
N-Synchronous Kahn Networks
A Relaxed Model of Synchrony for Real-Time Systems

Albert Cohen 1

Albert.Cohen@inria.fr

Marc Duranton 3

Marc.Duranton@philips.com

Christine Eisenbeis 1

Christine.Eisenbeis@inria.fr

Claire Pagetti 1,4

Claire.Pagetti@cert.fr

Florence Plateau 2

Florence.Plateau@lri.fr

Marc Pouzet 2

Marc.Pouzet@lri.fr

1 ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud 11 University, France
2 LRI, Paris-Sud 11 University, France

3 Philips Research Laboratories, Eindhoven, The Netherlands
4 CERT, ONERA, Toulouse, France

Abstract
The design of high-performance stream-processing systems is a
fast growing domain, driven by markets such like high-end TV,
gaming, 3D animation and medical imaging. It is also a surprisingly
demanding task, with respect to the algorithmic and conceptual
simplicity of streaming applications. It needs the close cooperation
between numerical analysts, parallel programming experts, real-
time control experts and computer architects, and incurs a very high
level of quality insurance and optimization.

In search for improved productivity, we propose a programming
model and language dedicated to high-performance stream process-
ing. This language builds on the synchronous programming model
and on domain knowledge — the periodic evolution of streams
— to allow correct-by-construction properties to be proven by the
compiler. These properties include resource requirements and de-
lays between input and output streams. Automating this task avoids
tedious and error-prone engineering, due to the combinatorics of
the composition of filters with multiple data rates and formats. Cor-
rectness of the implementation is also difficult to assess with tradi-
tional (asynchronous, simulation-based) approaches. This language
is thus provided with a relaxed notion of synchronous composition,
called n-synchrony: two processes are n-synchronous if they can
communicate in the ordinary (0-)synchronous model with a FIFO
buffer of size n.

Technically, we extend a core synchronous data-flow language
with a notion of periodic clocks, and design a relaxed clock cal-
culus (a type system for clocks) to allow non strictly synchronous
processes to be composed or correlated. This relaxation is associ-
ated with two sub-typing rules in the clock calculus. Delay, buffer
insertion and control code for these buffers are automatically in-
ferred from the clock types through a systematic transformation
into a standard synchronous program. We formally define the se-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

mantics of the language and prove the soundness and completeness
of its clock calculus and synchronization transformation. Finally,
the language is compared with existing formalisms.

1. Introduction
The rapid evolution of embedded system technology, favored by
Moore’s law and standards, is increasingly blurring the barriers be-
tween the design of safety-critical, real-time and high-performance
systems. A good example is the domain of high-end video appli-
cations, where tera-operations per second (on pixel components) in
hard real-time will soon be common in low-power devices.

Unfortunately, general-purpose architectures and compilers are
not suitable for the design of real-time and high-performance (mas-
sively parallel) and low-power and programmable system-on-chip
[9]. Achieving a high compute density and still preserving pro-
grammability is a challenge for the choice of an appropriate archi-
tecture, programming language and compiler. Typically, thousands
of operations per cycle must be sustained on chip, exploiting mul-
tiple levels of parallelism in the compute kernel while enforcing
strong real-time properties.

Synchronous Languages Can Help To address these challenges,
we studied the synchronous model of computation [2] which al-
lows for the generation of custom, parallel hardware and software
systems with correct-by-construction structural properties, includ-
ing real-time and resource constraints. This model met industrial
success for safety-critical, reactive systems, through languages like
SIGNAL [3], LUSTRE (SCADE) [17] and ESTEREL [4].

To enforce real-time and resources properties, synchronous lan-
guages assume a common clock for all registers, and an overall pre-
dictable execution layer where communications and computations
can be proven to take less than a (physical or logical) clock cycle.
Due to wire delays, a massively parallel system-on-chip has to be
divided into multiple, asynchronous clock domains: the so called
Globally Asynchronous Locally Synchronous (GALS) model [10].
This has a strong impact on the formalization of synchronous exe-
cution itself and on the associated compilation strategies [19].

Due to the complexity of high-performance applications and to
the intrinsic combinatorics of synchronous execution, our earlier
work [11] showed that multiple clock domains have to be consid-
ered at the application level as well. This is the case for mod-
ular designs with separate compilation phases, and for a single

system with multiple input/output associated with different real-
time clocks (e.g., video streaming). It is thus necessary to com-
pose independently scheduled processes. Kahn Process Networks
(KPN) [18] can accommodate for such a composition, compen-
sating for the local asynchrony through unbounded blocking FIFO
buffers. But allowing a global synchronous execution imposes ad-
ditional constraints on the composition. We introduce the con-
cept of n-synchronous clocks to formalize these concepts and con-
straints. This concept describes naturally the semantics of KPN
with bounded, statically computable buffer sizes. This extension
allows the modular composition of independently scheduled com-
ponents with multiple periodic clocks satisfying a flow preserva-
tion equation, through the automatic inference of bounded delays
and FIFO buffers.

Main Contributions More technically, we define a relaxed clock-
equivalence principle, called n-synchrony. A given clock ck1 is n-
synchronizable with another clock ck2 if there exists a data-flow
(causality) preserving way of making ck1 synchronous with ck2
applying a constant delay to ck2 and inserting an intermediate size-
n FIFO buffer. This principle is currently restricted to periodic
clocks defined as periodic infinite binary words. This is different
and independent from retiming [20], since neither ck1 nor ck2
are modified (besides the optional insertion of a constant delay);
schedule choices associated with ck1 and ck2 are not impacted by
the synchronization process.

We also define a relaxed synchronous functional programming
language whose clock calculus accepts n-synchronous composition
of operators. To this end, a type system underlying a strictly syn-
chronous clock calculus is extended with two subtyping rules. Type
inference follows an ad-hoc but complete procedure.

We show that every n-synchronous program can be transformed
into a synchronous one (0-synchronous), replacing bounded buffers
by some synchronous code.

Paper Outline The structure of the paper is the following. In Sec-
tion 2, we motivate the n-synchronous model through the presenta-
tion of a simple high-performance video application. Section 3 for-
malizes the concepts of periodic clocks and synchronizability. Sec-
tion 4 is our main contribution: starting from a core synchronous
language a la LUSTRE, it presents an associated calculus on pe-
riodic clocks and extends this calculus to combine streams with
n-synchronizable clocks. Section 5 describes the semantics of n-
synchronous process composition through translation to a strictly
synchronous program, by automatically inserting buffers with min-
imal size. Section 6 discusses related work at the frontier between
synchronous and asynchronous systems. We conclude in Section 7.

2. Motivation
Although this work may contribute to the design of a wide range of
embedded systems, we are primarily driven by video stream pro-
cessing for high-definition TV [16]. The main algorithms deal with
picture scaling, picture composition (picture-in-picture) and quality
enhancement (including picture rate up-conversions; converting the
frame rate of the displayed video, de-interlacing flat panel displays,
sharpness improvement, color enhancement, etc.). Processing re-
quires considerable resources and involves a variety of pipelined
algorithms on multidimensional streams.

stripe

frame

hf

HD input

vf

SD output

vf working sethf working set

reorder

Figure 1. The downscaler

These applications involve a set of scalers that resize images
in real-time. Our running example is a classical downscaler [9],
depicted in Figure 1. It converts a high definition (HD) video signal,
1920×1080 pixels per frame, into a standard definition (SD) output
for TV screen, that is 720×480:1

1. A horizontal filter, hf, reduces the number of pixels in a line
from 1920 down to 720 by interpolating packets of 6 pixels.

2. A reordering module, reorder, stores 6 lines of 720 pixels.

3. A vertical filter, vf, reduces the number of lines in a frame from
1080 down to 480 by interpolating packets of 6 pixels.

The processing of a given frame involves a constant number of
operations on this frame only. A design tool is thus expected to
automatically produce an efficient code for an embedded architec-
ture, to check that real-time constraints are met, and to optimize the
memory footprint of intermediate data and of the control code. The
embedded system designer is looking for a programming language
that offers precisely these features, and more precisely, which stat-
ically guarantees four important properties:

1. a proof that, according to worst-case execution time hypotheses,
the frame and pixel rate will be sustained;

2. an evaluation of the delay introduced by the downscaler in the
video processing chain, i.e., the delay before the output process
starts receiving pixels;

3. a proof that the system has bounded memory requirements;

4. an evaluation of memory requirements, to store data within the
processes, and to buffer the stream produced by the vertical
filter in front of the output process.

In theory, synchronous languages are well suited to the implemen-
tation of the downscaler, enforcing bounded resource requirements
and real-time execution. Yet, we show that existing synchronous
languages make such an implementation tedious and error-prone.

2.1 The Need to Capture Periodic Execution

Technically, the scaling algorithm produces its t-th output (ot) by
interpolating 6 consecutive pixels (p j) weighted by coefficients
given in a predetermined matrix (example of a 64 phases, 6-taps
polyphase filter [9]):

ot =
5

∑
k=0

pt×1920/720+k × coef(k,t mod 64).

let clock c = ok where rec
cnt = 1 fby (if (cnt = 8) then 1 else cnt + 1)
and ok = (cnt = 1) or (cnt = 3) or (cnt = 6)

let node hf p = o where rec
o2 = 0 fby p and o3 = 0 fby o2 and o4 = 0 fby o3
and o5 = 0 fby o4 and o6 = 0 fby o5
and o = f (p,o2,o3,o4,o5,o6) when c

val hf : int => int
val hf :: ’a -> ’a on c

Figure 2. Synchronous implementation of hf

Such filtering functions can easily be programmed in a strictly
synchronous data-flow language such as LUSTRE or LUCID SYN-
CHRONE. Figure 2 shows a first version of the horizontal filter im-
plemented in LUCID SYNCHRONE.

1 Here we only consider the active pixels for the ATSC or BS-Digital High
Definition standards.

At every clock tick, the hf function computes the interpolation
of six consecutive pixels of the input p (0 fby p stands for the
previous value of p initialised with value 0). The implementation
of f is out of the scope of this paper; we will assume it sums its
6 arguments. The horizontal filter must match the production of 3
pixels for 8 input pixels. Moreover, the signal processing algorithm
defines precisely the time when every pixel is emitted: the t-th
output appears at the t × 1920/720-th input. It can be factored
in a periodic behavior of size 8, introducing an auxiliary boolean
stream c used as a clock to sample the output of the horizontal
filter. The let clock construction identifies syntactically these
particular boolean streams. Here is a possible execution diagram.

c true false true false false true false ...
p 3 4 7 5 6 10 12 ...
o2 0 3 4 7 5 6 10 ...
o3 0 0 3 4 7 5 6 ...
o4 0 0 0 3 4 7 5 ...
o5 0 0 0 0 3 4 7 ...
o6 0 0 0 0 0 3 4 ...
o 3 14 35 ...

In the synchronous data-flow model, each variable/expression
is characterized both by its stream of values and by its clock,
relative to a global clock, called the base clock of the system.
The clock of any expression e is an infinite boolean stream where
false stands for the absence and true for the presence. E.g., if
x is an integer stream variable, then x+1 and x have the same
clock. A synchronous process transforms an input clock into an
output clock. This transformation is encoded in the process clock
signature or clock type. Clocks signatures are relative to some clock
variables. E.g., the clock signature of hf is ∀α.α → α on c (printed
’a -> ’a on c) meaning that for any clock α, if input p has clock
α, then the output is on a subclock α on c defined by the instant
where the boolean condition c is true.

In synchronous languages, clock conditions such as c can be
arbitrarily complex boolean expressions, meaning that compilers
make no hypothesis on them. Yet the applications we consider have
a periodic behavior; thus a first simplification consists in enhancing
the syntax and semantics with the notion of periodic clocks.

2.2 The Need for a Relaxed Approach

Real-time constraints on the filters are deduced from the frame rate:
the input and output processes enforce that frames are sent and
received at 30Hz. This means that HD pixels arrive at 30×1920×
1080 = 62,208,000Hz — called the HD pixel clock — and SD
pixels at 30× 720× 480 = 10,368,000Hz — called the SD pixel
clock — i.e., 6 times slower. From these numbers, the designer
would like to know that the delay before seeing the first output pixel
is actually 12000 cycles of the HD pixel clock, i.e., 192.915µs, and
that the minimal size of the buffer between the vertical filter and
output process is 880 pixels.

Synchronous languages typically offer such guarantees and
static evaluations by forcing the programmer to make explicit the
synchronous execution of the application. Nevertheless, the use of
any synchronous language requires the designer to explicitly imple-
ment a synchronous code to buffer the outgoing pixels at the proper
output rate and nothing helps him/her to automatically compute
the values 12000 and 880. Unfortunately, pixels are produced by
the downscaler following a periodic but complex event clock. The
synchronous code for the buffer handles the storage of each pend-
ing write from the vertical filter into a dedicated register, until the
time for the output process to fetch this pixel is reached. Forcing
the programmer to provide the synchronous buffer code is thus te-
dious and breaks modular composition. This scheme is even more
complex if we include blanking periods [16].

In the following, we design a language that makes the computa-
tion of process latencies and buffer sizes automatic, using explicit
periodic clocks.

3. Ultimately Periodic Clocks
This section introduces the formalism for reasoning about periodic
clocks of infinite data streams.

3.1 Definitions and Notations

Infinite binary words are words of (0+1)ω . For the sake of simplic-
ity, we will assume thereafter that every infinite binary word has an
infinite number of 1s.

We are mostly interested in a subset of these words, called
infinite ultimately periodic binary words or simply infinite periodic
binary words, defined by the following grammar:

w ::= u(v)
u ::= ε | 0 | 1 | 0.u | 1.u
v ::= 0 | 1 | 0.v | 1.v

where (v) = limn vn denotes the infinite repetition of period v,
and u is a prefix of w. Let Q2 denote the set of infinite periodic
binary words; it coincides with the set of rational diadic numbers
[25]. Since we always consider infinite periodic binary words with
an infinite number of 1s, the period v contains at least one 1.
This corresponds to removing the integer numbers from Q2 and
considering only Q2 −N.

Let |w| denote the length of w. Let |w|1 denote the number of 1s
in w and |w|0 the number of 0s in w. Let w[n] denote the n-th letter
of w for n ∈ N and w[1..n] the prefix of length n of w.

There are an infinite number of representations for an infinite
periodic binary word. Indeed, (0101) is equal to (01) and to 01(01).
Fortunately, there exists a normal representation: it is the unique
representation of the form u(v) with the shortest prefix and with
the shortest period.

Let [w]p denote the position of the p-th 1 in w. We have [1.w]1 =
1, [1.w]p = [w]p−1 + 1 if p > 1, and [0.w]p = [w]p + 1. Finally, let
us define the precedence relation � by

w1 � w2 ⇐⇒ ∀p ≥ 1, [w1]p ≤ [w2]p.

E.g., (10) � (01) � 0(01) � (001). This relation is a partial order
on infinite binary words. It abstracts the causality relation on stream
computations, e.g., to check that outputs are produced before con-
sumers request them as inputs.

We can also define the upper bound wtw′ and lower bound
wuw′ of two infinite binary words with

∀p ≥ 1, [wtw′]p = max([w]p, [w
′]p)

∀p ≥ 1, [wuw′]p = min([w]p, [w
′]p).

E.g., 1(10)t (01) = (01) and 1(10)u (01) = 1(10); (1001) t
(0110) = (01) and (1001)u (0110) = (10).

PROPOSITION 1. The set
(

(0 + 1)ω,�,t,u,⊥ = (1),> = (0)
)

is
a complete lattice.

Notice > is indeed (0) since [(0)]p = ∞ for all p > 0.2

Eventually, the following remark allows most operations on
infinite periodic binary words to be computed on finite words.

REMARK 1. Considering two infinite periodic binary words, w =
u(v) and w′ = u′(v′), one may transform these expressions into
equivalent representatives a(b) and a′(b′) satisfying one of the
following conditions.

2 Yet the restriction of this lattice to Q2 is not complete, neither upwards
nor downwards, even within Q2 −N.

1. One may choose a, a′, b, and b′ with |a| = |a′| = max(|u|, |u′|)
and |b| = |b′| = lcm(|v|, |v′|) where lcm stands for least com-
mon multiple. Indeed, assuming |u| ≤ |u′|, p = |u′|−|u| and n =

lcm(|v|, |v′|): w = u.v[1] . . .v[p].
(

(v[p + 1] . . .v[p + |v|])n/|v|
)

and w′ = u′(v′n/|v′ |). E.g., words 010(001100) and 10001(10)
can be rewritten into 01000(110000) and 10001(101010).

2. Likewise, one may obtain prefixes and suffixes with the same
number of 1s: w = a(b) and w′ = a′(b′) with |a|1 = |a′|1 =
max(|u|1, |u′|1) and |b|1 = |b′|1 = lcm(|v|1, |v′|1). Indeed, sup-
pose |u|1 ≤ |u′|1, |v|1 ≤ |v′|1, p = |u′|1 −|u|1, r = [v]p, and n =

lcm(|v|1, |v′|1): w = u.v[1] . . .v[r].
(

(v[r + 1] . . .v[r + |v|])n/|v|1
)

and w′ = u′.(v′n/|v′ |1). E.g., the pair of words 010(001100) and
10001(10) become 010001(100001) and 10001(1010).

3. Finally, one may write w = a(b) and w′ = a′(b′) with |a|1 =
|a′| and |b|1 = |b′|. Indeed, suppose |u|1 ≤ |u′|, |v|1 ≤ |v′|,
p = |u′|1 − |u|, r = [v]p, and n = lcm(|v|1, |v′|): w = u.v[1] . . .

v[r].
(

(v[r + 1] . . .v[r + |v|])n/|v|1
)

and w′ = u′(v′n/|v′|). E.g., the
pair of words 010(001100) and 10001(10) can be rewritten into
0100011000011(000011) and 10001(10).

3.2 Clock Sampling and Periodic Clocks

A clock for infinite streams can be an infinite binary word or a
composition of those, as defined by the following grammar:

c ::= w | c on w, w ∈ {0,1}ω.

If c is a clock and w is an infinite binary word, then c on w
denotes a subsampled clock of c, where w is itself set on clock c. In
other words, c on w is the clock obtained in advancing in clock w
at the pace of clock c. E.g., (01) on (101) = (010101) on (101) =
(010001).

c 0 1 0 1 0 1 0 1 0 1 ... (01)
w 1 0 1 1 0 ... (101)
c on w 0 1 0 0 0 1 0 1 0 0 ... (010001)

Formally, on is inductively defined as follows:

0.w on w′ = 0.(w on w′)
1.w on 0.w′ = 0.(w on w′)
1.w on 1.w′ = 1.(w on w′)

Clearly, the on operator is not commutative.

PROPOSITION 2. Given two infinite binary words w and w′, the
infinite binary word w on w′ satisfies the equation [w on w′]p =
[w][w′]p

for all p ≥ 1.

Proof. This is proven by induction, observing that w′ is traversed
at the rate of 1s in w. [w on w′]1 is associated with the q-th 1
of w such that q is the rank of the first 1 in w′, i.e., q = [w′]1.
Assuming the equation is true for p, the same argument proves that
[w on w′]p+1 = [w][w′]p+q where q is the distance to the next 1 in w′,
i.e., q = [w′]p+1 − [w′]p, which concludes the proof. �

There is an important corollary:

PROPOSITION 3 (on-associativity). Let w1, w2 and w3 be three
infinite binary words.

Then w1 on (w2 on w3) = (w1 on w2) on w3.

Indeed [w1 on w2][w3]p
= [w1][w2][w3]p

= [w1][w2 on w3]p
.

The following properties also derive from Proposition 2:

PROPOSITION 4 (on-distributivity). the on operator is distribu-
tive with respect to the lattice operations u and t.

PROPOSITION 5 (on-monotonicity). For any given infinite binary
word w, functions x 7→ x on w and x 7→ w on x are monotone. The
latter is also injective but not the former.3

Using infinite binary words, we can exhibit an interesting set
of clocks that we call ultimately periodic clocks or simply periodic
clocks. A periodic clock is a clock whose stream is periodic. Peri-
odic clocks are defined as follows:

c ::= w | c on w, w ∈ Q2.

In the case of these periodic clocks, proposition 2 becomes an
algorithm, allowing to effectively compute the result of c on w.
Let us consider two infinite periodic binary words w1 = u1(v1)
and w2 = u2(v2) with |u1|1 = |u2| and |v1|1 = |v2|, this is possible
because of Remark 1. Then w3 = w1 on w2 = u3(v3) is computed
by |u3|= |u1|, |u3|1 = |u2|1, [u3]p = [u1][u2]p

and |v3|= |v1|, |v3|1 =

|v2|1, [v3]p = [v1][v2]p
.

Likewise, periodic clocks are closed for the pointwise exten-
sions of boolean operators or, not, and &.

3.3 Synchronizability

Motivated by the downscaler example, we introduce an equivalence
relation to characterize the concept of resynchronization of infinite
binary words (not necessarily periodic).

DEFINITION 1 (synchronizable words). We say that infinite bi-
nary words w and w′ are synchronizable, and we write w ./ w′,
iff there exists d,d′ ∈ N such that w′ � 0dw′ and w′ � 0d′

w. It
means that we can delay w by d′ ticks so that the 1s of w′ occur
before the 1s of w, and reciprocally.

It means that the n-th 1 of w is at a bounded distance from the
n-th 1 of w′. E.g., 1(10) and (01) are synchronizable; 11(0) and
(0) are not synchronizable; (010) and (10) are not synchronizable
since there are asymptotically too many reads or writes.

In the case of periodic clocks, the notion of synchronizability is
computable.

PROPOSITION 6. Two infinite periodic binary words w = u(v) and
w′ = u′(v′) are synchronizable, denoted by w ./ w′, iff they have the
same rate (a.k.a. throughput)

|v|1/|v| = |v′|1/|v
′|.

In other words, w ./ w′ means w and w′ have the same fraction of
1s in (v) and (v′), hence the same asymptotic production rate. It
also means the n-th 1 of w is at a bounded distance from the n-th 1
of w′.

Proof. From Remark 1, consider w1 = u(v) and w2 = u′(v′) with
|u| = |u′| and |v| = |v′|. w1 = u(v) ./ w2 = u′(v′) iff there exists
d,d′ s.t. ∀w ≤ w2[1..|u|+ |v|+ d], w′ ≤ 0d .w2[1..|u|+ |v|]∧ |w|=
|w′| =⇒ |w|1 ≥ |w′|1 and ∀w≤ 0d′

w1[1..|u|+ |v|], w′ ≤w2[1..|u|+
|v|+ d′]∧ |w| = |w′| =⇒ |w|1 ≥ |w′|1. It is sufficient to cover the
prefixes of finite length ≤ |u|+ |v|+max(d +d′).

Case |v′|1 = 0 is straightforward. Let us assume that |v|1/|v′|1 >
|v|/|v′| (the case |v|1/|v′|1 < |v|/|v′| is symmetric). Because of
Remark 1, it means |v|1/|v′|1 > 1. Then it entails that (v) and
(v′) are not synchronizable so as w1 and w2. Let us denote a =
|v|1 − |v′|1, then vn has na 1 more than v′n. Thus vn � 0 f (n)v′n

where |vn| ≥ f (n) ≥ na and f (n) is minimal in the sense that
vn 6� 0 f (n)−1v′n. It entails that (v) � 0lim f (n)(v′) and thus there are
not synchronizable.

Conversely, assume |v|1/|v′|1 = |v|/|v′|. Since u and u′ are fi-
nite, we have 1ru � 0pu′ and 1ku′ � 0qu with r = max(0, |u′|1 −

3 E.g., (1001) on (10) = (1100) on (10).

|u|1), k = max(0, |u|1 − |u′|1). (v), p = min{l | l ≤ |u|+ r∧ 1ru �
0lu′} and q = min{l | l ≤ |u′|+∧1ku′ � 0lu}. (v′) are also synchro-
nizable, thus (v)� 0m(v′) and (v′)� 0n(v). Then w1 � 0p+m+r|v|w2
and w2 � 0q+n+k|v′ |w1. There is an additional delay of r|v| since
each period v holds at least one 1. �

4. The Programming Language
This section introduces a simple data-flow functional language
on infinite data streams. The semantics of this language has a
strictly synchronous core, enforced by a so-called clock calculus,
a type system to reject non synchronous programs, following [8,
13]. Our main contribution is to extend this core with a relaxed
interpretation of synchrony. This is obtained by extending the clock
calculus so as to accept the composition of streams whose clocks
are “almost equal”. These program can in turn be automatically
transformed into conventional synchronous programs by inserting
buffer code at proper places.

4.1 A Synchronous Data-Flow Kernel

We introduce a core data-flow language on infinite streams. Its syn-
tax derives from [12]. Expressions (e) are made of constant streams
(i), variables (x), pairs (e,e), local definitions of functions or stream
variables (e where x = e),4 applications (e(e)), initialized delays
(e fby e) and the following sampling functions: e when pe is the
sampled stream of e on the periodic clock given by the value of pe,
and merge is the combination operator of complementary streams
(with opposite periodic clocks) in order to form a longer stream;
fst and snd are the classical access functions. As a syntactic sugar,
e whenot pe is the sampled stream of e on the negation of the peri-
odic clock pe.

A program is made of a sequence of declarations of stream
functions (let node f x = e) and periodic clocks (period p =
pe). E.g., period half = (01) defines the half periodic clock (the
alternating bit sequence) and this clock can be used again to build
an other one like period quarter = half on half . Periodic clocks
can be combined with boolean operators. Note that clocks are static
expressions which can be simplified at compile time into the normal
form u(v) of infinite periodic binary words.

e ::= x | i | (e,e) | e where x = e | e(e) | op(e,e)
| e fby e | e when pe | merge pe e e
| fst e | snd e | e at e

d ::= let node f x = e | d;d
dp ::= period p = pe | dp;dp
pe ::= p | w | pe on pe | not pe | pe or pe | pe & pe

We can easily program the downscaler in this language, as
shown in Figure 3. The main function consists in composing the
various filtering functions. Notation o at (i when (100000)) is
a constraint given by the programmer; it states that the output pixel
o must be produced at some clock α on (100000), thus 6 times
slower than the input clock α.

let period c = (10100100)
let node hf p = o where rec (...)
and o = f (p,o2,o3,o4,o5,o6) when c

let node main i = o at (i when (100000)) where rec
t = hf i
and (i1,i2,i3,i4,i5,i6) = reorder t
and o = vf (i1,i2,i3,i4,i5,i6)

Figure 3. Synchronous code using periodic clock

4 Corresponds to let x = e in e in ML.

4.2 Synchronous Semantics

The (synchronous) denotational semantics of our core data-flow
language is built on classical theory of synchronous languages [12].
Up to syntactic details, this is essentially the core LUSTRE lan-
guage. Nonetheless, to ease the presentation, we have restricted
sampling operations to apply to periodic clocks only (whereas any
boolean sequence can be used to sample a stream in existing syn-
chronous languages). Moreover, these periodic clocks are defined
globally as constant values. These period expressions can in turn be
automatically transformed into plain synchronous code or circuits
(i.e., expressions from e) [25].

This kernel can be statically typed with straightforward typing
rules [12]; we will only consider clock types in the following.
In the same way, we do not consider causality and initialization
problems nor the rejection of recursive stream functions. These
classical analyses apply directly to our core language and they are
orthogonal to synchrony.

The compilation process takes two steps.

1. A clock calculus computes all constraints satisfied by every
clock, as generated by a specific type system. These constraints
are resolved through a unification procedure, to infer a periodic
clock for each expression in the program. If there is no solution,
we prove that some expressions do not have a periodic execu-
tion consistent with the rest of the program: the program is not
synchronous, and therefore is rejected.

2. If a solution is found, the code generation step transforms the
data-flow program into an imperative one (executable, OCaml,
etc.) where all processes are synchronously executed according
to their actual clock.

4.2.1 Clock Calculus

We propose a type system to generate the clock constraints. The
goal of the clock calculus is to produce judgments of the form
P,H ` e : ct meaning that “the expression e has clock type ct in
the environments of periods P and the environment H”.

Clock types5 are split into two categories, clock schemes (σ)
quantified over a set of clock variables (α) and unquantified clock
types (ct). A clock may be a functional clock (ct → ct), a product
(ct × ct) or a stream clock (ck). A stream clock may be a sampled
clock (ck on pe) or a clock variable (α).

σ ::= ∀α1, ...,αm.ct
ct ::= ct → ct | ct × ct | ck
ck ::= ck on pe | α
H ::= [x1 : σ1, ...,xm : σm]
P ::= [p1 : pe1, ..., pn : pen]

The distinction between clock types (ct) and stream clock types
(ck) should not surprise the reader. Indeed, whereas Kahn networks
do not have clock types [18], there is a clear distinction between
a channel (which receives some clock type ck), a stream function
(which receives some functional clock type ct → ct ′) and a pair
expression (which receives some clock type ct × ct ′ meaning that
the two expressions do not necessarily have synchronized values).

Clocks may be instantiated and generalized. This is a key fea-
ture, to achieve modularity of the analysis. E.g, the horizontal fil-
ter of the downscaler has clock scheme ∀α.α → α on (10100100);
this means that, if the input has any clock α, then the output has
some clock α on (10100100). This clock type can in turn be instan-
tiated in several ways, replacing α by more precise stream clock
type (e.g., some sampled clock α′ on (01)).

5 We shall sometimes say clock instead of clock type when clear from
context.

The rules for instantiating and generalizing a clock type are
given below. FV(ct) denotes the set of free clock variables in ct.

ct ′[~ck/~α] ≤ ∀~α.ct ′

fgen(ct) = ∀α1, ...,αm.ct where α1, ...,αm = FV(ct)

It states that a clock scheme can be instantiated by replacing
variables with clock expressions; fgen(ct) returns a fully general-
ized clock type where every variable in ct is quantified universally.

When defining periods, we must take care that identifiers are
already defined. If P is a period environment (i.e., a function from
period names to periods), we shall simply write P ` pe when every
free name appearing in pe is defined in P.

The clocking rules defining the predicate P,H ` e : ct are now
given in Figure 4 and are discussed below.

(IM) P,H ` i : ck

ct ≤ H(x)
(INST)

P,H ` x : ct

P,H ` e1 : ck P,H ` e2 : ck
(OP)

P,H ` op(e1,e2) : ck

P,H ` e1 : ck P,H ` e2 : ck
(FBY)

P,H ` e1 fby e2 : ck

P,H ` e : ck P ` pe
(WHEN)

P,H ` e when pe : ck on pe

P ` pe H ` e1 : ck on pe P,H ` e2 : ck on not pe
(MERGE)

P,H ` merge pe e1 e2 : ck

P,H ` e1 : ct2 → ct1 P,H ` e2 : ct2(APP)

P,H ` e1(e2) : ct1
P,H,x : ct ` e1 : ct1 P, H,x : ct ` e2 : ct2(WHERE)

P,H ` e2 where x = e1 : ct2
P,H ` e1 : ct1 P,H ` e2 : ct2(PAIR)

P,H ` (e1,e2) : ct1 × ct2
P,H ` e : ct1 × ct2(FST)

P,H ` fst e : ct1
P,H ` e : ct1 × ct2(SND)

P,H ` snd e : ct2
P,H ` e1 : ck P,H ` e2 : ck

(CTR)

P,H ` e2 at e1 : ck

P, H,x : ct1 ` e : ct2(NODE)

H ` let node f x = e : [f : fgen(ct1 → ct2)]

P ` pe
(PERIOD)

P ` period p = pe : [p : pe]

H ` dh1 : H1 H,H1 ` dh2 : H2(DEFH)

H ` dh1;dh2 : H1,H2

P ` d p1 : P1 P,P1 ` d p2 : P2(DEFP)

P ` d p1;d p2 : P1,P2

Figure 4. The core clock calculus

• A constant stream may have any clock ck (rule (IM)).

• The clock of an identifier can be instantiated (rule (INST)).

• The inputs of imported primitives must all be on the same clock
(rule (OP)).

• Rule (FBY) states that the clock of e1 fby e2 is the one of e1 and
e2 (they must be identical).

• Rule (WHEN) states that the clock of e when pe is a sub-clock of
the clock of e and we write it ck on pe. In doing so, we must
check that pe is a valid periodic clock.

• Rule (MERGE) states an expression merge pe e1 e2 is well
clocked and on clock ck if e1 is on clock ck on pe and e2 is
on clock the complementary clock ck on not pe.

• Rule (APP) is the classical typing rule of ML type systems.

• Rule (WHERE) is the rule for recursive definitions.

• Rules (PAIR), (FST) and (SND) are the rules for pairs.

• Rule (CTR) for the syntax e1 at e2 states that the clock associated
to e1 is imposed by the clock of e2; it is the type constraint for
clocks.

• Node declarations (rule (NODE)) are clocked as regular function
definitions. We write H,x : ct1 as the clock environment H ex-
tended with the association x : ct1. Because node definitions
only apply at top-level (and cannot be nested), we can gener-
alize every variable appearing in the clock type.6

• Rules (PERIOD), (DEFH) and (DEFP) check that period and str-
eam variables are well formed, i.e., names in period and stream
expressions are first defined before being used.

4.2.2 Structural Clock Unification

In synchronous data-flow languages such as LUSTRE or LUCID
SYNCHRONE, clocks can be made of arbitrarily complex boolean
expressions. In practice, the compiler makes no hypothesis on the
condition c in the clock type (ck on c). This expressiveness is an
essential feature of synchronous languages but forces the compiler
to use a syntactical criteria during the unification process: two clock
types (ck1 on c1) and (ck2 on c2) can be unified if ck1 and ck2 can
be unified and if c1 and c2 are syntactically equal.

This approach can also be applied in the case of periodic clocks.
Two clock types (ck on w1) and (ck2 on w2) can be unified if ck1
and ck2 can be unified and if w1 = w2 (for the equality between
infinite binary words). As a result, this structural clock unification
is unable to compare (α on (01)) on (01) and α on (0001) though
two stream on these clocks are present and absent at the very same
instants. A more clever unification mechanism will be the purpose
of section 4.3.4.

4.2.3 Semantics over Clocked Streams

We provide our language with a data-flow semantics over finite and
infinite sequences following Kahn formulation [18]. Nonetheless,
we restrict the Kahn semantics by making the absence of a value
explicit. The set of instantaneous values is enriched with a special
value ⊥ representing the absence of a value.

We need a few preliminary notations. If T is a set, T ∞ denotes
the set of finite or infinite sequences of elements over the set T
(T ∞ = T ∗ + T ω). The empty sequence is noted ε and x.s denotes
the sequence whose head is x and tail is s. Let ≤ be the prefix
order over sequences, i.e., x ≤ y if x is a prefix of y. The ordered
set D = (T ∞,≤) is a complete partial order (CPO). If D1 and D2
are CPOs, then D1 ×D2 is a CPO with the coordinate-wise order.
[D1 → D2] as the set of continuous functions from D1 to D2 is
also a CPO by taking the pointwise order. If f is a continuous
mapping from D1 to D2, we shall write fix(f) = limn→∞ f n(ε) for
the smallest fix point of f (Kleene theorem). We define the set

6 This is slightly simpler than the classical generalization rule of ML which
must restrict the generalization to variables which do not appear free in the
environment.

ClockedStream(T) of clocked sequences as the set of finite and
infinite sequences of elements over the set T⊥ = T ∪{⊥}.

T⊥ = T ∪{⊥}
ClockedStream(T) = (T⊥)∞

A clocked sequence is made of present or absent values. We
define the clock of a sequence s as a boolean sequence (without
absent values) indicating when a value is present. For this purpose,
we define the function clock from clocked sequences to boolean
sequences:

clock(ε) = ε
clock(⊥.s) = 0.clock(s)
clock(x.s) = 1.clock(s)

We shall use the letter v for present values. Thus, v.s denotes a
stream whose first element is present and whose rest is s whereas
⊥.s denotes a stream whose first element is absent. The interpreta-
tion of basic primitives of the core language over clocked sequences
is given in figure 5. We use the mark # to distinguish the syntactic
construct (e.g., fby) from its interpretation as a stream transformer.

const# i 1.c = i.const# i c
const# i 0.c = ⊥.const# i c

op#(s1,s2) = ε if s1 = ε or s2 = ε
op#(⊥.s1,⊥.s2) = ⊥.op#(s1,s2)
op#(v1.s1,v2.s2) = (v1 opv2).op#(s1,s2)

fby#(ε,s) = ε
fby#(⊥.s1,⊥.s2) = ⊥.fby#(s1,s2)
fby#(v1.s1,v2.s2) = v1.fby1

#(v2,s1,s2)
fby1#(v,ε,s) = ε
fby1#(v,⊥.s1,⊥.s2) = ⊥.fby1#(v,s1,s2)
fby1#(v,v1.s1,v2.s2) = v.fby1#(v2,s1,s2)

when#(ε,c) = ε
when#(⊥.s,c) = ⊥.when#(s,c)
when#(v.s,1.c) = v.when#(s,c)
when#(v.s,0.c) = ⊥.when#(s,c)

merge#(c,s1,s2) = ε if s1 = ε or s2 = ε
merge#(1.c,v.s1,⊥.s2) = v.merge#(c,s1,s2)
merge#(0.c,⊥.s1,v.s2) = v.merge#(c,s1,s2)

not#1.c = 0.not#c
not#0.c = 1.not#c

on#(1.c1,1.c2) = 1.on#(c1,c2)
on#(1.c1,0.c2) = 0.on#(c1,c2)
on#(0.c1,c2) = 0.on#(c1,c2)

Figure 5. Semantics for the core primitives

• The const primitive produces a constant stream from an im-
mediate value. This primitive is polymorphic since it may
produce a value (or not) according to the environment. For
this reason, we add an extra argument giving its clock. Thus,
const# i c denotes a constant stream with stream clock c
(clock(const# i c) = c).

• For a binary operator, the two operands must be synchronous
(together present or together absent) and the purpose of the
clock calculus is to ensure it statically (otherwise, some buf-
fering is necessary).

• fby is the unitary delay: it “conses” the head of its first argu-
ment to its second one. The arguments and result of fby must
be on the same clock. fby corresponds to a two-state machine:

while both arguments are absent, it emits nothing and stays in
its initial state (fby#). When both are present, it emits its first
argument and enters the new state (fby1#) storing the previous
value of its second argument. In this state, it emits a value every
time its two arguments are present.

• The sampling operator expects two arguments on the same
clock. The clock of the result depends on the boolean condition
(c).

• The definition of merge states that one branch must be present
when the other is absent.

• Note that not# and on# operate on boolean sequences only. The
other boolean operations on clocks, e.g. or and &, follow the
same principle.

It is easy to check that all these functions are continuous on
clocked sequences.

Semantics is given to expressions which have passed the clock
calculus (` judgments). We define the interpretation of clock types
as the following:

[[ct1 → ct2]]P = [[[ct1]]P → [[ct2]]P]
[[ct1 × ct2]]P = [[ct1]]P × [[ct2]]P
s ∈ [[∀α1, ...,αn.ct]]P = ∀ck1, ...,ckn,

s ∈ [[ct[ck1/α1, ...,ckn/αn]]]P
s ∈ [[ck]]P = clock(s) ≤ P(ck)

In order to take away causality problems (which are treated by
some dedicated analysis in synchronous languages), [[ck]]P contains
all the streams whose clock is a prefix of the value of ck (and in
particular the empty sequence ε). This way, an equation x = x + 1
which is well clocked (since P,H,x : ck ` x + 1 : ck) but not causal
(its smallest solution is ε) can receive a synchronous semantics.

For any period environment P, clock environment H and any as-
signment ρ (which maps variable names to values) such that ρ(x) ∈
[[H(x)]]P, the meaning of an expression is given by [[P,H ` e : ct]]ρ
such that [[P,H ` e : ct]]ρ ∈ [[ct]]P. The denotational semantics of the
language is defined structurally in Figure 6.

4.2.4 Example

Let us illustrate these definitions on the downscaler in Figure 3.

1. Suppose that the input i has some clock type α1.

2. The horizontal filter has the following signature, corresponding
to the effective synchronous implementation of the process:
α2 → α2 on (10100100).

3. Between the horizontal filter and the vertical filter, the reorder
process stores the 5 previous lines in a sliding window of size 5,
but has no impact on the clock besides delaying the output until
it receives 5 full lines, i.e., 5×720 = 3600 cycles. We shall give
to the reorder proess the clock signature α3 → α3 on 03600(1).

4. The vertical filter produces 4 pixels from 9 pixels repeatedly
across the 720 pixels of a stripe (6 lines). Its signature (matching
the process’s synchronous implementation) is:

α4 → α4 on (172007201720072007201720072007201720)

To simplify the presentation, we will assume in manual compu-
tations that the unit of computation of the vertical filter is a line
and not a pixel, hence replace 720 by 1 in the previous signa-
ture, yielding: α4 → α4 on (101001001).

5. Finally, the designer has required that if the global input i
is on clock α1, then the clock of the output o should be
α1 on (100000) — the 6 times subsampled input clock — tol-
erating an additional delay that must automatically be deduced
from the clock calculus.

[[P,H ` op(e1,e2) : ck]]ρ = op#([[P,H ` e1 : ck]]ρ, [[P,H ` e2 : ck]]ρ)
[[P,H ` x : ct]]ρ = ρ(x)
[[P,H ` i : ck]]ρ = i#[[ck]]P

[[P,H ` e1 fby e2 : ck]]ρ = fby#([[P,H ` e1 : ck]]ρ, [[P,H ` e2 : ck]]ρ)
[[P,H ` e when pe : ck on pe]]ρ = when#([[P,H ` e : ck]]ρ,P(pe))
[[P,H ` merge pe e1 e2 : ck]]ρ = merge#(P(pe), [[P,H ` e1 : ck on pe]]ρ, [[P,H ` e2 : ck on not pe]]ρ)

[[P,H ` e1(e2) : ct2]]ρ = ([[P,H ` e1 : ct1 → ct2]]ρ)([[P,H ` e2 : ct1]]ρ)
[[P,H ` e1,e2 : ct1 × ct2]]ρ = ([[P,H ` e1 : ct1]]ρ, [[P,H ` e2 : ct2]]ρ)
[[P,H ` fst s1,s2 : ct1]]ρ = s1 where s1,s2 = [[P,H ` e : ct1 × ct2]]ρ
[[P,H ` snd s1,s2 : ct2]]ρ = s2 where s1,s2 = [[P,H ` e : ct1 × ct2]]ρ

[[P,H ` e′ where x = e : ct ′]]ρ = [[P, H,x : ct ` e′ : ct ′]]ρ[x∞/x] where x∞ = fix(d 7→ [[P, H,x : ct ` e : ct]]ρ[d/x])
JP,H ` let node f (x) = e : fgen(ct1 → ct2)Kρ = [(d 7→ [[P, H,x : ct1 ` e : ct2]]ρ[d/x])/ f]

[[P,H ` e1 at e2 : ck]]ρ = [[P,H ` e1 : ck]]ρ

Figure 6. Data-flow semantics over clocked sequences

The composition of all 5 processes yield the type constraints α1 =
α2, α3 = α2 on (10100100), and α4 = α3 on 03600(1). Finally, after
replacing variables by their definitions, we get for the output o the
following clock type:

((α1 on (10100100)) on 03600(1)) on (101001001) =

α1 on 09600(100001000000010000000100).

Yet, the result is not equal to the clock constraint stating that
o should have clock type α1 on (100000). The downscaler is thus
rejected in a conventional synchronous calculus. This is the reason
why we introduce the relaxed notion of synchronizability.

4.3 Relaxed Synchronous Semantics

The downscaler example highlights a fundamental problem with
the embedding of video streaming applications in a synchronous
programming model. The designer often has good reasons to apply
a synchronous operator (e.g., the addition) on two channels with
different clocks, or to compose two synchronous processes whose
signatures do not match, or to impose a particular clock which
does not match any solution of the constraints equations. Indeed, in
many cases, the conflicting clocks may be “almost identical”, i.e.,
they have the same asymptotic production rate. This advocates for a
more relaxed interpretation of synchronism. Our main contribution
is a clock calculus to accept the composition of clocks which are
“almost identical”, as defined by the structural extension of the
synchronizability relation on infinite binary words to stream clocks:

DEFINITION 2 (synchronizable clocks). We say that two stream
clocks ck on w and ck on w′ are synchronizable, and we write
ck on w ./ ck on w′, if and only if w ./ w′.

Notice this definition does not directly extend to stream clocks with
different variables.

4.3.1 Buffer Processes

When two processes communicate with synchronizable clocks, and
when causality is preserved (i.e., writes precede or coincide with
reads), one may effectively generate synchronous code for storing
(the bounded number of) pending writes.

Consider two infinite binary words w and w′ with w � w′. A
buffer bufferw,w′ is a process with the clock type bufferw,w′ :
∀β.β on w → β on w′ and with the data-flow semantics of an un-
bounded lossless FIFO channel [18]. The existence of such an (a
priori unbounded) buffer is guaranteed by the causality of the com-
munication (writes occur at clock w that precede clock w′). We
are only interested in buffers of finite size (a.k.a. bounded buffers),
where the size of a buffer is the maximal number of pending writes

it can accomodate while preserving the semantics of an unbounded
lossless FIFO channel.

PROPOSITION 7. Consider two processes f : ck → α on w and
f ′ : α on w′ → ck′, with w ./ w′ and w � w′. There exists a buffer
bufferw,w′ : ∀β.β on w → β on w′ such that f ′ ◦ bufferw,w′ ◦ f is
a (0−)synchronous composition (with the unification α = β).

Proof. A buffer of size n can be implemented with n data registers
xi and 2n + 1 clocks (wi)1≤i≤n and (ri)0≤i≤n. Pending writes are
stored in data registers: wi[j] = 1 means that there is a pending
write stored in xi at cycle j. Clocks ri determine the instants when
the process associated with w′ reads the data in xi: ri[j] = 1 means
that the data in register xi is read at cycle j. For a sequence of
pushes and pops imposed by clocks w and w′, the following case
distinction simulates a FIFO on the xi registers statically controlled
through clocks wi and ri:

NOP: w[j] = 0 and w′[j] = 0. No operation affects the buffer, i.e.,
ri[j] = 0, wi[j] = wi[j−1]; registers xi are left unchanged.

PUSH: w[j] = 1 and w′[j] = 0. Some data is written into the buffer
and stored in register x1, all the data in the buffer being pushed
from xi into xi+1. Thus xi = xi−1 and x1 = input, ∀i > 2,wi[j] =
wi−1[j−1], w1[j] = 1 and ri[j] = 0.

POP: w[j] = 0 and w′[j] = 1. Let p = max({0}∪{1≤ i≤ n|wi[j−
1] = 1}). If p is zero, then no register stores any data at cycle
j: input data must be bypassed directly to the output, crossing
the wire clocked by r0, setting ri[j] = 0 for i > 0 and r0[j] = 1,
wi[j] = wi[j−1]. Conversely, if p > 0, ∀i 6= p,ri[j] = 0, rp[j] =
1, ∀i 6= p,wi[j] = wi[j−1] and wp[j] = 0. Registers xi are left
unchanged (notice this is not symmetric to the PUSH operation).

POP; PUSH: w[j] = 1 and w′[j] = 1. This case boils down to the
implementation of a POP followed by a PUSH, as defined in the
two previous cases.

�

Assuming w and w′ are periodic and have been written w = u(v)
and w′ = u′(v′) under the lines of Remark 1, it is sufficient to con-
duct the previous simulation for |u|+ |v| cycles to compute peri-
odic clocks wi and ri. This leads to an implementation in a plain
(0−)synchronous language; yet this implementation is impracti-
cal because each clock wi or ri has a worst case quadratic size in
the maximum of the periods of w and w′ (from the application of
remark 1), yielding cubic control space, memory usage and code
size. This motivates the search for an alternative buffer implemen-
tation decoupling the memory management for the FIFO from the

combinatorial control space; such an implementation is proposed
in Section 5.2.

4.3.2 Relaxed Clock Calculus

Let us now modify the clock calculus in two ways:

1. a subtyping [22] rule (SUB) is added to the clock calculus to
permit the automatic insertion of a finite buffer in order to
synchronize clocks;

2. rule (CTR) is modified into a subtyping rule to allow automatic
insertion (and calculation) of a bounded delay.

The Subtyping Rule

DEFINITION 3. The relation <: is defined by

w <: w′ ⇐⇒ w ./ w′∧w � w′.

This is a partial order, and its restriction to equivalence classes for
the synchronizability relation (./) forms a complete lattice.

We structurally extend this definition to stream clocks ck on w
and ck on w′ where w <: w′.7

Relation <: defines a subtyping rule (SUB) on stream clocks
types:

P,H ` e : ck on w w <: w′
(SUB)

P,H ` e : ck on w′

This is a standard subsumption rule, and all classical results on
subtyping apply [22].

The clock calculus defined in the previous section rejects ex-
pressions such as x+y when the clocks of x and y cannot be unified.
With rule (SUB), we can relax this calculus to allow an expression e
with clock ck to be used “as if it had” clock ck′ as soon as ck and
ck′ are synchronizable and causality is preserved.

E.g., the following program is rejected in the (0−)synchronous
calculus since, assuming x has some clock α, α on (01) cannot be
unified with α on 1(10).

let node f (x) = y where
y = (x when (01))+(x when 1(10))

Let e1 denote expression (x when (01)) and e2 denote expression
(x when 1(10)), and let us generate the type constraints for each
construct in the program:

1. (NODE): suppose that the signature of f is of form f : α → α′;

2. (+): the addition expects two arguments with the same clocks;

3. (WHEN): we get ck1 = α on (01) for the clock of e1 and ck2 =
α on 1(10) for the clock of e2;

4. (SUB): because (01) and 1(10) are synchronizable, the two
clocks ck1 = α on (01) and ck2 = α on 1(10) can be resyn-
chronized into α on (01), since (01) <: (01) and 1(10) <: (01).

The final signature is f : ∀α.α → α on (01).
Considering the downscaler example, this subtyping rule (alone)

does not solve the clock conflict: the imposed clock first needs to
be delayed to avoid starvation of the output process. This is the
purpose of the following rule.

The Clock Constraint Rule The designer may impose the clock
of certain expressions. Rule (CTR) is relaxed into the following
subtyping rule:

P,H ` e1 : ck on w1 P,H ` e2 : ck on w2 w1 <: 0dw2(CTR)

P,H ` e1 at e2 : ck on 0dw2

7 Yet this definition does not directly extends to stream clocks with different
variables.

Consider the previous example with the additional constraint
that the output must have clock (1001).

let node f (x) = y at (x when (1001)) where
y = (x when (01))+(x when 1(10))

We previously computed that (x when (01))+ (x when 1(10)) has
signature α → α on (01), and (01) does not unify with (1001).
Rule (CTR) yields

P,H ` y : a on (01),x when (1001) : a on (1001) (01) <: 0(1001)

P,H ` y at (x when (1001)) : a on 0(1001)

Finally, f : ∀α.α→α on 0(1001). Indeed, one cycle delay is the
minimum to allow synchronization with the imposed output clock.

Relaxed Clock Calculus Rules The predicate P,H `s e : ct states
that an expression e has clock ct in the period environment P and
the clock environment H, under the use of some synchronization
mechanism. Its definition extends the one of P,H ` e : ct with the
new rules in Figure 7. The axiom and all other rules are identical to
the ones in Figure 4, using `s judgments instead of `.

P,H `s e : ck on w1 w1 <: w2(SUB)

P,H `s e : ck on w2

P,H `s e1 : ck on w1 P,H `s e2 : ck on w2 w1 <: 0dw2(CTR)

P,H `s e1 at e2 : ck on 0dw2

Figure 7. The relaxed clock calculus

Thus, starting from a standard clock calculus whose purpose is
to reject non-synchronous program, we extend it with subtyping
rules expressing that a stream produced on some clock ck1 can
be read on the clock ck2 as soon as ck1 can be synchronized into
ck2, using some buffering mechanism. By presenting the system
in two steps, the additional expressiveness with respect to classical
synchrony is made more precise.

Relaxed Synchrony and the fby Operator Notice fby is consid-
ered a length preserving function in data-flow networks, hence its
clock scheme ∀α.α×α → α in the 0-synchronous case, and de-
spite it only needs its first argument at the very first instant. In the
relaxed case, we could have chosen one of the following clock sig-
natures: ∀α.α on 1(0)e×α → α, ∀α.α on 1(0)×α on 0(1) → α,
or ∀α.α×α on 0(1) → α. The first two signatures require the first
argument to be present at the very first instant only, which is overly
restrictive in practice. The third signature is fully acceptable, with
the observation that the original length-preserving signature can be
reconstructed by applying the subtyping rule α on (1) <: α on 0(1).
This highlights the fact that the fby operator is a one-place buffer.

4.3.3 Construction of the System of Clock Constraints

The system of clock constraints is build from the systematic appli-
cation of the core rules in Figure 4 and the relaxed calculus rules in
Figure 7. All rules are syntax directed except (SUB) whose applica-
tion is implicit at each (function or operator) composition.

Rule (CTR) is a special case: the clock constraint is built by com-
puting a possible value for the delay d. This computation is syn-
tax directed, and we always choose to minimize delay insertion:
delay(w,w′) = min{l | w � 0lw′}. When w � w′, no delay is neces-
sary. Note that in general, delay(w,w′) 6= delay(w′,w).

PROPOSITION 8. The delay to synchronize an infinite periodic bi-
nary word w with an imposed infinite periodic binary word w′ can
be automatically computed by the formula

delay(w,w′) = max(max
p

([w]p − [w′]p),0).

On periodic words, this delay is effectively computable thanks
to Remark 1.

Proof. Indeed, let d = max(maxp([w]p − [w′]p),0) and v = 0dw′

we have w � v since for all p, [v]p = d + [w′]p. Moreover, d is
minimal: suppose there exists p such that d−1 < [w]p− [w′]p, then
v′ = 0d−1w′ satisfies [v]p = d−1+[w′]p < [w]p. Thus, w 6� v′. �

For the simplified downscaler, the minimal delay to resynchro-
nize the vertical filter with the output process is 09603, since 9603
(clock cycles) is the minimal value of d such that
09600(100001000000010000000100) � 0d(100000). For the real
downscaler (with fully developed vertical filter signature), we au-
tomatically computed that the minimal delay was 12000 to permit
communication with the SD output.

4.3.4 Unification

We need a better unification procedure on clock types than the
structural one (see Section 4.2.2), types to obtain an effective reso-
lution algorithm for this system of constraints. In our case, a syntac-
tic unification would unnecessarily reject many synchronous pro-
grams with periodic clocks. We propose a semi-interpreted unifica-
tion that takes into account the semantics of periodic clocks. More
precisely, the unification of two clock types ct and ct ′ can be purely
structural on functional and pair types, where no simplification on
periodic clocks can be applied, but it has to be aware of the proper-
ties of the sampling operator (on) when unifying stream clock types
of the form ck on w and ck′ on w′. Two cases must be considered.

First of all, unifying α on w and α on w′ returns true if and only
if w = w′.

In the most general case, assume α and α′ are clock variables
(clocks can be normalised, thanks to the associativity of on). Equa-
tion α on w = α′ on w′ always has an infinite number of solutions;
these solutions generate an infinite number of different infinite bi-
nary words. Intuitively, a periodic sampling of w consists of the
insertion of 0s in w, in a periodic manner. If w � w′, it is always
possible to delay the p-th 1 in w (resp. w′) until the p-th 1 in w′

(resp. w) through the insertion of 0s in α (resp. in α′). Let us define
the subsampling relation ≤SS , such that

a ≤SS a′ ⇐⇒ ∃α,a = α on a′.

Note that if a≤SS a′ then a′ � a, but the converse is not true: (01)�
(0011) and there is no solution α such that (0011) = α on (01).

PROPOSITION 9. Relation ≤SS is a partial order.

Proof. ≤SS is trivially reflexive and transitive. Antisymmetry holds
because � is a partial order, and a ≤SS a′ implies a′ � a. �

In a typical unification scheme, one would like to replace the
above type equation by “the most general clock type satisfying the
equation”. We will see that there is indeed a most general word m
such that all common subsamples of w and w′ are subsamples of m
(≤SS is an upper semi-lattice), yet the expression of m = v on w =
v′ on w′ does not lead to a unique choice for m and for the maximal
unifiers v and v′. In fact, there can be an infinite set of such words.

In a strictly synchronous setting, we need to fall back to an
incomplete unification scheme (some synchronous programs with
periodic clocks will be rejected), choosing one of these solutions. If
(v,v′) is the chosen solution, the unification of a on w and a′ on w′

yields a unique clock type α on v on w = α on v′ on w′, and every
occurence of a (resp. a′) is replaced by α on v (resp. α on v′).

Yet in our relaxed synchronous setting, the most general unifier
has an interesting property:

PROPOSITION 10 (synchronizable unifiers). Consider m, w, w′,
(v1,v′1) and (v2,v′2) such that m = v1 on w = v′1 on w′ = v2 on w =
v′2 on w′; we have v1 ./ v2 and v′1 ./ v′2.

This directly derives from Proposition 2.
We can make an arbitrary choice for (v,v′) among maximal

unifiers, and select one that is easy to compute. Formally, we define
the earliest substitutions V and V ′ through the following recurrent
equations:

V (0d1.w,0d0d′
1.w′) = 1d0d′

1.V (w,w′)

V (0d0d′
1.w,0d1.w′) = 1d1d′

1.V (w,w′)

V ′(0d1.w,0d0d′
1.w′) = 1d1d′

1.V ′(w,w′)

V ′(0d0d′
1.w,0d1.w′) = 1d0d′

1.V ′(w,w′)

Let M (w,w′) denote the unifier

M (w,w′) = V (w,w′) on w = V ′(w,w′) on w′.

The computation of V and V ′ terminates on periodic words
because there are a finite number of configurations (bounded by
the product of the period lenghts of w and w′).

E.g., a on (1000) = a′ on 0(101):

w 1 0 0 0 1 0 0 0 1 0 0 0 0 . . . (1000)
w′ 0 1 0 1 1 0 1 1 0 1 1 0 1 . . . 0(101)
V (w,w′) 0 1 1 1 1 1 1 1 1 1 1 1 1 . . . 0(1)
V ′(w,w′) 1 1 1 0 0 1 0 0 0 1 1 0 0 . . . 1(11001000)
M (w,w′) 0 1 0 0 0 1 0 0 0 1 0 0 0 . . . 0(1000)

PROPOSITION 11. For all w,w′, p,

[M (w,w′)]p+1 = [M (w,w′)]p+

max([w]p+1 − [w]p, [w
′]p+1 − [w′]p).

Proof. An inductive proof derives naturally from the previous
algorithm. In particular, observe that between two consecutive 1s
in M (w,w′), the associated subword of either v or v′ is a sequence
of 1s; hence either [M (w,w′)]p+1 − [M (w,w′)]p = [w]p+1 − [w]p
or [M (w,w′)]p+1 − [M (w,w′)]p = [w′]p+1 − [w′]p. �

In addition, M (w,w′) is the maximum common subsample of w
and w′ and has several interesting properties:

THEOREM 1 (structure of subsamples). The subsampling relation
≤SS forms an upper semi-lattice on infinite binary words, the supre-
mum of a pair of words w,w′ being M (w,w′).

Common subsamples of w and w′ form a complete lower semi-
lattice structure for �, M (w,w′) being the bottom element.

M is also associative: M (w,M (w′,w′′)) = M (M (w,w′),w′′).
(Hence the complete lower semi-lattice structure for � holds for
common subsamples of any finite set of infinite binary words.)

Proof. We proceed by induction on the position of the p-th 1. Con-
sider a infinite binary word m′ = u on w = u′ onw′. By construction
of m, [m]1 = max([w]1, [w′]1), hence [m]1 ≤ [m′]1. Assume all com-
mon subsamples of w and w′ are subsamples of m up to their p-th
1, and that [m]p ≤ [m′]p for some p ≥ 1. Proposition 11 tells that m
is identical to either w or w′ between its p-th and p+1-th 1; hence
common subsamples of w and w′ are subsamples of m up to the next
1; and since w � m′ and w′ � m′ (≤SS is a reversed sub-order of
�), we get [m]p+1 ≤ [m′]p+1, hence m � m′ by induction on p.

Associativity derives directly from Proposition 11. �

4.3.5 Resolution of the System of Clock Constraints

We may now define a resolution procedure through a set of
constraint-simplification rules.

The clock system given is turned into an algorithm by introduc-
ing a subtyping rule at every application point and by solving a set
of constraints of the form cki <: ck′i. The program is well clocked
if the set of constraints is satisfiable.

(CYCLE) S +{α on w1 <: α on w2} S if w1 <: w2

(SUP) S +{α on w1 <: α′, α on w2 <: α′} S +{α on w1 tw2 <: α′} if w1 ./ w2

(INF) S +{α′ <: α on w1, α′ <: α on w2} S +{α′ <: α on w1 uw2} if w1 ./ w2

(EQUAL) S S
[α′

1 on v1/α1
α′

2 on v2/α2

]

if S = S′ + I1 + I2,
I1 = {α1 on w1 <: ck1} or {ck1 <: α1 on w1}
I2 = {α2 on w2 <: ck2} or {ck2 <: α2 on w2}

,
α1 6= α2
w1 6= w2

,
v1 = V (w1,w2)
v2 = V ′(w1,w2)

(CUT) S +{α1 on w <: α2 on w} S +{α1 <: α3 on u1, α3 on u2 <: α2} if α1 6= α2, u1 = Umax(w), u2 = Umin(w)

(FORK) S +{α <: α1 on w, α <: α2 on w} S[α3 on u on w/α]+{α3 on u <: α1, α3 on u <: α2} if α1 6= α2, u = Umin(w)

(JOIN) S +{α1 on w <: α, α2 on w <: α} S[α3 on u on w/α]+{α1 <: α3 on u, α2 <: α3 on u} if α1 6= α2, u = Umax(w)

(SUBST) S⊕ I S[ck/α] if I = {α <: ck} or {ck <: α}, α /∈ FV(ck)

Figure 8. Clock constraints resolution

DEFINITION 4 (constraints and satisfiability). A system S of clock
constraints is a collection of inequations between clock types:

S ::= {ck1 <: ck′1, . . . ,ckn <: ck′n}

We write S + {ck1 <: ck2} for the extension of a system S
with the inequation {ck1 <: ck2}. We write S ⊕{ck1 <: ck2} for
S + {ck1 <: ck2} such that S does not contain a directed chain of
inequations from any free variable in ck1 to any free variable in
ck2. For example, S⊕{α1 <: α2 on w2} means that, in S, α1 never
appear on the left of an inequation that leads transitively to an
inequation where α2 appears on the right.

A system S is satisfiable if there exists a substitution ρ from
variables to infinite binary words such that for all {cki <: ck′i} ∈
S,ρ(cki) <: ρ(ck′i).

There is a straightforward but important (weak) confluence
property on subsampling and satisfiability:

PROPOSITION 12 (subsampling and satisfiability). If α′ /∈ S, then
for all w, S is satisfiable iff S[α′ on w/α] is satisfiable.

Proof. Suppose S is satisfiable with ρ(α) = γ on m. Then we can
build another substitution ρ′ satisfying the system of constraints by
choosing ρ′(γ) = γ′ on V (m,w), ρ′(α) = γ′ on V (m,w) on m and
ρ′(α′) = γ′ on V ′(m,w). The reciprocal is obvious. �

Let us eventually define three functions useful to bound the set
of subsamples of a given word: Umin, Umax and ∆ are defined
recursively as follows:

Umin(0a1b.w) = 1a0a0b1b.Umin(w)
Umax(0a1b.w) = 0a0b1a1b.Umax(w)

∆(0c1d .u,0a1b.w,r) = 1a1b0c′1a1b1d .∆(u,w,r + f −br + f c)

with q = 2c(a+b)
d , c′ = c+ br +qc

and f = q−bqc

Notice ∆ — from pairs of infinite binary words and rational
numbers to infinite binary words— is of technical interest for the
proofs only.

PROPOSITION 13. For all w, Umin(w) ./ Umax(w), Umin(w) <:
Umax(w), and Umin(w) on w = Umax(w) on w.

For all u, w, ∆(u,w,0) is an infinite periodic binary word and is
synchronizable with u.

Proof. The first part of the proposition is proven inductively on the
position of 1s in the subsampling.

The second part is a consequence of the definition of c′, de-
signed to match the asymptotic rate of 1s in u (through the propa-
gation of r, the fractional part of the asymptotic rate). �

The set of subsamples of a given word is characterized by the
following technical proposition:

PROPOSITION 14. For all v, w, we have

Umin(w) on w <: v on w =⇒ Umin(w) <: v

and

v on w <: Umax(w) on w =⇒ v <: Umax(w).

For all u, v, w,

u on Umin(w) on w <: v on w =⇒ ∆(u,w,0) on Umin(w) <: v

and

v on w <: u on Umax(w) on w =⇒ v <: ∆(u,w,0) on Umax(w).

Proof. The first pair of implications is proven inductively on the
definition of Umin and Umax.

For the second pair of implications, observe that

1a1b0c′1a1b on 1a0a0b1b.U = 1a0b0c′0a1b

and

1a1b0c′1a1b on 0a0b1a1b.U = 0a0b0c′1a1b,

hence ∆(u,w,0) on Umin(w) (resp. ∆(u,w,0) on Umax(w)) yields a
lower (resp. upper) bound on all v′ such that

v′ on w = ∆(u,w,0) on Umin(w) on w =

∆(u,w,0) on Umax(w) on w.

Finally, observe that ∆(u,w,0) is synchronizable with u, which
allows to apply the first part of the proposition and concludes the
proof. �

Let us finally define the simplification relation between clock
constraints. Its definition is given in Figure 8. Any new variable ap-
pearing in right-hand side of the simplification relation is assumed
to be fresh.

THEOREM 2 (preservation of satisfiability). If S is satisfiable and
S S′ then S′ is satisfiable.

Proof. Proposition 12 authorizes to sample (to slow down) the
system and will be used throughout the proof.

Let us consider every relation in Figure 8.

(SUP), (INF) and (CYCLE). Presevation of satisfiability is a direct ap-
plication of Propositions 2 and 5.

(EQUAL). This rule preserves satisfiability: it just subsamples a pair
of variables.

(CUT). By definition of Umin and Umax, the right-hand side of the
relation is a sufficient condition of satisfiability.

Conversely, consider a solution α1 = α on v1 and α2 = α on v2.
Let V1 = V (v1,Umin(w)) and V ′

1 = V ′(v1,Umin(w)), and re-
place α by α′ onV1. We have α1 = α′ onV ′

1 on Umin(w). Let us

choose α3 = α′ on ∆(V ′
1,w,0); From Proposition 14, we have

α1 <: α′ onV ′
1 on Umax(w) <: α3 on Umax(w).

We also have V ′
1 on Umin(w) on w <: V1 on v2 on w, hence

Proposition 14 yields ∆(V ′
1,w,0) on Umin(w) <: V1 on v2. Since

α2 = α′ onV1 on v2, we have α3 on Umin(w) <: α2. The right-
hand side of the relation is thus satisfiable.

(FORK) and (JOIN). The proof is very similar: choosing the same α3
satisfies both inequalities on α1 and α2 simultaneously.

(SUBST). Consider the form of the inequality I on α. The right-hand
side of the relation is of course a sufficient condition of satis-
fiability. It is also clear that it is necessary when the inequal-
ity does not belong to a circuit. Assuming it belongs to a cir-
cuit, simplify the system through the systematic application of
all other rules, enforcing that no inequality belongs to multi-
ple simple circuits. A retiming argument [20] shows that, if the
system is satisfiable, then there is a solution such that all in-
equalities in a given circuit but (at most) one are converted to
equalities: considering a solution with at least two strict in-
equalities, split the circuit by renaming the common clock vari-
able, choosing one name for the path from one inequality to the
other and another one on the other path, unify any one of the
broken inequalities to effectively remove this inequality from the
solution.

The proof is symmetical for the second form of I.

�

Rule (EQUAL) is only provided to factor the unification step
out of the (CUT), (FORK) and (JOIN) rules. As a consequence, in
the following resolution algorithm, we assume rule (EQUAL) is an
enabling simplification, applied once before each rule (CUT), (FORK)

and (JOIN).

THEOREM 3 (resolution algorithm). The set of rules in Figure 8
defines a non-deterministic, but always terminating resolution al-
gorithm:

1. the tree of simplifications S S′ is finite;
2. if S is satisfiable, there is a sequence of rule applications lead-

ing to the empty set.

Proof. The proof is based on the graph structure induced by S.
(SUP) and (INF) strictly reduces the number of acyclic paths.

(EQUAL) is only used once for each application of (CUT), (FORK) and
(JOIN). The w1 6= w2 condition guarantees it can only be applied
a finite number of times. A systematic application of (SUP), (INF),
(CUT), (FORK) and (JOIN) leads to a system where no inequality
belongs to multiple simple circuits. This enables (SUBST), which
strictly reduces the length of any circuit or multi-path sub-graphs.
(CYCLE) reduces short-circuits on a single variable.

Any ordering in the application of these rules terminates, and
yields the empty set when S is satisfiable. �

As a corollary:

THEOREM 4 (completeness). For any expression e, and for any
period and clock environments P and H, if e has an admissible
clock type in P,H for the relaxed clock calculus, then the type
inference algorithm computes a clock ct verifying P,H `s e : ct.

Intuitively, if the type constraints imposed by the clock calculus
are satisfiable, then our resolution algorithm discovers one solution.
This strong result guarantees the clock calculus’s ability to accept
all programs with periodic clocks that can be translated to a strictly
(0−)synchronous framework.

Completeness would be easier to derive from principality, i.e.,
from the existence of a most general type for every expression [22,
1]. Yet the unification of clock stream types is not purely structural

(it exploits the properties of the on operator), and there are many
ways to solve an equation on clock types. There is not much hope
either that the system of clock constraints can be solved by a set of
confluent rules, since multiple solutions are often equivalent up to
retiming [20].

Finally, although Theorem 3 proves completeness, our resolu-
tion algorithm does not guarantee anything about the quality of the
result (total buffer size, period length, rate of the common clock).

5. Translation Procedure
When a network is associated with a system of clock inequalities
where not all of them are simplified into equalities, its execution
is undefined with respect to the semantics of 0-synchronous pro-
grams. Buffer processes are needed to synchronize producers with
consumers.

5.1 Translation Semantics

Consider the input clock ck on w and the output period ck on w′,
with w � w′. To fully synchronize the communication, we insert a
new buffer node bufferw,w′ with clock ∀β.β on w → β on w′; w
(resp. w′) states when a push (resp. pop) occurs.

PROPOSITION 15 (buffer size). Consider two synchronizable infi-
nite binary words w and w′ such that w � w′. The minimal buffer to
allow communication from w to w′ is of size

size(w,w′) = max(max
p,q

({q− p | [w′]p ≥ [w]q}),0).

Communication from w to w′ is called size(w,w′)-synchronous.
On periodic words, this size is effectively computable thanks to

Remark 1.

Proof. This is the maximal number of pending writes appearing
before their matching reads, hence a lower bound on the minimal
size. It is also the minimal size, since it is possible to implement a
size n buffer with n registers. �

For the simplified downscaler, buffer size is equal to 1, since
clock 09600(1000010000000 10000000100) may take at most one
advance tick with respect to clock 09603(100000). For the real
downscaler, we automatically computed the size 880.

Let us now define a translation semantics for programs accepted
with the relaxed clock calculus. This will enable us to state the cor-
nerstone result of this work, namely that programs accepted with
the relaxed clock calculus can be turned into synchronous pro-
grams which are accepted by the original clock calculus. This is
obtained through a program transformation which inserts a buffer
every time a strict inequality on stream clock types remains after
resolution. Because a buffer is itself a synchronous program, the
resulting translated program can be clocked with the initial system
and can thus be synchronously evaluated. This translation is ob-
tained by asserting judgment P,H `s e : ct ⇒ e′, meaning that in
the period environment P and the clock environment H, the expres-
sion e with clock ct is translated into e′. The insertion rule is:

P,H `s e : ck on w ⇒ e′ w <: w′
(TRANSLATION)

P,H `s e : ck on w′ ⇒ bufferw,w′(e′)

Other rules are simple morphisms.8

5.2 Practical Buffer Implementation

From the definition in Section 4.3.1, one may define a custom
buffer process with the exact clock type to resynchronize a commu-
nication. Yet this definition suffers from the intrinsic combinatorics

8 Notice the (CTR) rule shifts a clock constraint imposed by the program-
mer; this rule will often lead to the insertion of a synchronization buffer,
triggering the (TRANSLATION) rule indirectly.

Bn

push

i

pop

push1 push2

o3o2o1 o

push empty

i
o

pop

BB1 B2 B3

Figure 9. A synchronous buffer

of (0−)synchronous communication between periodic clocks (with
statically known periodic clocks). We propose an alternative con-
struction where the presence or absence of data is captured by dy-
namically computed clocks. The memory and code size become
linear in the buffer size, which is appropriate for a practical imple-
mentation. The downside is that static properties about the process
become much harder to exhibit for automated tools (model check-
ing, abstract interpretation): in particular, it is hard to prove that the
code actually behaves as a FIFO buffer when at most n tokens are
sent and not yet received.

let node buffer1 (push, pop, i) = (empty, o) where
o = if pempty then i else pmemo
and memo = if push then i else pmemo
and pmemo = 0 fby memo
and empty =

if push then if pop then pempty else false
else if pop then true

else pempty
and pempty = true fby empty

Figure 10. Synchronous buffer implementation

A buffer of size one, called 1-buffer, can be written as a syn-
chronous program with three inputs and two outputs. It has two
boolean inputs push and pop and a data i. o and empty are the
outputs. Its behavior is the following: the output o equal i when its
internal memory was empty and equals the internal memory other-
wise. Then, the memory is set to i when push is true. Finally, the
empty flag gives the status of the internal memory. If a push and a
pop occur and the memory is empty, then the buffer is bypassed. If a
push occurs only, empty becomes false. Conversely, if a pop occurs
then the memory is emptied. This behavior can be programmed in
a synchronous language. Figure 10 gives an implementation of this
buffer in a strictly synchronous language.9 Buffers of size n can be
constructed by connecting a sequence of 1-buffers as shown in Fig-
ure 9. To complete these figures, notice the boolean streams push
and pop need to be computed explicitely from the periodic words
w and w′ of the output and input stream clocks.

Finally, because safety is already guaranteed by the calculus on
periodic clocks, a synchronous implementation for the buffer is not
absolutely required. An array in random-access memory with head
and tail pointers would be correct by construction, as soon as it
satisfies the size requirements.

5.3 Correctness

We define judgment P,H ` e : ct to denote that expression e has
clock ct in the period environment P and the clock environment H,
for the original 0-synchronous system. The following result states

9 LUCID SYNCHRONE [13]; distribution and reference manual available at
www.lri.fr/~pouzet/lucid-synchrone.

that any program accepted by the relaxed clock calculus translates
to an equivalent 0-synchronous program (in terms of data-flow on
streams). This equivalent program has the same clock types.

THEOREM 5 (correctness). For any period environment P and
clock environment H, if P,H `s e : ct ⇒ e′ then P,H ` e′ : ct.

The proof derives from the subtyping rule underlying `s judg-
ments: classical subtyping theory [22, 1, 23] reduces global cor-
rectness to the proof of local 0-synchronism of each process com-
position in the translated program (including at clock constraints).
This is guaranteed by the previous buffer insertion scheme, since
each buffer’s signature is tailored to the resynchronization of a pair
of different but synchronizable clocks. This ensures the translated
program is synchronous.

6. Synchrony and Asynchrony
A system that does not have a single synchronous clock is not nec-
essarily asynchronous: numerous studies have tackled with relaxed
or multi-clocked synchrony at the hardware or software levels. We
only discuss the most closely related sudies, a wide and historical
perspective can be found in [7].

There are a number of approaches to the specification and de-
sign of hybrid hardware/software systems. Most of them are graphi-
cal tools based on process networks. Kahn process networks (KPN)
[18] is a fundamental one, but it models only functional properties,
as opposed to structural properties. KPN are used in a number of
tools such as YAPI [14] or the COSY project [5]; such tools still
require expertise from different domains and there is no universal
language that combines functional and structural features in a sin-
gle framework.

Steps towards the synchronous control of asynchronous systems
are also conducted in the domain of synchronous programming lan-
guages, such as the work of Le Guernic et al. [19] on Polychrony.
This work targets the automatic and correct by construction refine-
ment of programs, in the same spirit as our clock composition, but
it does not consider quantitative properties of clocks. StreamIt [24]
is a language for high performance streaming computations that
tackles mainly stream-level and algebraic optimization issues.

Ptolemy [6] is a rich platform with simulation and analysis tools
for the design of embedded streaming systems: it is based on the
synchronous data-flow (SDF) model of computation [15]. Unlike
synchronous languages, SDF graphs cannot express (bounded or
not) recursion and arbitrary aperiodic execution. They are not ex-
plicitly clocked either: synchrony is a consequence of local balance
equations on periodic execution schemes. The SDF model allows
static scheduling and is convenient for the automatic derivation of
timing properties [21], but the lack of clocks weakens its amenabil-
ity for formal reasoning and correct-by-construction generation of
synchronous code, with respect to synchronous languages [17, 2].
Interestingly, n-synchronizable clocks seem to fill this hole, leading
to the definition of a formal semantics for SDF while exposing the

precise static schedule to the programmer (for increased control on
buffer management and code generation). Further analyses of the
correspondence between the two models are left for future work.

7. Conclusion and Perspectives
We proposed a synchronous programming language to implement
correct-by-construction, high-performance streaming applications.
Our model addresses the automatic synthesis of communications
between processes that are not strictly synchronous. In this model,
we show that latencies and buffer requirements can be inferred au-
tomatically. We extend a core data-flow language with a notion
of periodic clocks and with a relaxed clock calculus to compose
synchronous processes. This relaxed synchronous model defines
a formal semantics for synchronous data-flow graphs, building a
long awaited bridge with synchronous languages. The clock cal-
culus and the translation procedure from relaxed synchronous to
strictly synchronous programs are proven correct, and the asso-
ciated type inference is proven complete. An implementation in
the synchronous language LUCID SYNCHRONE is under way and
was applied to a classical video downscaler example. We believe
this work widens the scope of synchronous programming beyond
safety-critical reactive systems and circuit synthesis, promising in-
creased safety and productivity in the design and optimization of a
large spectrum of applications.

Acknowledgments
This work is partially funded by the French “ACI Sécurité”

Alidecs. We are grateful to anonymous reviewers for their careful
reading and deep remarks which contributed to improve the final
version of this paper. We would also like to thank Zbigniew Cham-
ski who contributed several key ideas that lead to the concept of
n-synchrony.

References
[1] A. Aiken and E. L. Wimmers. Type inclusion constraints and type

inference. In Functional Programming Languages and Computer
Architecture, pages 31–41, 1993.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone. The Synchronous Languages Twelve Years Later.
Proceedings of the IEEE, 91(1):64–83, 2003.

[3] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous
programming with events and relations: the signal language and its
semantics. Sci. Comput. Program., 16(2):103–149, 1991.

[4] G. Berry. The Foundations of Esterel. MIT Press, 2000.

[5] J.-Y. Brunel, W. M. Kruijtzer, H. J. H. N. Kenter, F. Pétrot, L. Pasquier,
E. A. de Kock, and W. J. M. Smits. COSY communication IP’s. In
37th Design Automation Conference (DAC’00), pages 406–409, Los
Angeles, California, June 2000.

[6] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A
framework for simulating and prototyping heterogenous systems. Int.
Journal in Computer Simulation, 4(2):155–182, 1994.

[7] P. Caspi. Embedded control: From asynchrony to synchrony and
back. In EMSOFT’01, volume 2211 of LNCS, Lake Tahoe, October
2001. Springer-Verlag.

[8] P. Caspi and M. Pouzet. Synchronous Kahn networks. In ICFP ’96:
Proceedings of the first ACM SIGPLAN international conference on
Functional programming, pages 226–238. ACM Press, 1996.

[9] Z.S. Chamski, M. Duranton, A. Cohen, C. Eisenbeis, P. Feautrier, and
D. Genius. Application-domain-driven system design for pervasive
video processing. Ambient intelligence: impact on embedded system
design, pages 251–270, 2003.

[10] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous
Systems. PhD thesis, Stanford University, October 1984.

[11] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and
M. Pouzet. Synchronization of periodic clocks. In ACM Conf.
on Embedded Software (EMSOFT’05), Jersey City, New York,
September 2005.

[12] J.-L. Colaço, A. Girault, G. Hamon, and M. Pouzet. Towards a
Higher-order Synchronous Data-flow Language. In EMSOFT’04,
Pisa, Italy, september 2004.

[13] J.-L. Colaço and M. Pouzet. Clocks as first class abstract types. In
Rajeev Alur and Insup Lee, editors, EMSOFT’03, volume 2855 of
Lecture Notes in Computer Science, pages 134–155. Springer, 2003.

[14] E. A. de Kock, G. Essink, W. J. M. Smits, P. van der Wolf, J.-
Y. Brunel, W. M. Kruijtzer, P. Lieverse, and K. A. Vissers. Yapi:
Application modeling for signal processing systems. In 37th Design
Automation Conference, Los Angeles, CA, june 2000. ACM Press.

[15] D. G. Messerschmitt E. A. Lee. Static scheduling of synchronous data
flow programs for digital signal processing. IEEE Trans. Computers,
36(1):24–25, 1987.

[16] K. Goossens, G. Prakash, J. Röver, and A. P. Niranjan. Interconnect
and memory organization in SOCs for advanced set-top boxes and TV
— evolution, analysis, and trends. In Jari Nurmi, Hannu Tenhunen,
Jouni Isoaho, and Axel Jantsch, editors, Interconnect-Centric Design
for Advanced SoC and NoC, chapter 15, pages 399–423. Kluwer,
April 2004.

[17] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language lustre. Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[18] G. Kahn. The semantics of a simple language for parallel program-
ming. In J. L. Rosenfeld, editor, Information processing, pages
471–475, Stockholm, Sweden, Aug 1974. North Holland, Amster-
dam.

[19] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system
design. Journal for Circuits, Systems and Computers, Special Issue
on Application Specific Hardware Design, April 2003.

[20] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1), 1991.

[21] A.J.M. Moonen, M. Bekooij, and J. van Meerbergen. Timing analysis
model for network based multiprocessor systems. In proceedings of
ProRISC, 15th annual Workshop of Circuits, System and Signal
Processing, pages pages 91 – 99, Veldhoven, The Netherlands,
November 2004. ISBN: 90-73461-43-X.

[22] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[23] F. Pottier. Simplifying subtyping constraints. In ACM Intl. Conf. on
Functional Programming (ICFP’96), volume 31(6), pages 122–133,
1996.

[24] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language
for streaming applications. In International Conference on Compiler
Construction, Grenoble, France, April 2002.

[25] J. E. Vuillemin. On circuits and numbers. IEEE Trans. Comput.,
43(8):868–879, 1994.

