In such networks, every node is able to move, nodes evolve concurrently and synchronize continuously with their neighbors. Due to mobility, connections in the network can change dynamically and nodes can be added or removed at any time. All these characteristics — concurrency with many communications and the need of complex data-structure — combined to the routing protocol specifications make the use of standard simulation tools (e.g., NS, OPNET) inadequate and network protocols appear to be very hard to program efficiently in conventional programming languages. The ReactiveML implementation showed that the reactive model introduced by Boussinot provides adequate programming constructs — namely synchronous parallel composition, broadcast communication and dynamic creation — which allow for a natural implementation of the hard part of the simulation. The complete implementation (with graphical interface, statistics) is about 1000 lines. Experiments show that the ReactiveML version is two order of magnitude faster than the original C version; it was able to simulate more than 1000 nodes where the original C version failed (after 200 nodes) and is faster than the ad-hoc version directly programmed in NAB [24]. A project is under way for using ReactiveML for simulating network sensors, taking into account the temporal aspects of nodes (e.g., energy consumption or failure) and to connect ReactiveML with automatic test sequences generators such as Lurette [17].

8. CONCLUSION AND RELATED WORKS

In this paper, we have presented an extension of an existing strict ML language with reactive constructs. The result language is dedicated to the implementation of complex dynamic systems as found in graphical interfaces, video games and simulation problems.

Compared to existing embedding of the reactive approach in either an imperative language [8] or an object-oriented language [2], the present work provides a complete semantics of the embedding. This allows a precise understanding of the communication between the two levels and reveals, in particular, classical problems appearing in process calculi such as scope-extrusion phenomena.

The Fair Threads [9, 28] are an extension of the reactive approach that allows to mix cooperative and preemptive scheduling. In this model several synchronous schedulers can be executed in an asynchronous way. The threads can move from a scheduler to an other dynamically or can be executed asynchronously out of all schedulers. The threads that can be executed alone must be implemented over the system threads, it limits the number of such threads and it leads to efficiency problems. Contrary to ReactiveML, in the Fair Threads, there is only top-level concurrency: we cannot write (e1 || e2 || e3), and there is no hierarchical control structures.

ULM [6] is a language dedicated to mobility. It also borrows the principles of synchronous reactive programming introduced by Boussinot and embed it inside a call-by-value λ-calculus. In ULM, references are encoded like signals: accessing a reference which is not local is delayed until it becomes present. We did not address mobility issues and thus, accessing a reference is instantaneous. In ReactiveML, synchronization can only be done through the use of a signal and reactive construct must appear in particular places of the program. In comparison, ULM allows to insert reactive constructs (e.g., pause) anywhere in an expression. As
a consequence, some overhead is imposed on the execution on regular ML expressions. Indeed, reactive code is transformed into continuation-passing style by CPS transformation, whereas OCAML code does not have to be modified. We know that ML code cannot be interrupted, so we do not have to introduce some mechanism to save the execution context.

CONCURRENTML [27] is a language that supports concurrent programming and functional programming. As opposed to REACTIVEML, it is asynchronous. The communication between processes is made by communication channels or shared memory. To control concurrent access to the memory, CONCURRENTML uses semaphores, mutex locks and condition variables, whereas in REACTIVEML we do not have to use them because instantaneous actions are atomic.

FUNCTIONAL REACTIVE PROGRAMMING [29] and **LUCID SYNCHRONE** [14] combine reactive and functional programming. Compared to REACTIVEML, they are based on a data flow approach which leads to a very different style of programming.

The language is still young and several extensions can be considered. One of them concerns efficient implementation techniques in order to use REACTIVEML for programming real-size simulation problems and to be a convincing alternative to traditional methods. For example, the recognition of subparts of a reactive program which can be compiled (that is, statically scheduled) is still open. Whereas causality inconsistencies are eliminated in the model of Boussinot, the scope extrusion phenomena (which is absent in existing synchronous languages) make this compilation difficult and calls for new program analysis.

9. REFERENCES

