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Abstract

Hybrid system modelers have become a corner stone of complex embedded sys-
tem development. Embedded systems include not only control components and
software, but also physical devices. In this area, Simulink is a de facto stan-
dard design framework, and Modelica a new player. However, such tools raise
several issues related to the lack of reproducibility of simulations (sensitivity to
simulation parameters and to the choice of a simulation engine).

In this paper we propose using techniques from non-standard analysis to
define a semantic domain for hybrid systems. Non-standard analysis is an ex-
tension of classical analysis in which infinitesimal (the ε and η in the celebrated
generic sentence ∀ε∃η . . . of college maths) can be manipulated as first class
citizens. This approach allows us to define both a denotational semantics, a
constructive semantics, and a Kahn Process Network semantics for hybrid sys-
tems, thus establishing simulation engines on a sound but flexible mathematical
foundation. These semantics offer a clear distinction between the concerns of
the numerical analyst (solving differential equations) and those of the computer
scientist (generating execution schemes).

We also discuss a number of practical and fundamental issues in hybrid
system modelers that give rise to non reproducibility of results, nondetermin-
ism, and undesirable side effects. Of particular importance are cascaded mode
changes (also called “zero-crossings” in the context of hybrid systems modelers).

Foreword: in memory of Amir Pnueli

When we were invited to contribute to this special issue in honor of Amir
Pnueli, we first felt deeply honored. Then, we asked ourselves what we could
contribute that would best fit the recollection our community has of him. Amir
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leading figure in computer science, he had a profound mathematical background.
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Finally, Amir is one of the founders of the area of hybrid systems from the
perspective of the computer science community. These considerations led us to
contribute to this special issue with a new approach to hybrid systems modelers
that builds on the heterodox — but, we think, nonetheless useful — mathematical
area of non-standard analysis.

1. Introduction

Hybrid system modelers have become in the last two decades the corner stone
of complex embedded system development, with embedded systems involving
not only control components or software, but also physical devices. Simulink1

has become the de facto standard for physical system modeling and simulation.
Noticeably, by building on top of the success of Simulink, The Mathworks was
able to take over the market of embedded systems design, in many industries.
This speaks for itself regarding the importance of such tools.

Hybrid system modelers mix discrete time reactive (or dynamical) systems
with continuous time ones defined using Ordinary Differential Equations (ODE)
or their extensions. In this paper we focus on general modelers, aimed at mod-
eling and simulation of any type of hybrid system and we refer the reader to [14]
for an overview of all tools related to hybrid systems modeling and analysis.

Besides Simulink with its state-based extension Stateflow, several such hy-
brid systems modelers have been developed. Scicos2 is a free-ware developed by
Ramine Nikoukhah at INRIA.

As quoted from the web site of its supporting association, Modelica3 is a
non-proprietary, object-oriented, equation based language to conveniently model
complex physical systems containing, e.g., mechanical, electrical, electronic, hy-
draulic, thermal, control, electric power or process-oriented subcomponents.
While4 Modelica resembles object-oriented programming languages, such as
C++ or Java, it differs in two important respects. First, Modelica is a model-
ing language. Equations do not describe assignment but equality. In Modelica
terms, equations have no pre-defined causality. The simulation engine may (and
usually must) manipulate the equations symbolically to determine their order
of evaluation and which components in the equation are inputs and which are
outputs. Said differently, Modelica not only manipulates functions and ODEs,
but also equations and Differential Algebraic Equations (DAE) in which vari-
ables and their derivatives are involved in constraints. Commercial front-ends
for Modelica include Dymola5 from the Swedish company Dynasim AB (now
part of Dassault Systèmes), MathModelica6 from the Swedish company Math-

1http://www.mathworks.com/products/simulink/
2http://www-rocq.inria.fr/scicos/
3http://www.modelica.org/
4The following is quoted from Wikipedia
5http://en.wikipedia.org/wiki/Dymola
6http://en.wikipedia.org/wiki/MathModelica
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Core Engineering AB, SimulationX7 from the German company ITI GmbH, and
MapleSim8 from the Canadian company Maplesoft. Dassault Systèmes selected
Modelica for their product CATIA9 (CATIA is one of the major CAD systems).
The goal of the OpenModelica10 project is to create a complete Modelica model-
ing, compilation and simulation environment based on free software distributed
in source code form intended for research purposes. The free simulation environ-
ment Scicos uses a subset of Modelica for component modeling. Support for a
larger part of the Modelica language is currently under development. Recently,
Mathworks has issued a similar tool dedicated to physical systems modeling,
called Simscape.11

Hybrid systems modelers raise a number of difficult issues, both practical
and fundamental. Some major practical issues are the following:

(i) Depending on the options selected by the user, simulation results may
differ. Of course, simulation results are sensitive to the choice of the inte-
gration method — we discuss this unavoidable aspect later. Since simula-
tions use a single, global, solver, the choice and tuning of the integration
method is global to the system, which may have strange effects such as
undesirable interactions between sub-systems that seemingly should not
interact.

(ii) Mode changes occur in the considered hybrid systems by means of zero-
crossings, which are mode switching boundaries where the dynamics ex-
perience a sudden change. The handling of zero-crossings is difficult for
two reasons. First, zero-crossings are areas where maximal stiffness is
encountered and the solvers must be very cautious not to miss them —
variable step size integration methods are therefore mandatory. Second,
mode changes triggered by zero-crossings can involve a combination of
complex operations whose scheduling can be delicate. Indeed, the differ-
ent simulation engines for Modelica sometimes give different results on
identical programs. Of particular difficulty is the handling of cascades of
zero-crossings, which are successive zero-crossings arising when a mode
change leads to a next mode where the guard is immediately violated.

Other issues exist that are more fundamental:

(iii) How discrete is the semantics of the discrete part of a hybrid system
modeler? Recall that, in earlier versions, Simulink saw everything as con-
tinuous time. In particular, discrete time flows were seen as piecewise
constant continuous time signals.

7http://en.wikipedia.org/wiki/SimulationX
8http://en.wikipedia.org/wiki/MapleSim
9http://en.wikipedia.org/wiki/CATIA

10http://www.openmodelica.org/
11http://www.mathworks.com/products/simscape/
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(iv) Physical systems often obey balance equations resulting from applying
first principles. Such balance equations are better specified using non-
directed systems of DAEs, with no pre-defined input/output roles. This
observation goes back to the old work on Bond Graphs [35] as a modeling
paradigm for physical systems from first principles, and lead to the devel-
opment of Modelica. How can compilation techniques adapt to this more
constraint oriented style of specification?

Efforts developed in the community of hybrid systems have improved the situa-
tion regarding issue (iii), see, e.g., the efforts made in the design of Scicos [13, 32].
Improvements have reduced the previously existing gaps between the results of
simulation of a hybrid system and the simulation of its discrete time part in
isolation for the purpose of generating code.

Issue (iv) seems solved in practice. However, the discrepancies sometimes
observed between different tools for the execution of a same program of the
standardized Modelica language reveal that difficulties still remain. Also, a
closer investigation reveals that the part of Modelica language to handle mode
changes is not compositional, which impairs full compositionality of Modelica
as a whole.

Overall, we think that no fundamental answer has been provided to the
difficulty raised by the following well justified but nevertheless contradictory re-
quirements that underpin the development of a formally sound execution engine
for hybrid systems modelers:

(a) The semantic function, mapping a hybrid systems specification to its ex-
ecutable mathematical model (its operational semantics), should be stati-
cally definable. Such a mapping is indeed the basis for designing formally
sound compilation schemes. In particular, this semantic function should
not get polluted by assumptions such as “f shall be Lipschitz over [1, 2]”
or “boolean condition b shall not be Zeno”, or “the system shall not be
stiff”, etc., as the above are typically value-dependent properties that can
only be handled properly at run time.

(b) Computers can only run according to discrete steps, hence discretizing
must be part of defining the semantic map. Indeed, early hybrid systems
modelers such as MATRIXx 12 in its 90’s generation had made the choice
of using fixed step discretization for ODEs in order to achieve a clean
combination of continuous time parts and mode changes or discrete time
parts. Unfortunately, this design choice contradicted the next (essential)
requirement.

(c) To achieve high computational quality with high flexibility, the discretiza-
tion scheme must be adaptive, meaning that it is determined at run time.
We recall later the background for this.

12http://www.ni.com/matrixx/
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We strongly believe that lack of a theory providing adequate answers to the
above seemingly contradictory requirements (a)–(c) has been the cause for some
of the problems faced by hybrid systems modelers today. Our overall objective
is to address these issues properly.

Contribution of the paper. First, we propose a semantics based on non-standard
analysis after an original idea due to Bliudze and Krob [10]. Roughly speaking,
non standard analysis is an extension of classical analysis in which infinitesimals
(the ε and η in the celebrated generic sentence ∀ε∃η . . . in college maths) can
be manipulated as first class citizens. This provides a “synchronous-like” inter-
pretation of the whole system where the base clock is an infinite sequence of
infinitesimals — it is both dense and discrete. This interpretation clarifies the
treatment of zero-crossings in modelers and provides a firm basis for rejecting
or accepting programs.

Second, by building on top of this non-standard semantics, we develop two
more semantics. The constructive semantics à la Berry [7, 8] allows for a sound
definition of compilation schemes. The Kahn semantics provides the support
for handling cascades of zero-crossings at compile-time and structuring the use
of several ODE solvers.

Third, we discuss how to slice a hybrid systems language into its discrete
part (for handling by off-the-shelf synchronous language compilers( and its con-
tinuous part (for handling by off-the-shelf numerical ODE solvers). Accordingly,
hybrid systems appear as conservative extensions of discrete-time synchronous
languages.

These contributions are substantiated in SimpleHybrid, a simple formal-
ism that incorporates zero-crossings and parallel composition of discrete com-
putations and ordinary differential equations. It is not intended to be a real
language. In particular, it lacks essential features such as function definition
and application. We make it minimal to focus on semantical issues. We report
experiments with a prototype tool based on the material presented in the paper
in Appendix A.

This paper does not address DAEs, supported by Modelica, for example.
We restrict ourselves to a “functional” language in static single assignment form
corresponding to, e.g., a subset of Simulink or a synchronous Lustre-like [20]
language extended with ODEs.

Organization of the paper. In sections 2 to 5 the paper is motivated and the
necessary background material is developed. In particular, section 2 presents
some example programs that employ zero-crossings in subtle ways; these ex-
amples lead us to pose several motivating questions. Sections 3 and 4 present,
respectively, background material on numerical integration and non-standard
analysis. Section 5 develops the fundamental ideas behind the non-standard
semantics and relates them to more standard models.

Sections 6 to 10 present the definition, semantics, and various properties of
the SimpleHybrid language. The language is defined in section 6. A non-
standard semantics follows in section 7. A complementary constructive seman-
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tics is presented in section 8, and applied to the analysis of causality, including
Bond Graphs [35, 29]. In section 9, a Kahn semantics is defined and applied
to the analysis of zero-crossing cascades and multiple solver interactions. Some
practical issues in the compilation of SimpleHybrid programs are outlined
in section 10 and Appendix A contains some results from a related prototype
implementation.

The final part of the paper comprises section 11, on related work, and sec-
tion 12, some concluding remarks.

2. Issues raised by zero-crossings

The following examples illustrate some of the inherent subtleties of zero-
crossings. In these examples, the resetting mechanisms involve tuples of zero-
crossings. For instance, the statement “ reset [1,−1] every up[x,−x]” specifies
that the signals x and −x are monitored for upward crossings of zero (from < 0
to ≥ 0), and further that the signal is reset to 1 when a zero-crossing occurs on
x, and to −1 when a zero-crossing occurs on −x, with priority to the former if
both events occur simultaneously. In Appendix A, examples are expressed in
Simulink and a prototype implementation of SimpleHybrid.

Example 1.

ẏ = 0 init − 1 reset [1,−1] every up[x,−x]
ẋ = 0 init − 1 reset [−1, 1, 1] every up[y,−y, z]
ż = 1 init − 1

In this example, during the interval [0, 1], x and y remain steady (their slope is 0
with an initial value of −1) while z increases at constant speed 1. At t = 1, there
is a zero-crossing of z, which causes the reset of x to 1, which in turn causes a
cascaded zero-crossing of x, which causes the value of y to be reset to 1, which
causes a zero-crossing on y; this then causes a second zero-crossing on x, which
then causes a second reset of the value of y to 1, and so on, unboundedly. These
cascaded zero-crossings occur while time remains stalled at t = 1. The following
figure illustrates this behavior; ε > 0 is a “very small” step size, in that finitely
many ε’s still sum up to ≈ 0. The linear interpolation is only a convenience to
make the diagram more readable.

y

x

+1

−1
ε 2ε 3ε 4ε 5ε 6ε1

This example is certainly pathological. �
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Example 2. In contrast,

ẋ = 0 init − sgn(y0) reset [−1, 1] every up[y,−y]
ẏ = x init y0

is the simplest case of sliding mode control [19, 36]. Suppose y0 < 0, and hence
x0 > 0. Then, y increases at constant speed until its first zero-crossing, just
after time t = |y0|. From then on, y chatters infinitesimally around 0 as its
speed alternates between −1 and +1 with infinitesimal steps, as shown below
with y0 < 0.

2ε 3ε 4ε 5ε 6ε

−ε

+ε

−1

+1

ε|y0|

x

y

This simple example captures the behavior of systems like ABS in automobile
brakes. An adequate interpretation of the behavior of y is averaging over time,
thus resulting in the mean dynamics y, depicted in the thick shaded dynamics
of the figure, where:

ẏ =

{
−sgn(y0), for the interval [0, |y0| )
0 for [ |y0|,∞),

Example 3. For our third example, operator last (x), where x is a signal,
delivers at instant t the left-limit lims↗t xs:

ẋ = 0 init 0 reset [last (x) + 1, last (x) + 2] every up[y, z]
ż = 1 init −1
ẏ = 0 init −1 reset [1] every up[z]

Signal z has a zero-crossing right after t = 1, which causes y to have a cascaded
zero-crossing.

−1

+1

+2

+3

x

y
ε 2ε 3ε 4ε 5ε 6ε1
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We illustrate the behavior of x that results if we consider the cascaded zero-
crossings of z and y as successive “micro-steps”: x has two successive jumps, of
2 and then 1. z is not shown. Alternatively, one could consider that the two
zero-crossings occur simultaneously and then the zero-crossing of y preempts
that of z (since y is listed first), which yields a single jump of 1 for x. Which
semantics is best? �

Example 4. As a fourth example, we consider the case of two balls colliding
next to a wall as shown below.

1 2
w1

d1

The figure shows the initial condition w1 > 0 and d1 < d2 = w2 = 0, meaning
that ball 2 is motionless against the wall, and ball 1 is approaching it at a
constant velocity. To simplify, we consider ideal balls of zero diameter. For
convenience, the system is activated at initial time t = −d1/w1, so that the first
hit occurs right after t = 0. The corresponding equations are:

ẋ1 = v1 init d1
ẋ2 = v2 init d2
v̇1 = 0 init w1 reset last (v2) every up[x1 − x2]
v̇2 = 0 init w2 reset [last (v1) ,−last (v2)] every up[x1 − x2, x2]

Ideally, after the collision, ball 2 would still be motionless against the wall and
ball 1 would be moving toward the left with velocity −w1. But this state is
only reached after a sequence of interactions between both balls and the wall,
the details of which are presented in section 5.3. �

The above examples raise a number of issues:

• Can we propose a semantic domain for these examples?

• Can we use it

– to identify example 1 as pathological, but not example 2?

– to decide on the semantics of example 3?

– to give a semantics to example 4?

• More generally, can we develop a semantic domain to serve as a mathe-
matical basis for the management of (possibly cascaded) zero-crossings?

Some of the above questions have been addressed by mathematicians. Sliding
mode control, of which example 2 is an instance, has been studied in control
science [19, 36]. Similarly, dynamical systems involving subsystems of different
time scales have been studied by mathematicians under the name of singular
perturbations and addressed using averaging techniques [22]. We seek here,
however, techniques based on analyses that compilers can support, not mathe-
matical theories that can only be applied manually.
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3. Background on numerical integration of ODEs

Throughout this paper, N (resp. N+) is the set of non-negative (resp.
positive) integers; Z is the set of integers; R is the set of real numbers and
R+ = [0,+∞).

To motivate our consideration of non-standard analysis, we find it useful to
start with some classical background on the numerical integration of ODEs [12].

Given a continuous function f : [0, 1]→ R, we wish to compute
∫ 1

0
f(t) dt . The

k-stage quadrature formula is∫ 1

0

f(t) dt ≈
k∑
i=1

bif(ci) (1)

where ci are the knots and bi are the weights. Now, with h = (b − a)/N and
tj = a+ jh, we have∫ b

a

f(t) dt =

N−1∑
j=0

∫ tj+1

tj

f(t) dt =

N−1∑
j=0

h

∫ 1

0

f(tj + th) dt

≈
N∑
j=1

h

k∑
i=1

bif(tj + cih) (2)

using (1). The quadrature formula is of order p ∈ N+ if the equality actually
holds in (1) for f a polynomial of degree at most p− 1. This implies that, if f
is q-times differentiable, then the approximation error in (2) is hmin(p,q). It is
known that (1) has order p iff

k∑
i=1

bic
q−1
i = 1/q holds for 1 ≤ q ≤ p. (3)

Fixing the knots in (3) yields a Vandermonde linear system with a unique so-
lution for the bi’s, which yields an order p = k. So-called superconvergence can
be reached, however, meaning that p > k. Techniques based on orthogonal
polynomials allow reaching up to p = 2k (e.g., with Gauss formulas).

Next, consider ODE ẏ = f(t, y), y(t0) = y0 on interval [t0, t0 + h], written

y(t0 + h) = y0 +

∫ t0+h

t0

f(u, y(u)) du (4)

Runge-Kutta (RK) methods for approximating (4) use the following formulas:

K1 = f(t0, y0)

K2 = f(t0 + c2h, y0 + ha2,1K1)

K3 = f(t0 + c3h, y0 + h(a3,1K1 + a3,2K2))

. . .

Kk = f(t0 + ckh, y0 + h(ak,1K1 + . . .+ ak,k−1Kk−1))

y1 = y0 + h(b1K1 + . . .+ bkKk) ≈ y(t0 + h)
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They are obtained by applying quadrature formula (2) when approximating∫ t0+h
t0

f(u, y(u)) du in (4). Multistep methods are also possible. They consist in

using past values of y before t0 in computing (4): (4) is replaced by

y(t0 + h) = y0 +

∫ t0+h

t0

p0(u) du (5)

where p0 is a polynomial of degree q − 1 satisfying

p(tj) = f(tj , yj) for j = −1, . . . ,−q. (6)

Here, t−q < t−q+1 < . . . < t−1 < t0 are the previous instants where an approxi-
mation y−q, . . . , y0 has already been computed and therefore the yj ’s are known.
RK formulas can then be used in solving (5). In all the above approximation
methods, the step size h can be adaptively selected to satisfy given accuracy
requirements by computing nested approximations with different values for h
and comparing them when solving an ODE for a specified horizon.

The crux is that the generic form of an approximation formula for (4) is

y(t0 + h) = y0 + hF (t0, y−q, . . . , y0) (7)

where h is small, q ≥ 0, and y−q, . . . , y0 are as in (6). In (7), h can vary
adaptively, as can F (particularly if multi-step methods are used). The above
discussion is also valid for systems of ODEs, i.e., when y takes values in Rn.

The foregoing formulas are used to approximate the evolution of continuous
variables over a time interval. In a hybrid system these evolutions may be inter-
rupted by discrete events that result in mode changes or discontinuous jumps in
variable values. The instants of occurrence of such events are usually expressed
as a zero-crossing in some quantity g(y), where y are variables constrained by
ODEs and g yields a real value. As a solver progressively advances the simula-
tion time to approximate integral values, it monitors the sign of the value of g,
and if it changes from negative to positive from one approximated instant to the
next the solver enters a phase where it searches for the precise instant where g
crosses zero. When two (or more) zero-crossings that are being monitored both
become very small, a solver will usually take particular care to find the one that
first crosses zero as this could determine which mode is subsequently activated.

The slope of g may be used in determining the gap between successive in-
stants and also in the iterative search, which is usually based on a variant of the
secant method. That said, it is still sometimes necessary to bound the step size
for a particular model to avoid missing zero-crossings where the function being
monitored passes through zero an even number of times in rapid succession.

At this point, it should be clear that it is hopeless to include discretization
schemes of ODEs or DAEs in our semantics. Which is, in any case, impossible
for adaptive schemes where the discretization evolves at run time. We instead
propose non-standard analysis [34, 17] as a semantic domain. In non-standard
analysis, the statement ẏ = xmeans, by definition of the derivative of a function:

∀∂ ' 0 :
yt+∂ − yt

∂
' xt (8)
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where expression “u ' v” is a non-standard expression that reads: “v − u is
infinitesimal”. The use of the heterodox symbol ∂ in (8) is deliberate. It intends
to indicate that the real number referred to is non-standard.

4. Background on non-standard analysis

Non-standard analysis was proposed by Abraham Robinson in the 1960s
to allow the explicit manipulation of “infinitesimals” in analysis [34, 17, 18].
Robinson’s approach is axiomatic; he proposes adding three new axioms to the
basic Zermelo-Fraenkel (ZFC) framework. There has been much debate in the
mathematical community as to whether it is worth considering non-standard
analysis instead of staying with the traditional one. We do not enter this debate.
The important thing for us is that non-standard analysis allows the use of the
non-standard discretization of continuous dynamics “as if” it was operational.

To our surprise, such an idea is indeed not new. Iwasaki et al. [23] first
proposed using non-standard analysis to discuss the nature of time in hybrid
systems. Bliudze and Krob [10, 9] have also used non-standard analysis as a
mathematical support for defining a system theory for hybrid systems. They
discuss in detail the notion of “system” and investigate computability issues.
The formalization they propose closely follows that of Turing machines, with a
memory tape and a control mechanism.

The introduction to non-standard analysis in [9] is very pleasant and we take
the liberty to borrow it. This presentation was originally due to Lindstrøm,
see [28]. Its interest is that it does not require any fancy axiomatic material
but only makes use of the axiom of choice — actually a weaker form of it.
The proposed construction bears some resemblance to the construction of R as
the set of equivalence classes of Cauchy sequences in Q modulo the equivalence
relation (un) ≈ (vn) iff limn→∞(un − vn) = 0.

4.1. Motivation and intuitive introduction

We begin with an intuitive introduction to the construction of the non-
standard reals. The goal is to augment R ∪ {±∞} by adding, to each x in
the set, a set of elements that are “infinitesimally close” to it. We will call
the resulting set ?R. Another requirement is that all operations and relations
defined on R should extend to ?R.

A first idea is to represent such additional numbers as convergent sequences
of reals. For example, elements infinitesimally close to the real number zero
are the sequences un = 1/n, vn = 1/

√
n and wn = 1/n2. Observe that the

above three sequences can be ordered: vn > un > wn > 0 where 0 denotes the
constant zero sequence. Of course, infinitely large elements (close to +∞) can
also be considered, e.g., sequences xu = n, yn =

√
n, and zn = n2.

Unfortunately, this way of defining ?R does not yield a total order since two
sequences converging to zero cannot always be compared: if un and u′n are two
such sequences, the three sets {n | un > u′n}, {n | un = u′n}, and {n | un < u′n}
may even all be infinitely large. The beautiful idea of Lindstrøm is to enforce
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that exactly one of the above sets is important and the other two can be neglected.
This is achieved by fixing once and for all a finitely additive positive measure µ
over the set N of integers with the following properties:13

1. µ : 2N → {0, 1};
2. µ(X) = 0 whenever X is finite;

3. µ(N) = 1.

Now, once µ is fixed, one can compare any two sequences: for the above case,
exactly one of the three sets must have µ-measure 1 and the others must have
µ-measure 0. Thus, say that u > u′, u = u′, or u < u′, if µ({n | un > u′n} = 1),
µ({n | un = u′n}) = 1, or µ({n | un < u′n}) = 1, respectively. Indeed, the
same trick works for many other relations and operations on non-standard real
numbers, as we shall see. We now proceed with a more formal presentation.

4.2. Construction of non-standard domains

For I an arbitrary set, a filter F over I is a family of subsets of I such that:

1. the empty set does not belong to F ,

2. P,Q ∈ F implies P ∩Q ∈ F , and

3. P ∈ F and P ⊂ Q ⊆ I implies Q ∈ F .

Consequently, F cannot contain both a set P and its complement P c. A filter
that contains one of the two for any subset P ⊆ I is called an ultra-filter. At this
point we recall Zorn’s lemma, known to be equivalent to the axiom of choice:

Lemma 1 (Zorn’s lemma). Any partially ordered set (X,≤) such that any
chain in X possesses an upper bound has a maximal element.

A filter F over I is an ultra-filter if and only if it is maximal with respect to set
inclusion. By Zorn’s lemma, any filter F over I can be extended to an ultra-
filter over I. Now, if I is infinite, the family of sets F = {P ⊆ I | P c is finite}
is a free filter, meaning it contains no finite set. It can thus be extended to a
free ultra-filter over I:

Lemma 2. Any infinite set has a free ultra-filter.

Every free ultra-filter F over I uniquely defines, by setting µ(P ) = 1 if P ∈ F
and otherwise 0, a finitely additive measure14 µ : 2I 7→ {0, 1}, which satisfies

µ(I) = 1 and, if P is finite, then µ(P ) = 0.

Now, fix an infinite set I and a finitely additive measure µ over I as above. Let X
be a set and consider the Cartesian product XI = (xi)i∈I . Define (xi) ≈ (x′i) iff

13The existence of such a measure is non trivial and is explained later.
14Observe that, as a consequence, µ cannot be sigma-additive (in contrast to probability

measures or Radon measures) in that it is not true that µ(
⋃

n An) =
∑

n µ(An) holds for an
infinite denumerable sequence An of pairwise disjoint subsets of N.
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µ{i ∈ I | xi 6= x′i} = 0. Relation ≈ is an equivalence relation whose equivalence
classes are denoted by [xi] and we define

?X = XI/ ≈ (9)

X is naturally embedded into ?X by mapping every x ∈ X to the constant
tuple such that xi = x for every i ∈ I. Any algebraic structure over X (group,
ring, field) carries over to ?X by almost point-wise extension. In particular, if
[xi] 6= 0, meaning that µ{i | xi = 0} = 0 we can define its inverse [xi]

−1 by
taking yi = x−1i if xi 6= 0 and yi = 0 otherwise. This construction yields µ{i |
yixi = 1} = 1, whence [yi][xi] = 1 in ?X. The existence of an inverse for any non-
zero element of a ring is indeed stated by the formula: ∀x (x = 0 ∨ ∃y (xy = 1)).
More generally:

Lemma 3 (Transfer Principle). Every first order formula is true over ?X iff
it is true over X.

4.3. Non-standard reals and integers

The above general construction can simply be applied to X = R and I = N.
The result is denoted ?R; it is a field according to the transfer principle. By the
same principle, ?R is totally ordered by [un] ≤ [vn] iff µ{n | vn > un} = 0. We
claim that, for any finite [xn] ∈ ?R, there exists a unique st([xn]), call it the
standard part of [xn], such that

st([xn]) ∈ R and st([xn]) ≈ [xn] . (10)

To prove this, let x = sup{u ∈ R | [u] ≤ [xn]}, where [u] denotes the constant
sequence equal to u. Since [xn] is finite, x exists and we only need to show
that [xn] − x is infinitesimal. If not, then there exists y ∈ R, y > 0 such
that y < |x − [xn]|, that is, either x < [xn]− [y] or x > [xn] + [y], which both
contradict the definition of x. The uniqueness of x is clear, thus we can define
st([xn]) = x. Infinite non-standard reals have no standard part in R.

It is also of interest to apply the general construction (9) to X = I = N,
which results in the set ?N of non-standard natural numbers. The non-standard
set ?N differs from N by the addition of infinite natural numbers, which are
equivalence classes of sequences of integers whose essential limit is +∞.

4.4. Integrals and differential equations: the standardization principle

Any sequence (gn) of functions gn : R 7→ R point-wise defines a function
[gn] : ?R 7→ ?R by setting

[gn]([xn]) = [gn(xn)] (11)

A function ?R→ ?R so obtained is called internal. Properties of and operations
on ordinary functions extend point-wise to internal functions of ?R→ ?R. The
non-standard version of g : R→ R is the internal function ?g = [g, g, g, . . .].

13



The same notions apply to sets. An internal set A = [An] is called hyperfinite
if µ{n | An finite} = 1; the cardinal |A| of A is defined as [|An|].

Now, consider an infinite number N ∈ ?N and the set

T =

{
0,

1

N
,

2

N
,

3

N
, . . .

N − 1

N
, 1

}
(12)

By definition, if N = [Nn], then T = [Tn] with

Tn =

{
0,

1

Nn
,

2

Nn
,

3

Nn
, . . .

Nn − 1

Nn
, 1

}
hence |T | = [|Tn|] = [Nn + 1] = N + 1. Now, consider an internal function
g = [gn] and a hyperfinite set A = [An]. The sum of g over A can be defined:

∑
a∈A

g(a) =def

[ ∑
a∈An

gn(a)

]

If t is as above, and f : R→ R is a standard function, we obtain

∑
t∈T

1

N
?f(t) =

[ ∑
t∈Tn

1

Nn
f(tn)

]
(13)

Now, f continuous implies
∑
t∈Tn

1
Nn
f(tn)→

∫ 1

0
f(t) dt , so,∫ 1

0

f(t) dt = st

(∑
t∈T

1

N
?f(t)

)
(14)

Under the same assumptions, for any t ∈ [0, 1],

∫ t

0

f(u) du = st

 ∑
u∈T,u≤t

1

N
?f(t)

 (15)

Now, consider the following ODE:

ẋ = f(x, t), x(0) = x0 (16)

Assume (16) possesses a solution [0, 1] 3 t 7→ x(t) such that the function
t 7→ f(x(t), t) is continuous. Rewriting (16) in its equivalent integral form

x(t) = x0 +
∫ t
0
f(x(u), u) du and using (15) yields

x(t) = st

x0 +
∑

u∈T,u≤t

1

N
?f(x(u), u)

 (17)

The substitution in (17) of ∂ = 1/N , which is positive and infinitesimal, yields
T = {tn = n∂ | n = 0, . . . , N}. The expression in parentheses on the right hand
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side of (17) is the piecewise-constant right-continuous function ?x(t), t ∈ [0, 1]
such that, for n = 1, . . . , N :

?x(tn) = ?x(tn−1) + ∂ × ?f(?x(tn−1), tn−1)
?x(t0) = x0

(18)

By (17), the solutions x, of ODE (16), and ?x, as computed by algorithm (18),
are related by x = st(?x). Formula (18) can be seen as a non-standard opera-
tional semantics for ODE (16); one which depends on the choice of infinitesimal
step parameter ∂. Property (17), though, expresses the idea that all these non-
standard semantics are equivalent from the standard viewpoint regardless of the
choice made for ∂. This fact is referred to as the standardization principle.

5. Non-standard and standard semantics

The standardization principle will be further developed in this section to
widen the class of hybrid systems for which a semantics (in the standard, usual,
sense) can be given. We build on the seminal paper [1] and we study the class
of hybrid systems defined there.

5.1. The Standardization Principle for Hybrid Systems

We first recall the super-dense time semantics of [30, 25, 27] for hybrid
systems defined in [1]. Then, we give a non-standard semantics for hybrid
systems and formulate the associated standardization principle. Following [1],
a hybrid system is a tuple

H = (Loc,Var ,Edg ,Act , Inv , Ini) (19)

where

• Loc is a finite set of locations; whose representatives are denoted by `;

• Var is a finite set of variables. A valuation v assigns, for each variable
x ∈ Var , a real value v(x) ∈ R. V denotes the set of valuations. A state
is a pair σ = (`, v);

• Edg is a finite set of transitions e = (`, F, `′) where F ⊆ V × V .

• Act , the continuous dynamics, assigns to each location ` a set of ODEs over
variables in Var ; let O` denote the set of ODEs associated with location
` ∈ Loc.15 O` has the form Ẋ = f`(s,X) where X is a vector containing
all variables and s is the time index;

• Inv assigns to each location ` an invariant G` ⊆ V ;

• Ini = (`0 , v0 ) ∈ Loc ×V is the initial condition.

15In [1], so-called activities are directly specified as trajectories; i.e., in our model, as the
solution of a set of ODEs.
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5.1.1. Super-dense time (standard) semantics

A super-dense time semantics was proposed by [30, 25, 27] for a hybrid
system H involving cascaded transitions. We recall it here for the sake of com-
pleteness. The super-dense time (standard) semantics of a hybrid system H is
defined as follows. The time index set is

S = R+ × N

equipped with the lexicographic order: (s,m) < (t, n) if either s < t or s =
t and m < n. A timeline is a function N : R+ 7→ N. N(s) indicates the
number of additional instants that occur at a real date s, and each such timeline
thus specifies a subset of super-dense time SN = {(s, n) ∈ S |n ≤ N(s)}. In
particular, if N is the constant 0, then SN is isomorphic to R+. A run of H is
a finite or infinite sequence

ρ : σ0,0 7→(s1,1)
O0

σ1,1 7→(s1,2) σ1,2 . . . 7→(s1,N1) σ1,N1

σ0,0 7→(s2,1)
O1

σ2,1 7→(s2,2) σ2,2 . . . 7→(s2,N2) σ2,N2
. . .

(20)

of states σi = (`i, vi), non-negative reals 0 < s1 < s2 < . . . , positive integers
Ni, and sets of ODEs Oi, such that

1. O0 = O`0 is defined over the interval (0, s1] and v0 is its initial condition;

2. Oi = O`i is defined over the interval (si, si+1], has vi as its initial condition
and possesses a solution that satisfies the invariant Gi = G`i ; let v′i be the
valuation of the solution of Oi at time si+1;

3. the state σi+1,0 is an Edg-successor of the state σ′i = (`i, v
′
i); furthermore,

when Ni > 1 and for 0 < n < Ni, the state σi,n+1 is an Edg-successor of
the state σi,n.

Observe that run ρ defined in (20) has timeline N equal to N(si) = Ni and
otherwise N(s) = 0.

5.1.2. Non-standard semantics

Fix a time base ∂ ∈ ?R, ∂ > 0, ∂ ≈ 0 and define the time index set

T∂ = {tn = n∂ | n ∈ ?N}

The non-standard semantics of hybrid system H uses T∂ as its time set and is
defined as follows. A non-standard run of H is a finite or infinite non-standard
sequence:

?ρ(∂) : ?σ0 7→∂
?σ1 . . . ?σn 7→∂

?σn+1 . . . (21)

of states ?σn = (`n,
?vn) for n ∈ ?N, such that one of two cases apply:

1. ODE micro-step: ?vn ∈ G`n holds, which then implies `n+1 = `n and
?vn+1 = ?vn + ∂ × f`n(tn,

?vn);
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2. location change micro-step: ?vn 6∈ G`n holds, which then implies that state
?σn+1 is an Edg-successor of state ?σn.

To highlight the dependence of ?ρ(∂) on the time base ∂, we denote its successive
states as ?σn(∂) = (`n(∂), ?vn(∂)). Finally, we set

∀t ∈ ?R+ : ?vt(∂) = ?vn(∂) where n = min{m ∈ ?N | t ≤ tm}

Observe that we could give a non-standard semantics to a hybrid system whose
dynamics, invariants, and edges, are defined using non-standard functions. We
will not, however, develop the idea here; in the sequel, all hybrid systems we
consider are defined in standard terms.

5.1.3. The Standardization Principle

The following theorem plays an essential role in defining the class of hybrid
systems that can be given a semantics in the usual (standard) sense:

Theorem 1 (Standardisation Principle). Assume the following properties:

1. for any location `, the continuous dynamics O` have a unique solution v
such that s 7→ f`(v(s), s) is continuous while v satisfies G`;

2. when activated in any location `, the continuous dynamics will continue
to satisfy G` for some positive non-infinitesimal duration;

3. the transition relations F , arising in Edg, and guards G` are continuous;16

4. there are only finitely many successive cascaded location changes.

Let (tm) be the finite or infinite sequence of instants of zero-crossing, and set
t∞ =def +∞ if (tm) is a finite sequence, and otherwise t∞ =def limm↗∞ tm
≤ +∞. A hybrid system H possesses a unique (standard) solution v over [0, t∞)
such that

v = st(?v(∂)) (22)

for any choice of time base ∂ in the non-standard semantics of H.

Comments. Theorem 1 expresses that, under conditions 1–4, the non-standard
∂-semantics is intrinsic in that its standardization does not depend on the choice
of discretization step ∂.

Conditions 1–3 are smoothness conditions. Condition 1 requires a smooth
continuous-time solution for the dynamics of each location — we used exactly
the same condition while deriving the standardization principle (17) for ODEs.
Condition 2 precludes the situation where an invariant is satisfied when a loca-
tion is entered, only to be violated immediately when the ODE starts. Condi-
tion 3 prevents the reset valuation from having a discontinuity exactly at the
instant of location change — this is trivially satisfied if, for example, reset values

16Formally, x 7→ {y | F (x, y)} is continuous and G` is closed.
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are constant in each location. Sufficient conditions for Conditions 1–3 to hold
are known but are typically beyond the reach of compilers.

In contrast, Condition 4 is interesting as sufficient conditions for it can be
statically checked by a compiler, as shown in section 9.2.1. Additionally, Condi-
tion 4 only involves the discrete parts of a hybrid system; see sections 6 and 10.

Finally, note that defining the semantics over the whole of R+ using Theo-
rem 1 requires that t∞ = +∞; a non-Zenoness condition. �

Proof. The proof is a rather technical extension of the proof of (17). We never-
theless provide the details for the sake of completeness. To simplify the proof,
we assume that transition relation Edg gives raise to a deterministic function
for the next location and valuation; this simplifying assumption prevents us
from dealing with the non-determinism that would otherwise result and that
would complicate the proof in a technical but unimportant way. The reasoning
proceeds by induction on successive groups of cascaded zero-crossings.

Consider an instant t(∂) ∈ ?R+ that is at the head of a cascade of location
changes for the non-standard semantics ?v(∂), meaning that it does not directly
follow any other location change. If no such instant exists, then the theorem is
trivial. Hence, we focus on the other case. Our induction hypothesis consists of
the following two conditions:

(H1) t =def st(t(∂)), which belongs to R+, does not depend on ∂;

(H2) The conclusion of Theorem 1 holds on [0, t].

Let

t(∂) , t(∂) + ∂ , . . . , t(∂) + (n− 1)∂
`1(∂) , `2(∂) , . . . , `n(∂)
v`1(∂)

(
t(∂) + ∂

)
, v`2(∂)

(
t(∂) + 2∂

)
, . . . , v`n(∂)

(
t(∂) + n∂

)
be the finite cascade of n successive instants of zero-crossing starting from t(∂),
the corresponding successive visited locations, and the corresponding reset val-
ues. Using (H1),

map t(∂), t(∂) + ∂, . . . , t(∂) + n∂ to (t, 0), (t, 1), . . . , (t, n) ∈ R+ × N. (23)

Applying hypothesis (H2) to the guard and using Condition 3 proves that

`0 =def `(t(∂)− ∂) does not depend on ∂.

Next, using the definition (9) of non-standard reals as sequences of reals mod-
ulo ≈, write t(∂) = [tn] and ∂ = [δn]. By (H1), limk→∞ tnk

= t, where
N− {nk | k ∈ N} is negligible, i.e., has µ-measure 0. Since ∂ is infinitesimal,
limj→∞ δnj

= 0, where N − {nj | j ∈ N} has µ-measure 0. Since µ is additive,
the union of the above two subsets of N again has µ-measure 0. Reordering
this set as a sequence ni, i ∈ N, we get limi→∞ tni = t, limi→∞ δni = 0, and
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µ(N− {ni | i ∈ N}) = 0. Using hypothesis (H2) regarding F and condition 3 of
Theorem 1, we obtain that

st(v`1(t(∂) + ∂)) = limi→∞ v`1(tni + δni) = v`1(t) does not depend on ∂.

Thus we can define, for (t, 1) as in (23), v(t, 1) = st(v`1(t(∂) +∂)) = v`1(t). Ap-
plying this reasoning inductively allows the definition of successive reset values

v(t, k) = st(v`k(t(∂) + k∂)) = v`k(t), for k = 1, . . . , n (24)

Using Condition 2, we can then start the ODE in the final location `n and
apply the reasoning proving (17) until the next location change. This extends
the induction hypothesis and proves the theorem. �

Theorem 1 can be further refined by weakening its assumptions. Referring to
the non-standard semantics of H, call infinitesimal a micro-step that is an ODE
step where neither ?v(t) nor ?v(t+ ∂) violate the guard. Other micro-steps are
called non-infinitesimal. Accordingly, an ODE step in which ?v(t) is the reset
value resulting from a location change and the guard is violated by ?v(t+ ∂) is
non-infinitesimal. Non-infinitesimal micro-steps must be either location changes
or ODE steps as above, in which the violation of the guard is immediate, i.e.,
occurs within one ∂-step.

Theorem 2 (Standardisation Principle, refined). The conclusion of The-
orem 1 still holds under the following weakened conditions:

1. for any location `, the continuous dynamics O` have a unique solution v
such that s 7→ f`(v(s), s) is continuous while v satisfies G`; [unchanged]

2. [suppressed]

3. the transition relations F , arising in Edg, and guards G` are continuous;
[unchanged]

4. successive non-infinitesimal micro-steps are always finitely many. [new]

The suppression of Condition 2 is critical. It allows the treatment of situations
like that of the colliding balls example (4), which are not addressed by Theo-
rem 1. The proof of Theorem 2 is essentially the same as that of Theorem 1 but
with a change to the last paragraph of the proof of the latter, where Condition 2
is invoked. After (24), we must distinguish two cases:

(i) After the last location change of the cascade, the system can run the
ODE for a positive period of time; for this case, the proof terminates as
in Theorem 1.

(ii) After the last location change of the cascade, the system performs one
more non-infinitesimal micro-step by reaching a location change right after
starting the ODE. Since only finitely many such micro-steps can occur by
the new Condition 4, we are then back to case (i) after the cascade.
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The reason for still considering Theorem 1 is that its Condition 4 can be checked
at compile time, whereas Condition 4 of Theorem 2 can only be checked at
run-time, since it requires checking that an active ODE violates the guard im-
mediately upon starting.

Theorems 1 and 2 widen the class of hybrid systems for which the existence
and uniqueness of a semantics can be statically checked by a compiler. A larger
class of systems can probably be given a semantics through our approach, as
evidenced by the analysis of sliding mode example 2 in section 5.3. Providing a
systematic study of this type of system is left for future research.

5.2. Non-Standard Analysis as a semantic domain for hybrid systems

Applying non-standard analysis to define a semantic domain for hybrid sys-
tems has several advantages.

1. The time set T is both discrete — since each instant has unique previous
and next instants, see formula (18) and section 7 — and dense in R.

2. Since T is discrete, we can specify dynamical systems over T in full gener-
ality, without needing to refer to any kind of smoothness condition. For-
mula (18) is one such instance. As a result, the non-standard semantics
presented in section 7 is simple and elegant.

3. Having a simple operational semantics allows us to develop a compre-
hensive constructive semantics for hybrid systems in their full generality.
Constructive semantics is a mathematical basis from which sound execu-
tion schemes can be derived.

4. The problem with the smoothness condition does not miraculously disap-
pear. But it is postponed to run time, thanks to Theorem 1 (Standardisa-
tion Principle): if, in each state of the hybrid system under consideration,
the continuous dynamics have a unique solution in the usual mathematical
sense, then the Standardisation of our operational semantics computes it.

Observe that the generation of execution schemes only depends on items 1–3,
and not on item 4, which is related rather to issues of variable-step discretization.
In other words, our approach separates the concerns of the computer scientist
(defining a sound operational semantics and related execution schemes), from
those of the numerical analyst (properly configuring numerical solvers).

5.3. Back to the examples

Figures in examples 1–3 plot the non-standard ∂-semantics of examples
(1)–(3) using ∂ = ε. We now discuss these examples in detail together with
example 4.

Example 1. The mysterious behavior of example 1 can now be clarified: the first
zero-crossing occurs at time t = 1+ε (corresponding to 1+ of Example 1). Then,
zero-crossings occur repeatedly and forever with a period of 4ε, thus filling the
timeline until +∞. The non-standard time domain T = {nε | n ∈ ?N} permits
several successive zero-crossings each of zero duration, with time still diverging
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eventually, since we can always find n infinitely large enough so that nε > t for
any t ∈ R+. The key feature of example 1 is that, despite being well defined
within a non-standard analysis framework, there is no possible standardization.
In fact, this example does not satisfy condition 4 of Theorems 1 or 2.

Example 2. In contrast, consider example 2. We claim that the standardization
y = st(y) exists and has the averaged dynamics given just before (3). To show
this, we use a variation of the argument developed in analyzing formulas (12)–
(14), see sections 4.3 and 4.4. Let (x, y) be the non-standard semantics of (2),
i.e., given by Example 2. Again, let εn be the sequence of positive (standard)
reals converging to 0 such that ε = [εn]. Consider the following sequence of
(standard) dynamical systems yn

ẋn = 0 init − sgn(y0) reset [−1, 1] every up[yn − εn,−yn + εn]

ẏn = xn init y0
(25)

The behavior of yn can again be seen in Example 2, with, however, εn sub-
stituted for ε. For any k ∈ ?N, we have kε = [kεn] and thus, since x alter-
nates between −1 and +1 at multiples of ε (see Example 2), it follows that
x(kε) = [xn(kεn)], expressing that x = [xn], see (11). The same reasoning
shows that y = [yn]. On the other hand, using elementary arguments from
standard analysis, (25) defines a sequence of functions ynt , t ≥ 0 that converge
uniformly to y defined just before (3) when n ↗ +∞.17 The above analysis
shows that y = st(y) where y is given by (2) and y is given just before (3).
Still, this example is not easy in that it is neither covered by Theorem 1 nor by
Theorem 2.

Example 3. This example satisfies conditions 1–4 of Theorem 1, which provides
it with a standard semantics using super-dense time [25, 27].

Example 4. In the ∂-non-standard semantics, the colliding balls example be-
haves as follows:

1. At t = ∂, x1 = ∂ · w1 > 0, which causes a zero-crossing on x1 − x2.

2. As a result, at t = 2∂ the balls exchange velocities: v1 = 0 and v2 = w1.

3. At t = 3∂, x1 = 2∂ · w1 and x2 = ∂ · w1, and there is thus a zero-crossing
on x2. Observe that this zero-crossing is immediate; there is no “standard
time” in which the ODEs can evolve.

4. Hence at t = 4∂, x1 = x2 = 2∂ · w1, v1 = 0 and v2 = −w1.

5. At t = 5∂, x1 = 2∂ · w1 and x2 = ∂ · w1, and x1 − x2 crosses zero.

6. Hence at at t = 6∂, x1 = 2∂ · w1, x2 = 0, v1 = −w1 and v2 = 0.

Then, ball 1 moves toward −∞ according to the ODEs and no further zero-
crossings occur. Due to the above step 3, Condition 1 of Theorem 1 is violated

17This is the part of the argument that cannot be invoked for example 1.
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and thus Theorem 1 is not sufficient to give a semantics to the colliding balls
example. Indeed, the successive steps 1–6 do not constitute a single cascade
of zero-crossings, but rather of two successive cascades separated by an ODE
phase of infinitesimal length, a situation not covered by Theorem 1, but covered
by Theorem 2, provided that we prove that only finitely many non-infinitesimal
micro-steps can occur. Executing the non-standard semantics symbolically in-
deed reveals that only steps 1–6 are non-infinitesimal.

6. The SimpleHybrid Formalism

In this section we develop a minimalist language for hybrid systems called
SimpleHybrid which is designed primarily to facilitate mathematical manipu-
lations and focus on the semantics of hybrid systems. This formalism has some
essential features of a language — a small set of primitive entities and statements
plus a composition operator — but lacks essential features such as function def-
inition and application (i.e., modularity). This is addressed in paper [5]. The
statements of SimpleHybrid are equations of the form:

Eq1 : y = f([x])
Eq2 : y = last (x)
Eq3 : ζ = up(x)
Eq4 : ẏ = x init y0 reset z
Eq5 : y = [x] every [ζ] init y0
Eq6 : y = pre (x) init y0

(26)

Formally, SimpleHybrid consists of the following program kernel:

Eq ::= Eq1 | Eq2 | Eq3 | Eq4 | Eq5 | Eq6

S ::= Eq1 | S ‖S
(27)

A system S is an equation of the form Eq1–Eq6 or a parallel composition of
systems. It resembles a Static Single Assignment (SSA) form with intermedi-
ate values stored in variables; a fact which simplifies subsequent mathematical
developments.

Symbols x, y, z, u, . . . denote variables, taken from an underlying set X of
variables, and having respective domains Dx, Dy, etc. [x] = [x1, . . . , xn] is a
tuple of variables. Symbols x0, y1, etc. denote immediate values (e.g., 42, 1.5).
A dotted variable ẏ denotes a derivative. The symbol ζ denotes a zero-crossing
variable taken from a set T ⊂ X of clock variables (generically denoted by the
symbol τ). Clock variables take their values from the set of all clocks, where
a clock is any subset of R+. Equations Eq1–Eq6 define dynamical systems,
or, equivalently, sets of behaviors with time index set R+ = [0,+∞). For
example, an equation y = x (form Eq1, taking f as the identity function)
means ∀t ∈ R+ : yt = xt. Hybrid systems are specified via sets of equations of
the form Eq1–Eq6, taken conjunctively.

22



Well formation rules. Any system S made by composing equations Eq1—Eq6

must verify the following constraints:

1. An equation Eq2 (y = last (x)) is well formed if the variable x is defined
by an equation of the form Eq4 or Eq5.

2. An equation Eq4 (ẏ = x init v0 reset z) is well formed if the variable z is
defined by an equation of the form Eq5.

3. An equation Eq6 (y = pre (x) init v0) is well formed if the variable x is
defined by an equation of the form Eq5.

In the following we give an informal explanation of the language primitives,
without making explicit the necessary continuity and smoothness assumptions
for them to make sense. A more precise mathematical semantics will be given
in the next section.

We identify any clock τ with the boolean predicate it defines (the same
convention also applies to zero-crossings):

τt = if t ∈ τ then t else f (28)

For X ⊆ X finite, a state over X is an element s ∈ DX where DX =
∏
x∈X Dx

and a behavior over X is an element σ ∈ (R+ → DX). For all x ∈ X, let
σ(x) ∈ (R+ → Dx) be the x-coordinate of σ, termed a signal. By abuse of
notation, and as no confusion will result, we write xt instead of σ → σ(t)(x)
and ζt instead of σ → σ(t)(ζ). We now briefly review the primitives listed in
(26).

Eq1: means that yt = f(x1t , . . . , x
n
t ) holds for all t, where f is a total function

over its domain; and the tuple [x] = [x1, . . . , xn];.

Eq2: means yt = xt− =def lims↗t xs, i.e., yt is the left-limit of xs when s
approaches t from below.

Eq3: defines the clock ζ such that, using convention (28):

ζt = [bt− = f] ∧ [bt = t] where bt = [zt≥0]

Thus ζ selects the instants t at which zt crosses zero from below, we
call such a clock a zero-crossing. We consider tuples [ζ1, . . . , ζk] of zero-
crossings, denoted by the symbol [ζ].

Eq4: Given two signals x and y, a value y0, and a discrete signal z (see below),
Eq4 states that ODE ẏt = xt holds with initial condition y0 and is reset
to the value given by z at each instant of the discrete clock of z.

Eq5: Given a signal y, a value y0 ∈ Rn, two matching18 tuples of zero-crossings
and signals [ζ] = [ζ1, . . . , ζk] and [x] = [x1, . . . , xk], Eq5 states that yt = y0

18[x1, . . . , xk] and [y1, . . . , yl] are matching if k = l.
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for t < t1, the first instant of ζ that y has a clock ζ =
⋃k
i=1 ζ

i, and that for
every t ∈ ζi \ (

⋃
j<i ζ

j), zt = (xi)t. That is, when there are simultaneous
zero-crossings, priority is given to the one with the lowest index.

Eq1–Eq5 are sufficient to define systems of ODEs with mode changes and reset
conditions. The statement Eq6 allows the embedding of discrete time systems.
Before explaining it, we must first clarify what we mean by discrete time.

Signals are typed discrete or continuous. For each signal x, we assume a clock
τx such that x is guaranteed constant on the complement of τx. We call τx the
clock of x and take the following convention:

A signal is termed discrete if it has been declared as such, or if its
clock is a zero-crossing. Otherwise it is termed continuous.

Thus, Eq3 defines a discrete clock. Eq5 and Eq6 define discrete signals. Well
formation rules are a weak form of typing constraints: for being properly defined,
the reset argument z from Eq4 must be discrete, hence the sufficient condition
that it must be defined by an equation Eq5. Note that y defined by equation
Eq5 is discrete but [x] is possibly continuous. Finally, x in Eq6 must be discrete,
hence the constraint that it is defined by an equation Eq5.

Appendix A.3 gives an example in Simulink where a discrete signal is used
where a continuous is expected and conversely. This kind of wrongly typed pro-
gram leads to a strange behavior. The well-formation rule is a simple syntactic
criteria to propertly separate discrete from continuous signals.

While mathematically a clock is discrete if its restriction to any bounded
interval of R+ is finite, the property of being discrete or not cannot be stat-
ically checked in general. Hence the declaration or zero-crossing definition of
“discrete”:

(i) It is a syntactic criterion and can thus be statically enforced;

(ii) it usually corresponds with the mathematical definition.

For instance, the set of zero-crossings of a continuous function f :

zero(f) =def {t ∈ R+ | f(t−) < 0 ∧ f(t)≥0}

is a closed subset of R+. If, furthermore, all instants belonging to zero(f) are
isolated, i.e., if a non-empty interval separates each pair of adjacent instants,
then zero(f) is either a finite set or a diverging sequence; in either case it is
discrete in the mathematical sense. Functions f from which zero-crossings are
constructed would typically possess such properties. Of course, property (ii) is
not guaranteed in all cases; the sets of zero-crossings of certain, tricky signals
may very well be Zeno, Cantor, or even an interval of the reals (see example 2).
Statically checking whether a clock is discrete in the pure mathematical sense is
simply not possible. With this definition of discrete clocks, we can now describe
Eq6:
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Eq6: assumes that x is discrete and defines y as the delayed version of x; i.e.
the clock of y equals that of x, τy = τx. At the first instant of this clock
y takes the initial value of x, and thereafter the nth value of y equals the
(n−1)th value of x. Initially, i.e., before any discrete instant, y equals y0.

Remark. Compound statements are expressed in SimpleHybrid as the con-
junction of equations. For example, combining ẏ = y′ init u0 reset z′ (form
Eq4), with y′ = f(x, y) (form Eq1), z′ = [v] every [ζ] init u0 (form Eq5) and
ζi = up(zi) (form Eq3) yields the ODE:

ẏ = f(x, y) init u0 reset [v] every up [z] (29)

which means that ẏt = f(yt, vt) holds with initial condition y0 = u0 and that it
is reset to the value vi each time zero-crossing ζi occurs on zi.

7. Non-standard semantics of SimpleHybrid

The following defines a semantics based on non-standard analysis for Sim-
pleHybrid. We fix the infinitesimal base step as ∂ ≈ 0. Without loss of
generality, we assume that ∂ = [εn] for some decreasing sequence εn of reals
converging to 0, see section 4.3. Following [10], as our universal time base we
replace R+ by the non-standard set:

T = {tn = n∂ | n ∈ ?N} (30)

For t ∈ T, define

•t = max{s | s ∈ T, s < t} t• = min{s | s ∈ T, s > t} (31)

Thus •tn = tn−1 and t•n = tn+1. The most important characteristic of T is that
for every u ∈ R+ there exists a unique t ∈ T such that •t < u ≤ t and t − u
is infinitesimal. Thus although T is dense in R+,19 it can still be treated as
discrete and totally ordered.

A hybrid system is a pair S = (X,Σ) of a finite set of variables X ⊆ X
and a set of behaviors Σ over X. The variables include a subset T ⊂ X of
clock variables, i.e., T ⊆ T . For Y ⊇ X, we can lift Σ to Y , written Σ↑Y,
by taking all behaviors over Y whose projection onto X is in Σ. Then, for
Si = (Xi,Σi), i = 1, 2, we define the parallel composition

S1 ‖S2 =
(
X1 ∪X2,Σ1

↑X1∪X2 ∩ Σ2
↑X1∪X2

)
. (32)

The non-standard semantics of SimpleHybrid is given in Table 1, mid
column. Note the semantics of ζ = up(z) is a “weak preemption” since a

19 “T is dense in R+” means that, for every t ∈ R+ and every ε > 0, the interval (t− ε, t+ ε)
intersects T.
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statement non-standard semantics transition relation

y = f([x]) yt = f([xt]) y = f([x])

y = last (x) yt = x•t y = •x

ζ = up(x) ζt• = [x•t < 0] ∧ [xt≥0] ζ• = [•x < 0] ∧ [x ≥ 0]

ẏ = x init y0
ẏ = x reset z

t ∈ τ \ τz ⇒ yt = y•t + ∂ × x•t
t ∈ τz ⇒ yt = zt

on τ \ τz : y = •y + ∂ × •x
on τz : y = z

y = [x] every [ζ]
y = [x] init y0

t < min(
⋃

i ζi)⇒ yt = y0

t ∈ ζi \ (
⋃

j<i ζj)⇒ yt = xi,t

before min(
⋃

i ζi) : y = y0

on ζi \ (
⋃

j<i ζj) : y = xi

y = pre (x)
y = init y0

τy = τx
t < min(τy)⇒ yt = y0
t ∈ τy ⇒ yt = x•t

τy = τx
before min(τy) : y = y0
on τy : y = •x

S1 ‖S2

S1 = (X1,Σ1)
S2 = (X2,Σ2)

(
X,Σ1

↑X ∩ Σ2
↑X)

where X = X1 ∪X2
conjunction

Table 1: Non-standard semantics of SimpleHybrid.

change in the sign of z at instant t does not result in a zero-crossing until the
next instant t•.

This non-standard semantics defines a transition system acting on T, which is
obtained by abstracting away the time index t from the non-standard semantics
of Table 1, mid column. To this end, for each variable x ∈ X in a given system
S = (X,Σ), we augment X with the two auxiliary variables •x and x•, such
that, for every t

•xt = x•t (assuming t > 0), and x•t = xt• (33)

Using auxiliary these variables, the transition relation is obtained by abstracting
away index t from Table 1, mid column. The result is shown in Table 1, right
column. In this column, statement “on τ” is an abstraction for “∀t ∈ τ” and
statement “before min(τ)” is an abstraction for “∀t < min(τ)”, where τ is seen
as a subset of T.

An important characteristic of this non-standard semantics is that, unlike
for a fixed step-size (standard) semantics, it does not suffer from overshoot prob-
lems for zero-crossings, or even Zenoness, or any need for mentioning continuity
properties, since steps are infinitesimal but “discrete”. Yet the semantics is still
statically defined, as was desired.

8. Constructive semantics of SimpleHybrid

A constructive semantics [7] formalizes how a synchronous reaction should
be executed, that is, how actions should be scheduled within an instant while
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respecting the causality constraints of a program. G. Berry [7] advocates using
a Scott domain with an extra value “undefined”, to be interpreted as “not
executed yet”; the domain of values is made a flat partial order by setting
“undefined is less than any other value”. Esterel reactions are encoded as sets of
equations over the domain and the minimal fix-point is sought by iterating from
the configuration where all variables and signals are undefined. If all variables
are uniquely defined in the fix-point then the reaction is deterministic and can
be executed. An earlier approach was proposed by F. Boussinot [11] based on
micro-step automata, which are automata describing the allowed schedules, and
the decomposition of a reaction into micro-steps of atomic operations. These
two approaches were also developed and shown equivalent for Signal [3].

8.1. The constructive semantics

statement constructive semantics

y = f([x]) [x]B y

y = last (x)

ẏ = x init y0 reset z [ τz, z ]B y

y = [v] every [ζ] init y0 [ [ζ] , [v], y0 ]B y

y = pre (x) init y0 τx B y

S1 ‖ S2 conjunction

Table 2: Constructive semantics of SimpleHybrid.

In this section we develop a Scott semantics for SimpleHybrid. Let ⊥
be a special value not belonging to any domain Dx, to be interpreted as “not
evaluated yet”.20 For x ∈ X , let D⊥x = Dx ∪ {⊥}, and write x = > to mean
that x 6= ⊥. Let B be the scheduling constraint that relates any two variables
u and v, that have, respectively, domains D⊥u and D⊥v :

uB v =def [u = >] ∨ [v = ⊥] (34)

i.e., u B v means [v = >] ⇒ [u = >], which formalizes that “v cannot be
evaluated strictly before u”. In particular, for any clock τ ,

∀t ∈ τ ⇒ xt B yt =def [xt = >] ∨ [yt = ⊥] ∨ [τt = f]

where τt is defined in (28). Observe that statements of the form v = f(u),
where f is a function, are abstracted to u B v since v can always be replaced

20This notation deviates from the historically established use of the symbol⊥ in synchronous
languages to denote absence. Signal absence is a well-defined status obtained during the
calculation of a reaction. Thus “absence” and “not evaluated yet” should not be confused.
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by f(u). The relation B expresses causality constraints within systems of equa-
tions. The constructive semantics is obtained from the non-standard semantics
by 1/ replacing any statement of the form yt = exp where expression exp in-
volves variables xt, ut, τt for t ∈ T, by the more abstract scheduling constraints
xt B yt, ut B yt, and τt B yt, 2/ abstracting away any context (such as induced
by reset , init , every ), and 3/ abstracting away dummy time index t. The
result is shown in Table 2, where [u, v]B x means the conjunction of uB x and
v B x .

Remark. It is tempting to extend SimpleHybrid with the statement x B y,
which would be treated similarly to Eq1. Doing so would make it possible to
express the causality analysis of a SimpleHybrid program, and even addi-
tional scheduling constraints that the programmer may want to enforce, in the
language itself. Such ideas already exist, in fact, in the Signal synchronous
language [4].

8.2. Various uses of the constructive semantics

In this section we develop various uses of the constructive semantics.

8.2.1. Avoiding causality cycles

Using the above abstraction, the transitive closure of relation B is a pre-
order on X, which we will also, by abuse of notation, call B. If S is such
that B is a partial order, then S is free of causality cycles and its variables
can be evaluated according to any order compatible with B. The only possible
cause of cycles in relation B is through sets of statements of form Eq1. This
justifies the requirement that programs must not have any delay-free, derivative-
free, data-flow cycles. If this condition is satisfied, topological sorting yields the
required scheduling. In other words, the classical technique used in synchronous
languages (e.g., Lustre, Lucid Synchrone, Scade) also applies here. For the
remainder of this section, we assume that this requirement is met.

8.2.2. Single-assignment condition

We say that a system S obeys the single-assignment condition if no variable
of S sits on the left-hand side of two or more equations. The following lemma is
instrumental in obtaining the correct schedulings for executing a SimpleHybrid
system.

Lemma 4. If S is free of causality cycles and obeys the single-assignment con-
dition, then it defines a deterministic input-output transition system and the
partial order B specifies all correct schedulings for the execution of S.

The correct schedulings are obtained by applying topological sorting on the
graph defined by the relation B used in the constructive semantics of Table 2.
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8.2.3. Bond Graph’s causality analysis

Our constructive semantics can be enhanced to encompass the “causality
analysis” performed in Modelica or in Bond Graphs [35, 29]. Suppose that the
causal equality of Eq1 were replaced by a more general form of constraint:

Eq1′ : C(X), where
C is solvable for Y ⊂ X (35)

C(X) denotes a constraint that relates the tuple of variables belonging to X.
The additional clause states that, for every variable y ∈ Y , there exists a func-
tion fy of the set of variables X/y = X \ {y}, such that C(X) holds if and only
if y = fy(X/y). Typical examples are the constraints defined by the series and
parallel junctions in Bond Graphs [35, 29], where, respectively, so-called “ef-
forts” and “flows” sum to zero. Consider x+ y + z = 0, for example. We have
X = Y = {x, y, z}, since we can rewrite the junction as x = −y−z, y = −x−z,
or z = −x−y. This kind of junction arises, for example, from the application of
Kirchoff’s laws in electrical circuits. Of course, solving such constraints requires
a suitable rewriting engine.

In the constructive semantics, statement (35) becomes

Eq1′ :
∨
y∈Y

(X − {y})B y (36)

which consists of a disjunction of causality constraints. Then, the causality anal-
ysis “à la Bond Graph” consists in computing the disjunction of all compatible
conjunctions of causality constraints selected from each instance of equation of
the form Eq1′ in the SimpleHybrid system. If, furthermore, inputs to the sys-
tem (called “sources” in the terminology of bond graphs) are specified by the
designer, then the subset of solutions compatible with this specification can be
inferred.

9. Kahn semantics of SimpleHybrid

The theory of Kahn Process Networks [24] provides a semantics for networks
of dataflow actors. We show how an extension of this theory [15] can be ap-
plied to SimpleHybrid by considering primitive equations as dataflow actors.
The semantics we obtain in this way refines the constructive semantics of Sec-
tion 8. The resulting Kahn semantics will be useful in managing cascades of
zero-crossings as well as multiple ODE solvers.

9.1. The Kahn semantics

To simplify we assume a unique domain D for all variables x ∈ X and we
reuse the extended domain D⊥ = D ∪ {⊥} introduced in section 8. We define
an ordering ≤ on D⊥ such that for all u, v ∈ D, ⊥ ≤ v, and otherwise u ≤ v iff
u = v. Let (T,≤) be a partial order of instants. Consider the set X⊥ of total
functions:

X⊥ = T 7→ D⊥
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We define a partial order relation on X⊥: for x,y ∈ X⊥, x is a prefix of y,
written x v y, if

∀t ∈ T : y(t) 6= x(t) ⇒ ∀t′ ≥ t : x(t′) = ⊥ (37)

Note that (37) only requires T to be partially ordered. Note also that the
definition allows “gaps” in the defined values. For instance:

x : 1,⊥, 2,⊥,⊥,⊥, . . . v y : 1,⊥, 2,⊥, 3,⊥, . . .

For u ∈ T we denote by xu an arbitrary stream such that x(v) = ⊥ for every
v ≥ u. An increasing chain of such functions is denoted by {xu}u∈T. Adapting
the reasoning of [15], Proposition 1, we now show that

Lemma 5. (X⊥,v) is a Complete Partial Order (CPO).

Proof. There is a least element of v in X⊥: ⊥(t) = ⊥, for all t ∈ T. Given
x v y in X⊥, then x(t) ≤ y(t) holds for all t ∈ T. Thus, if {xu}u∈T is a chain
in X⊥, then, for any t ∈ T, {x(t) | x ∈ {xu}u∈T} is a chain in D and we can
define

(⊔
u∈T xu

)
(t) =

⊔
u∈T xu(t). �

From now on we further assume that T is totally ordered. Consider the subset
of X ⊂ X⊥ of streams consisting of those elements of X⊥ having no gap:

X = {x ∈ X⊥ | x(t) 6= ⊥ ⇒ ∀s ≤ t,x(s) 6= ⊥}

Since T is totally ordered, streams consist of a (possibly infinite) prefix of defined
values, followed by a tail of ⊥s. X is closed in X⊥ under supremum, hence

Lemma 6. (X,v) is also a CPO.

A stream is equally well characterized by its prefix of non-⊥ entries (its defined
prefix ), and this is the representation we will use in the sequel. Accordingly, v
is simply the prefix order on X. A function f : X 7→ X is order-preserving if,
for any two streams x and y, x v y implies f(x) v f(y). Furthermore, f is
continuous if ⊔

u∈T
f(xu) = f

(⊔
u∈T

xu
)

for any chain {xu}u∈T of streams. The fix-point theorem for CPO’s states that
any continuous function has a unique least fix-point x such that x = f(x), we
call it the Kahn Process Network semantics (KPN semantics) of f . It is known
that products of CPO are CPO and that KPN compose.

We now apply this general framework to our case where T is given by (30).

Theorem 3. If a SimpleHybrid system S = (X,Σ) is free of causality cycles
and obeys the single-assignment condition (see Lemma 4), then it possesses a

KPN semantics SK. Furthermore, if S = S1 ‖S2 holds, then SK = SK
1 ‖

K
SK
2

follows, where ‖K denotes the composition of KPN.
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statement S Kahn actor network [[S]]K

y = f([x]) [x] −�→ y

y = last (x) •x−�→ y

ẏ = x init y0 reset z [ τz,
•x, y0, z ] −�→ y

y = [v] every [ζ] init y0 [ [ζ] , [v] , y0 ] −�→ y

y = pre (x) init y0 [ τx,
•x, y0 ] −�→ y

S1 ‖ S2 [[S1]]K ∪ [[S2]]K

Table 3: Kahn actors of SimpleHybrid.

Proof. Partition the setX of variables into its inputs and outputs: X =X in]Xout,
where input variables are those which do not appear on the left hand side of
any statement of S. By Lemma 4, S is a deterministic input-output transition
system, whose transition function

FS : D
•Xout

×DXin

7→ DXout

(38)

is obtained by applying the rules of Table 1, right column. Consequently, system
S performs a non-terminating while loop of steps of the form (38) indexed by
t ∈ T and starting from some given initial condition for the output variables;
whence the following model for S:

S : D
•Xout

× (DXin

)T 7→ (DXout

)T (39)

Model (39) expresses that S maps a pair, consisting of an initial condition for
Xout and an input stream of vectors X in, to an output stream of vectors Xout.
Using Curry isomorphism, we can equivalently regard S as a function mapping
an input vector of streams to an output vector of streams, thus obtaining in this
way its KPN semantics:

SK : D
•Xout

× (DT)X
in

7→ (DT)X
out

(40)

Now, if S decomposes as S = S1 ‖S2, we claim that

SK = SK
1 ‖

K
SK
2 (41)

where ‖K denotes the composition according to the Kahn Process Network
(KPN) semantics. To show this, note that SK is a KPN semantics of the system
of equations defined by the pair (SK

1 , S
K
2 ). Since, by the fix-point theorem for

CPOs, this KPN semantics is unique, equality (41) holds. �

Using Theorem 3, we can interpret Table 1, right column, as KPN nodes,
also called actors. Networks of actors for SimpleHybrid statements are given
in Table 3. Notation [u, x] −�→ y denotes an actor having u and x as input
streams and y as output stream. The symbol ∪ denotes the union of KPNs,
seen as graphs.
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statement [[S]]ZC : zero-crossing calculus

y = f([x]) y = f([x])

y = last (x) y = last (x)

ζ = up(z) ζ = up(z)

ẏ = x init y0 reset z y = z

y = [v] every [ζ] init y0 y = [v] every [ζ]

y = pre (x) init y0 y = pre (x)

S1 ‖ S2 [[S1]]ZC ‖ [[S2]]ZC

Table 4: The zero-crossing calculus of SimpleHybrid.

9.2. Various uses of the Kahn semantics

We now review various uses of the Kahn semantics, for the detection of
unbounded cascades of zero-crossings and for the management of multiple ODE
solvers.

9.2.1. Bounding cascades of zero-crossings

Theorem 1, the Standardisation Principle, requires that cascades of succes-
sive zero-crossings contain only finitely many zero-crossings (Condition 4). In
this section we develop an abstraction to check whether a program satisfies this
condition. The principle is to erase, in every primitive statement of SimpleHy-
brid, the fields that relate either to initial conditions or to the progress of an
ODE. Doing so yields the zero-crossing calculus of Table 4. Since initial condi-
tions are constants, there is no need to keep them in the zero-crossing calculus.
This calculus can be applied to the examples of section 2, as we now show.

Example 1. The zero-crossing calculus yields:

y = 1 every up(x) ‖ x = −1 every up(y)
‖ y = −1 every up(−x) ‖ x = 1 every up(−y)

‖ x = 1 every up(z)
(42)

To calculate the Kahn actor semantics of (42) we make the various zero-crossings
explicit by setting ζ+x = up(x), ζ−x = up(−x), with corresponding definitions
for ζ±y and ζz. Using these notations, the Kahn semantics of (42) is:

x−�→ ζ−x
• ∪ x−�→ ζ+x

• ∪ ζ−x −�→ y ∪ ζ+x −�→ y
∪ y−�→ ζ−y

• ∪ y−�→ ζ+y
• ∪ ζ−y −�→x ∪ ζ+y −�→x

∪ z−�→ ζz
• ∪ ζz −�→x

(43)

which exhibits a cycle of zero-crossings: ζ±x −�→ ζ±y
•−�→ ζ±x

••. Therefore,
there is a risk that condition 4 of theorem 1 does not hold. We can refine
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this analysis by considering (42) directly. As soon as x and y are initialized to
negative values, the following cascade of zero-crossings repeats for ever and is
triggered by the occurrence of ζz: ζ

+
x , ζ

+
y , ζ

−
x , ζ

−
y , ζ

+
x , . . ., and such an infinite

periodic cascade indeed occurs in the non-standard semantics.

Example 2. The zero-crossing calculus yields:

x = −1 every up(y) ‖ x = 1 every up(−y) (44)

The Kahn semantics becomes

y−�→ ζ+y
• ∪ ζ+y −�→x ∪ y−�→ ζ−y

• ∪ ζ−y −�→x

which, in turn, exhibits no cycles of zero-crossings. And thus, condition 4 of
theorem 1 holds. Condition 1 does not, however, hold for this sliding mode
example, showing that the analysis of zero-crossing cycles is no panacea.

Example 3. The zero-crossing calculus yields:

x = last (x) + 1 every up(y) ‖ y = 1 every up(z)
‖ x = last (x) + 2 every up(z)

(45)

which, in the Kahn semantics, becomes

y−�→ ζy
• ∪ ζy −�→x ∪ •x−�→x every ζy

∪ z−�→ ζz
• ∪ ζz −�→x ∪ •x−�→x every ζz

∪ z−�→ ζz
• ∪ ζz −�→ y

and the lack of zero-crossing cycles implies that condition 4 of theorem 1 holds
for this example.

Example 4. It is not covered by this analysis and requires Theorem 2.

An autonomous ODE with reset. In addition, consider the following example:

ẋ = f(x) init 0 reset g(last (x)) every up(x− λ)

where λ is a real parameter. The zero-crossing calculus yields

x = g(last (x)) every up(x− λ) (46)

which, in the Kahn semantics and with some obvious notation, becomes

x−�→ ζλx
• ∪ ζλx −�→x ∪ last (x) −�→x every ζλx

which contains a path ζλx −�→ ζλx
•. But, there will be no cascaded zero-crossings

because for x to exceed λ requires a strictly non-zero period of time, whatever
the value of λ.
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A criterion. A risk of cascading zero-crossings can be detected for a system
S, whose set of variables of zero-crossing is denoted ZS , by considering, for
ζ, ζ ′ ∈ ZS , the relation:

ζ
•→ ζ ′ if

ζ 6= ζ ′ and ζ −�→∗ ζ ′• holds in the abstract Kahn semantics of [[S]]
ZC

(47)

where superscript ∗ indicates iteration. An occurrence of ζ followed immediately,
that is, at the next ∂-step, by an occurrence of ζ ′ indicates the possibility of a
cascade of zero-crossings. Whence the following criterion:

Lemma 7 (cascaded zero-crossings). Let ZS be the directed graph collect-
ing all relations of the form (47). If ZS contains no cycles, then all cascades of
successive zero-crossings of S are provably finite.

The study of the examples shows that, when ZS does contain a cycle, a re-
fined study can be performed by statically analyzing [[S]]

ZC
. The corresponding

developments are not detailed here.

9.2.2. Managing Multiple ODE solvers

Let ./ be the least equivalence relation on the set of variables of S such that

•x−�→∗y and •y−�→∗x ⇒ x ./ y (48)

Equivalence classes for ./ are written between braces, e.g., {{x}}, {{y}}. We
regard them as odesims of variables and call them clusters. Cluster {{x}} is such
that every component of it causally depends on every component of •{{x}}. For
two distinct clusters {{x}} and {{y}}, let {{x}} � {{y}} if u−�→∗v or •u−�→∗v
holds, for some pair (u, v) such that u ∈ {{x}}, v ∈ {{y}}. Relation � is a partial
order if the system under consideration is free of causality cycles.

By the non-standard and Kahn semantics of SimpleHybrid, variables be-
longing to the same cluster must be handled as a system of interconnected
ODEs with associated zero-crossings. For a system with two clusters such that
{{x}} � {{y}}, a first ODE solver could be given the variables belonging to {{x}},
and some of its output variables could serve as inputs for another ODE solver
associated with {{y}}.

Managing solvers in this way can improve some aspects of variable step size
tuning. More precisely, when using a single ODE solver to simulate a system,
the choice of step size is governed by the sub-systems of strongest stiffness. This
is undesirable when not all of the sub-systems actually interact, i.e., when some
of them belong to different equivalence classes of ./. When combined with loose
handling of the distinction between continuous and discrete behaviours (as is
the case in Simulink), this fact can result in the manifestation, in simulation
results, of strange couplings between seemingly non-interacting sub-systems.

10. Off-the-shelf compilers

In this section we explain how to derive a SimpleHybrid compiler by reusing
a legacy synchronous compiler in combination with a legacy ODE solver. The
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synchronous language engine will regard the activation of ODE between two
successive zero-crossings as just another (big) step, abstracting away from the
fact that this step is managed by an external engine, namely the ODE solver.
Throughout this section, the following assumption is in force:

Assumption 1. The system S satisfies the assumptions of Theorem 1.

The key idea is to structure SimpleHybrid systems in a specific way. Decom-
pose every SimpleHybrid system S as

S = SODE ‖ SnoODE, (49)

where SODE and SnoODE are constructed as shown in Table 5. This structuring
is explained next.

statement of S Assigned to SnoODE Assigned to SODE

y = f([x]) on ζS : y = f([x]) outside ζS : y = f([x])

y = last (x) on ζS : y = last (x) outside ζS : y = last (x)

ζ = up(x) ζ = up(x)

ẏ = x init y0
ẏ = x reset z

ẏ = x init y0
ẏ = x reset z

y = [x] every [ζ]
y = [x] init y0

y = [x] every [ζ]
y = [x] init y0

y = pre (x)
y = init y0

y = pre (x)
y = init y0

Table 5: Structuring a system into its discrete and ODE parts. The added
guards are shown in red.

Subsystem SODE is the part of S that is to be submitted to an ODE solver. Nu-
merical solvers like the CVODE or CVODES solvers in the Sundials suite [21]
solve systems of ODEs with initial conditions with respect to an independent
variable (usually denoting time); they typically also include a feature for detect-
ing and halting at zero-crossings Accordingly, SODE must include all equations
of S of forms Eq1–Eq4. Indeed, Eq4 (ẏ = x init y0 resetu) denotes an ODE
with its initial condition and reset signal. The actual expression defining x
in Eq4 uses equations of the form Eq1 (instantaneous function) and Eq2 (last
state). Since the ODE solver is in charge of detecting zero-crossings, equations
of the form Eq3 must also be included in SODE.

Subsystem SnoODE is the part of S to be handled by a synchronous language
engine. SnoODE must include all those equations of S that have one of the forms
Eq1,Eq2, Eq5, or Eq6. Equations of forms Eq1 and Eq2 are needed because the
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variables they define may occur in expressions defining tuples of reset signals [v].
Equations of form Eq5 describe the discrete parts of S, i.e. those parts triggered
by zero-crossing tuples [ζ], that may incorporate discrete states defined by Eq6.

Guards must be added to equations of forms Eq1 and Eq2. This addition is
necessary to preserve the single-assignment property. Equations of forms Eq1

and Eq2 are considered as part of SnoODE at instants of zero-crossing, and
otherwise as part of SODE. This is achieved by reusing the technique of guards
already used in Table 1 for the definition of the transition relations associated
to SimpleHybrid. For instance, statements

“on ζS : y = f([x])” and “outside ζS : y = f([x])”

respectively mean

∀t ∈ ζS : yt = f([xt]) and ∀t 6∈ ζS : yt = f([xt]).

SnoODEζnoODE SODE

uu

ζODE ζODE

Figure 1: Two-mode automaton. Left: synchronous engine. Right: ODE solver.

The following observations can be formulated using decomposition (49) and
Table 5, see Figure 1. Using Theorem 1, partition clock ζS into the instants ζODE

of zero-crossing triggered by the activation of the ODE part, and the instants
ζnoODE of cascaded zero-crossings. The discrete part SnoODE is activated on
ticks of clock ζS = ζnoODE ∨ ζODE. SnoODE is responsible for setting the reset
signals u of the ODE part SODE. The left mode is handled by the synchronous
engine, whereas the right mode requires an activation of the ODE solver.

What happens if the assumptions of Theorem 1 are not satisfied? We will not
provide a comprehensive solution for this case, but we can offer some hints for
when the weaker assumptions of Theorem 2 apply — such as in the colliding
balls example 4. Instead of SnoODE being triggered by (possibly cascaded) zero-
crossings, we must consider that SnoODE is triggered by the larger set of so-called
“non-infinitesimal” steps. This includes runs of the ODE part that violate the
guard immediately upon starting, see step 3 of the non-standard semantics of
Example (4). A new difficulty arises in this case, namely: no static typing seems
to exist that can separate the duties of SnoODE from those of SODE. Of course,
the handling of example 2 is even more difficult.
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11. Related work

There are not very many studies on hybrid systems modelers in terms of
programming language semantics. We discuss the few that we know of and
consider relevant for comparison. First of all, we would like to recall the legacy
work [2] by one of the authors. In fact, the agenda presented in that paper
closely resembles the one we develop here. Except that the tool of non-standard
analysis was not used. As a consequence, [2] suffers from some hand waving, as
careful readers will notice. A very preliminary version of this work was presented
in [6].

The Ptolemy project. Perhaps the work the most similar to ours is that of
E.A. Lee and H. Zheng [25, 27] in the context of the Ptolemy project. One of
the problems it addresses is the handling of discontinuities in hybrid systems
modelers. For a typical situation where discontinuities occur consider an ODE
ẋ = f(x, u), where u is some input signal and the initial condition is discarded.
Suppose that, at the first instant where g(x) ≤ 0 for some real-valued function
g, the above ODE is reset to x = h(v) for some other input signal, and then it
restarts and the same thing happens again. To properly handle this resetting
mechanism, the following critical values of x must be considered: 1) the first
x where g(x) ≤ 0 holds in the ODE; and 2) the resetting value x′ = h(v) at
the same instant. From the mathematical viewpoint, the two values for x occur
at the same time, but they are causally ordered. This schizophrenia for x is
unavoidable. Following the idea of tagged signals initially proposed in [26], the
solution taken in [25, 27] is to tag events with an extended time index taken
from index set R+×N equipped with the lexicographic order. In this approach,
the two values for x would be indexed respectively as xt,0 and xt,1 = x′, where
t ∈ R+ is the common real instant at which the two events occur. The tag set
R+ × N is referred to by the authors as super-dense time.

Our present approach avoids using this mechanism of super-dense time, be-
cause non-standard index set T is both discrete and dense. The existence of
previous instants •t and next instants t• was used in Table 2 as an alterna-
tive to the multi-dimensional instants (t, 0) and (t, 1) of [25, 27]. The operator
last (x) of SimpleHybrid in particular uses the previous instant •t. Note that
this complies in fact with the integration operator that is provided in Simulink:
equation (x, lx) = integr(x0, x

′, r) defines x to be the integral of signal x with
initial value x0. In this equation, r is a reset condition. Then, lx stands for the
internal state; lx equals x except at instants of reset, where it is used to avoid
algebraic loops. Thus, lx corresponds to last (x) in SimpleHybrid.

On another aspect, the work [25, 27] is made complicated by issues of
smoothness, Lipschitzness, existence and uniqueness of solutions, Zenoness, etc.
This is particularly evident in Section 6 of [25] on “Ideal Solver Semantics” and
Section 7 of [27] on “Continuous-Time Models”. In our approach — compare
section 7 of this paper with the above mentioned Sections of [25, 27] — these
issues are postponed to the very end, after execution schemes have been built
and the result is submitted to solvers. The problems do not disappear from
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the whole process, rather they are postponed to run time, as per the desire
expressed in the introduction. Our job, as computer scientists, is thus nicely
isolated and cleanly separated from that of numerical analysts.

The work performed at The Mathworks. The work performed by P. Mosterman
and his co-workers at The Mathworks [31] is also very interesting, in its attempt
to establish the Simulink modeler on a solid semantic basis. The authors begin
by acknowledging the need for variable step solvers. The contribution of this
paper is to show how (a restricted class of) variable step solvers can be given a
functional stream semantics [16].

To achieve this, the class of solvers is first restricted to those relying on
explicit schemes, as implicit ones cannot directly be manipulated into explicit
functional form. The second difficulty consists in the use of iterative solving
in order to adapt the variable step size online — see our discussion following
equation (6) in section 3. This mechanism, again, does not have a functional
shape since several successive integrations with different step sizes are compared,
for a single time interval, in order to select the appropriate step size. [31]
proposes to re-cast the above procedure to a functional form by replacing a
repeated integration with smaller step size, by its increment with respect to the
previous integration. If explicit schemes are used, then an explicit form for this
increment can be found and added to the previous integration. Observe that this
technique requires using the mechanism of super-dense time since a single time
interval is processed several times until an adequate step size is found. The same
principle can be applied to the detection of zero-crossings, but this requires using
the counterpart of explicit schemes, namely cautious zero-crossing detection by
slowing down without overshoot. While this indeed provides a hybrid systems
modeler with a stream semantics, this semantics is rather complex since it makes
the discretization method explicit; in particular, changing the latter changes
the semantics. This approach forbids the use of implicit schemes, although they
are valuable from the numerical analysis point of view. We also believe that
this method cannot easily support the kind of clock-configuration-dependent
causality analysis like that provided by our constructive and Kahn semantics.

The work of Ramine Nikoukhah. In [33], R. Nikoukhah discusses cascaded zero-
crossings. He advocates using a micro-step style of interpretation, where cas-
caded zero-crossings are interleaved non-deterministically. We prefer a syn-
chronous interpretation in which the programmer makes explicit what to do
when two zero-crossings occur. Then non-determinism arises solely from nu-
merical solvers, and not from the semantics of a program. Because the effect of
up(e) is delayed by one cycle of T, a cascade of zero-crossing can last for several
successive instants of T. Note that the synchronous interpretation coincides
with that of Simulink (see discussion in Appendix A) where zero-crossings have
an immediate effect.
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12. Conclusion

We have proposed a novel approach to defining the semantics of hybrid sys-
tems modelers with the following objectives: To leave the choice of integration
method for ODEs totally free, as such a choice must be governed by numeri-
cal considerations only; To cast hybrid systems as a conservative extension of
discrete time ones; To give semantic support for the following tasks:

• Scheduling different actions triggered by zero-crossings;

• Safely typing operators that are only defined in discrete contexts;

• Rejecting programs with causality cycles (or, at least, providing precise
warnings); Supporting a causality analysis à la Bond Graph;

• Allowing the use of several local solvers instead of a single, global, one,
with the objective of limiting side effects between non-interacting sub-
systems, due to step size adjustments.

Achieving these objectives was made possible thanks to the use of non-standard
analysis as a semantic domain. The main point is that a non-standard semantics
allows a clean separation between the tasks of the computer scientist (answering
the above questions) and that of the numerical analyst (tuning solvers). Also,
we believe that non-standard semantics is not a fancy thing for math addicts,
but rather a very natural way of viewing continuous-time and hybrid systems in
a syntactic manner, as computer scientists usually prefer. While the first author
has been aware of non-standard analysis since the mid-eighties, it is only the
presentation by Lindstrøm [28], as reported in [9], that allowed the authors to
become familiar with the subject.

Are we done with semantic issues? Not quite. Our standardization principle
(Theorem 1) provides an adequate answer for Examples 1 (no semantics) and 3
(super-dense time semantics). Example 4 (colliding balls) was covered by our
extended standardization principle (Theorem 2). However, the example 2 (slid-
ing mode control) is not covered by our theory. yet, it is physically relevant and
we would like to give it a meaningful standard semantics, and, possibly, provide
effective execution schemes for it.21 This is left for future research. The study
of DAE compliant hybrid systems modelers, such as Modelica, with the same
objectives is also left as a future objective.
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21Analyses of such examples can be performed manually by a mathematician. For example,
sliding mode control is known to control scientists [19, 36]. Similarly, systems with time scales
differing by orders of magnitude are known to mathematicians and referred to as singularly
perturbed systems [22]. What we want instead are automatic compilation techniques able to
handle such systems.
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Appendix A. Experimental results

We have modeled Examples 1 to 3 in both Simulink (version 7.7.0.471,
R2008b) and a prototype tool based on the Sundials (version 2.4.0) CVODE
library [21]. The results are presented and discussed in this appendix.

Appendix A.1. Using Simulink

Example 1. The implementation of Example 1 in Simulink is shown in Fig-
ure A.2a. It can be written as the set of equations:

y = 1/s(iy, updown(lx), 0)
x, lx = 1/s(ix, updown(zx), 0)
z = 1/s(−1, 1)
iy = switchup(lx, 1,−1)
ix = switchup(y,−1, switchup(−y, 1, switchup(z, 1,−1)))
zx = switchup(y,−1, switchup(−y, 1, switchup(z, 1,−1)))

where:

1/s(init, zero, input) is the integral of a signal input with initial value init that
is reset on the zero-crossing zero (which is sometimes omitted). This
operator may return a second output; the so-called state port which cor-
responds to the left limit of signal x. The second output is written lx in
the above equations.

updown(r) outputs 1 when a rising or falling zero-crossing is detected on r oth-
erwise it outputs 0; up(r) is similar but only detects rising zero-crossings.

switchup(x, e1, e2) returns the value of e1 when x crosses zero, and the value
of e2 otherwise. In Simulink, switchup(x, e1, e2) is implemented with a
switch operator and a (rising) hit-crossing operator applied to x.

The zero-crossing handler [−1, 1, 1] every [y,−y, z] is encoded with two equa-
tions: the equation ix defines the initial value for x, and the equation zx detects
zero-crossings on y, −y and z. The latter equation cannot simply be written

switchup(y, 1, switchup(−y, 1, switchup(z, 1,−1)))

because its value must alternate with each successive zero-crossing. In this case,
as we know that zero-crossings occur first on z, then on y, and then on −y, we
choose the values so as to go from −1 to 1 when there is a zero-crossing on z,
then to −1 for a zero-crossing on y, and then to 1 for a zero-crossing on −y.

The simulation results are presented in Figure A.2b. Between time 0.0 and
time 1.0 the value of z increases while those of x and y remain constant. When
z crosses 0, just after time 1.0, the signal labeled ixxx in Figure A.2a changes
from −1 to 1, this value is passed through onto ixx, and then to ix and zx
which causes the reset of the integrator for x to 1. The value of lx, the state
port of the integrator for x, does not change from −1 to 1 immediately, but
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rather on the subsequent step, this gives a rising zero-crossing which causes
the reset of the integrator for y to 1. This reset is detected immediately as a
zero-crossing on y that causes the reset of the integrator for x to −1. (Note
that ixxx, and ixx both fall back to −1 during this step, but this does not
cause any new zero-crossings.) A step later, the value of lx also changes from
1 to −1, which causes the reset of y to −1, which, in turn, causes a zero-
crossing on −y, which causes ixx to become 1, which leads to a reset of the
integrator for x to 1. The system is then locked into a pattern of interrelated
oscillations of x, lx, and y. This is the expected behavior, but in contrast
to our interpretation in the non-standard semantics section 2, and also to the
implementation in Sundials, see Appendix A.2, the time in Simulink advances
by a very small amount (1.7 × 10−14) every step. Furthermore, after a certain
number of oscillations, the simulation stops with an error message:

At time 1.000000000017115, simulation hits (1000) consecutive zero
crossings. Consecutive zero crossings will slow down the simulation
or cause the simulation to hang. To continue the simulation, you may
1) Try using Adaptive zero-crossing detection algorithm or 2)
Disable the zero crossing of the blocks shown in the following table.
-------------------------------------------------------------------------
No. of Consecutive Zcs | Block type | Block path
-------------------------------------------------------------------------

500 HitCross "Example1/Hit Crossing: up(lx)"
500 HitCross "Example1/Hit Crossing: up(y)"
499 HitCross "Example1/Hit Crossing: up(-y)"

1 HitCross "Example1/Hit Crossing: up(z)"

Whether a zero-crossing on an integral is detected instantaneously or only
after a very small delay, depends on whether the output port or the state port,
respectively, is monitored. In this example, the state ports of either or both x
and y, rather than their output ports, must be included in the feedback loop to
avoid the rejection of the model due to instantaneous dependencies.

Interestingly, if a fixed-step solver with a step size of 0.2 is used, the same
values for x, y, and z are observed, but t becomes

0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, . . .

and there are no error messages since there are no zero-crossing options for
fixed-step solvers. The values of t chosen by the variable-step solver are not
affected by the minimum step size setting.

Example 2. The Simulink model is shown in Figure A.3a (with y0 set to −1).
The corresponding equations are:

x = 1/s(ix, updown(y), 0)
y = 1/s(y0, x)
ix = switchup(y,−1, switchup(−y, 1,−y0))

In normal mode, the simulation fails with a similar error message as Example 1
because there are too many zero-crossings at instant t = 1. The results plotted
in Figure A.3b were generated with adaptive zero-crossing detection enabled.
The value of y hovers around 0 while x alternates between −1 and 1, resting at
each for a period determined by the adaptive zero-crossings algorithm.
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All Hit Crossings have rising zero−crossing detection.

They output 1 when there is a zero−crossing and 0 otherwise.

All switches output the upper input value when the middle input is 1,

and the bottom input value otherwise.
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(a) Simulink model

t x y z
0.000000000000000 -1.000000000000000 -1.000000000000000 -1.000000000000000
0.200000000000000 -1.000000000000000 -1.000000000000000 -0.800000000000000
0.400000000000000 -1.000000000000000 -1.000000000000000 -0.600000000000000
0.600000000000000 -1.000000000000000 -1.000000000000000 -0.400000000000000
0.800000000000000 -1.000000000000000 -1.000000000000000 -0.200000000000000
1.000000000000000 -1.000000000000000 -1.000000000000000 -0.000000000000000
1.000000000000017 1.000000000000000 -1.000000000000000 0.000000000000017
1.000000000000034 -1.000000000000000 1.000000000000000 0.000000000000034
1.000000000000051 1.000000000000000 -1.000000000000000 0.000000000000051
1.000000000000068 -1.000000000000000 1.000000000000000 0.000000000000068
1.000000000000085 1.000000000000000 -1.000000000000000 0.000000000000085
1.000000000000103 -1.000000000000000 1.000000000000000 0.000000000000103
1.000000000000120 1.000000000000000 -1.000000000000000 0.000000000000120
1.000000000000137 -1.000000000000000 1.000000000000000 0.000000000000137
1.000000000000154 1.000000000000000 -1.000000000000000 0.000000000000154
1.000000000000171 -1.000000000000000 1.000000000000000 0.000000000000171
1.000000000000188 1.000000000000000 -1.000000000000000 0.000000000000188
1.000000000000205 -1.000000000000000 1.000000000000000 0.000000000000205
1.000000000000222 1.000000000000000 -1.000000000000000 0.000000000000222
1.000000000000239 -1.000000000000000 1.000000000000000 0.000000000000239
1.000000000000256 1.000000000000000 -1.000000000000000 0.000000000000256

.

.

.
.
.
.

.

.

.

(b) Simulation results

Figure A.2: Example 1 in Simulink

Example 3. The Simulink model is shown in Figure A.4a, and the corresponding
set of equations is:

x, lx = 1/s(ix, up(zx), 0)
z = 1/s(−1, 1)
y = 1/s(iy, up(z), 0)
ix = switchup(y, lx+ 1, switchup(z, lx+ 2, 0))
zx = switchup(y, 1, switchup(z, 1,−1))
iy = switchup(z, 1,−1)

The result of simulating this system is shown in Figure A.4b. The value of z
increases from −1 until it crosses 0 at time 1. That triggers two hit crossings
and the reset of the integrator for y. The top hit crossing causes the connected
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All Hit Crossings have rising zero−crossing detection.

They output 1 when there is a zero−crossing and 0 otherwise.

All switches output the upper input value when the middle input is 1,
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(b) Simulation results

Figure A.3: Example 2 in Simulink
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All Hit Crossings have rising zero−crossing detection.

They output 1 when there is a zero−crossing and 0 otherwise.

All switches output the upper input value when the middle

 input is1, and the bottom input value otherwise.

Integrator: z

1

s
xo

Integrator: y

1

s

xo

Integrator: x

1

s

xo

Hit Crossing: up(z): 2

Hit Crossing: up(z): 1

Hit Crossing: up(y): 2

Hit Crossing: up(y): 1

2

−1

1

1

1

0

0

−1

1

0

x

ix

ixx

z

z
y

y

iy

iy

zxzx

lx

(a) Simulink model

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

x

0 1 2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

1

y

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

Time

z
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Figure A.4: Example 3 in Simulink
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switch output (labeled ixx in the figure) to become 2 (lx + 2). The bottom
one causes the switch output (labeled iy) to become 1, which is taken as the
new value of the integrator for y. The change in y from −1 to 1 triggers the
two connected hit crossings. The top one causes the output of the connected
switch (labeled ix) to become 1 (lx + 1) which overrides the value of ixx due
to the zero-crossing on z. The other hit crossing sets the related switch output
(labeled zx) to 1 and this zero-crossing resets the integrator for x to 1. Note
that, in contrast to the non-standard interpretation explained in section 2, the
zero-crossings on z and y are treated as simultaneous within Simulink. There
is no delay between the two, even though the former causes the latter, and x
immediately takes the value 1 rather than first taking the value 2 and then the
value 3. That is, the definition of a zero-crossing in Simulink is effectively

up(x)t = [x•t ≤ 0] ∧ [xt > 0]

which means that the effect of a zero-crossing is instantaneous. This highlights
a central benefit of using non-standard analysis as a model for reasoning about
hybrid systems and the treatment of zero-crossings. The behavior of Simulink
can be interpreted simply by changing the definition of up(.).

Appendix A.2. Using the Sundials-based Prototype

We have developed a prototype implementation of our language in Caml. It
comprises a generic interface to the Sundials CVODE library [21] (using serial
vectors), and an implementation of the algorithm that alternates between con-
tinuous phases and discrete phases in response to zero-crossings. Each example
was manually translated into a single Ocaml function that is called by Sundials
during continuous phases, and by the algorithm directly during discrete phases.

Example 1. The results of running the prototype tool on Example 1 are shown
in Table A.6. The first row (‘I’) shows the initial state values, it is followed
by a series of executions of the CVODE solver (‘C’) during which the states
evolve according to their derivatives, and then just after 1.0, a zero-crossing
is detected (‘Z’). The values of the continuous states at the time of the zero-
crossing (‘C′’), become last values during the subsequent discrete phase (‘D’).
The first zero-crossing occurs for up(z). It triggers an unbounded cascade of
discrete phases, after each of which another (single and non-simultaneous) zero-
crossing is detected. The sequence up(x), up(y), up(−x), up(−y) is repeated
indefinitely without the continuous solver ever being re-invoked.

Example 2. The results for Example 2 are shown in Table A.7. The value of y
exceeds zero and triggers the zero-crossing up(y) just after t = 1.0. Then, the
value of x is changed from 1.0 to −1.0 during the discrete phase, but as there
are no further zero-crossings the continuous solver is called again. Another zero-
crossing, up(−y), is discovered almost immediately and another discrete phase
is triggered during which x is changed back to 1.0. This process is repeated
indefinitely; time is advanced in small increments by the continuous solver,
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phase time x y z
I 0.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00
C 1.000000e-01 -1.000000e+00 -1.000000e+00 -9.000000e-01
C 2.000000e-01 -1.000000e+00 -1.000000e+00 -8.000000e-01
C 3.000000e-01 -1.000000e+00 -1.000000e+00 -7.000000e-01
C 4.000000e-01 -1.000000e+00 -1.000000e+00 -6.000000e-01
C 5.000000e-01 -1.000000e+00 -1.000000e+00 -5.000000e-01
C 6.000000e-01 -1.000000e+00 -1.000000e+00 -4.000000e-01
C 7.000000e-01 -1.000000e+00 -1.000000e+00 -3.000000e-01
C 8.000000e-01 -1.000000e+00 -1.000000e+00 -2.000000e-01
C 9.000000e-01 -1.000000e+00 -1.000000e+00 -1.000000e-01
C 1.000000e+00 -1.000000e+00 -1.000000e+00 -2.235451e-14

C′ 1.000000e+00 -1.000000e+00 -1.000000e+00 7.786350e-14
Z 1.000000e+00 up(z)
D 1.000000e+00 1.000000e+00 -1.000000e+00 7.786350e-14
Z 1.000000e+00 up(x)
D 1.000000e+00 1.000000e+00 1.000000e+00 7.786350e-14
Z 1.000000e+00 up(y)
D 1.000000e+00 -1.000000e+00 1.000000e+00 7.786350e-14
Z 1.000000e+00 up(-x)
D 1.000000e+00 -1.000000e+00 -1.000000e+00 7.786350e-14
Z 1.000000e+00 up(-y)
D 1.000000e+00 1.000000e+00 -1.000000e+00 7.786350e-14

Table A.6: Log of example 1 (prototype tool)

phase time x y
I 0.000000000000000e+00 1.000000e+00 -1.000000e+00
C 1.000000000000000e-01 1.000000e+00 -9.000000e-01
C 2.000000000000000e-01 1.000000e+00 -8.000000e-01
C 3.000000000000000e-01 1.000000e+00 -7.000000e-01
C 4.000000000000000e-01 1.000000e+00 -6.000000e-01
C 5.000000000000000e-01 1.000000e+00 -5.000000e-01
C 6.000000000000000e-01 1.000000e+00 -4.000000e-01
C 7.000000000000000e-01 1.000000e+00 -3.000000e-01
C 7.999999999999999e-01 1.000000e+00 -2.000000e-01
C 8.999999999999999e-01 1.000000e+00 -1.000000e-01
C 9.999999999999999e-01 1.000000e+00 -4.464441e-14

C′ 1.000000000000100e+00 1.000000e+00 5.557360e-14
Z 1.000000000000100e+00 up(y)
D 1.000000000000100e+00 -1.000000e+00 5.557360e-14

C′ 1.000000000000175e+00 -1.000000e+00 -1.974954e-14
Z 1.000000000000175e+00 up(-y)
D 1.000000000000175e+00 1.000000e+00 -1.974954e-14

C′ 1.000000000000195e+00 1.000000e+00 9.288416e-18
Z 1.000000000000195e+00 up(y)
D 1.000000000000195e+00 -1.000000e+00 9.288416e-18

C′ 1.000000000000215e+00 -1.000000e+00 -1.972025e-14
Z 1.000000000000215e+00 up(-y)
D 1.000000000000215e+00 1.000000e+00 -1.972025e-14

C′ 1.000000000000234e+00 1.000000e+00 3.853879e-17
Z 1.000000000000234e+00 up(y)
D 1.000000000000234e+00 -1.000000e+00 3.853879e-17

C′ 1.000000000000254e+00 -1.000000e+00 -1.969104e-14
Z 1.000000000000254e+00 up(-y)
D 1.000000000000254e+00 1.000000e+00 -1.969104e-14

C′ 1.000000000000274e+00 1.000000e+00 6.770241e-17

Table A.7: Log of example 2 (prototype tool)
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phase time x y z
I 0.000000e+00 0.000000e+00 -1.000000e+00 -1.000000e+00
C 1.000000e-01 0.000000e+00 -1.000000e+00 -9.000000e-01
C 2.000000e-01 0.000000e+00 -1.000000e+00 -8.000000e-01
C 3.000000e-01 0.000000e+00 -1.000000e+00 -7.000000e-01
C 4.000000e-01 0.000000e+00 -1.000000e+00 -6.000000e-01
C 5.000000e-01 0.000000e+00 -1.000000e+00 -5.000000e-01
C 6.000000e-01 0.000000e+00 -1.000000e+00 -4.000000e-01
C 7.000000e-01 0.000000e+00 -1.000000e+00 -3.000000e-01
C 8.000000e-01 0.000000e+00 -1.000000e+00 -2.000000e-01
C 9.000000e-01 0.000000e+00 -1.000000e+00 -1.000000e-01
C 1.000000e+00 0.000000e+00 -1.000000e+00 -1.500536e-16

C′ 1.000000e+00 0.000000e+00 -1.000000e+00 1.000680e-13
Z 1.000000e+00 up(z)
D 1.000000e+00 2.000000e+00 1.000000e+00 1.000680e-13
Z 1.000000e+00 up(y)
D 1.000000e+00 3.000000e+00 1.000000e+00 1.000680e-13
C 1.100000e+00 3.000000e+00 1.000000e+00 1.000000e-01
C 1.200000e+00 3.000000e+00 1.000000e+00 2.000000e-01

Table A.8: Log of example 3 (prototype tool)

and the value of x is alternated between 1.0 and −1.0 by intervening discrete
phases. The observed behavior thus approximates the ideal behavior; a small
overshoot, which is proportional to step size chosen by the continuous solver,
effectively simulates the ε of the non-standard semantics. Note that the time
column is given with a greater precision than in the other examples. Without
the extra significant figures, it appears as if the simulation iterates without
bound at t = 1.0. As it is, time barely advances just as is in Simulink when the
adaptive zero-crossing detection algorithm is not used.

Example 3. The results for Example 3 are shown in Table A.8. Both x and y
are constant throughout the initial continuous phases, but z increases steadily
from −1.0. The first zero-crossing, up(z), is triggered just after z crosses 0.0.
The ensuing discrete phase sees x incremented by 2.0 and y set to 1.0. The latter
update triggers the zero-crossing up(y), which causes another discrete phase to
be executed at the same instant of time. During this second discrete phase, x is
incremented by 1.0. The simulation then continues with an unbounded number
of continuous phases. Note that, during a discrete phase, the effects of changes
to variables on zero-crossing expressions are not detected immediately, rather
any new zero-crossings are detected after the discrete phase, i.e. after variables
have been reset as necessary, when the last values of zero-crossing expressions
are compared with their new values. There is thus no question of priority in this
example: up(x) occurs strictly before up(y), even though no simulation time
elapses between them.

Appendix A.3. A ‘badly-typed’ example

We have argued that compositions of discrete and continuous expressions
must be rejected when it is not clear how discrete (logical) instants are related
to (absolute) continuous time. Even when such compositions are well defined
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Figure A.5: A ‘badly-typed’ Simulink Example: model

in the non-standard semantics, they cannot be simulated by the usual numer-
ical methods. It is instructive to model a strange combination of discrete and
continuous blocks in Simulink and to observe the results.

The model shown in Figure A.5 contains three strange combinations of dis-
crete and continuous elements. At the top, the value of an integrator, wi , is fed
into a discrete expression w = (pre (w) init 0) + wi . In the middle, the output
of a similar discrete expression, xd , is fed into an integrator x. At the bottom,
the value of an integrator with reset, yi , is fed into a discrete expression for y.
All of the unit delays have an inherited sample time; their rate of execution is
determined by those of their inputs and outputs. In parallel, a sinusoid is fed
through a hit crossing block. We will see that changing the frequency of the
sinusoid, changes the values of the three other signals (w, x and y).

In Simulink, there are a number of user-configurable analyses for deciding
whether to accept a model, accept it with warnings, or reject it with an error
message. The default settings are fairly liberal; Simulink usually prefers to
execute problematic models after displaying a warning message. The model of
Figure A.5 is, however, too much. By default, it is rejected with the message:

’Example4/Unit Delay: w’ is discrete, yet is inheriting a continuous sample time; consider
replacing unit delay with a memory block. When a unit delay block inherits continuous
sample time, its behavior is the same as the memory block. Unit delay block’s time delay
will not be fixed and could change with each time step. This might be unexpected behavior.
Normally, a unit delay block uses discrete sample time. You can disable this diagnostic by
setting the ’Discrete used as continuous’ diagnostic to ’none’ in the Sample Time group on
the Diagnostics pane of the Configuration Parameters dialog box.

The discrete used as continuous setting must be changed from ‘error’ to ‘warn-
ing’ before the model can be simulated. Even then, there is another warning that
explicit conversions are required between the discrete and continuous blocks:

Warning: The configuration of the Unit Delay ’Example4/Unit Delay: w’ is incorrect for
handling a rate transition. Consider using the Rate Transition block to handle the data
transfer between rates. Alternatively, you can control the diagnostic action for
unspecified rate transitions on the Sample Time Diagnostics pane of the Configuration
Parameters dialog box.
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(a) Sine Wave frequency = 1 rad/s
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(b) Sine Wave frequency = 10 rad/s

Figure A.6: A ‘badly-typed’ Simulink Example: results
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t w x yi y z
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000

0.000200950914521 0.000000000000000 0.000401901829042 0.000200950914521 0.000000000000000 0.000000000000000

0.000401901829042 0.000200950914521 0.001004754572604 0.000401901829042 0.000200950914521 0.000000000000000

0.000803803658083 0.000602852743562 0.002612361888770 0.000803803658083 0.000602852743562 0.000000000000000

0.001607607316166 0.001406656401645 0.006631380179185 0.001607607316166 0.001406656401645 0.000000000000000

0.003215214632332 0.003014263717812 0.016277024076182 0.003215214632332 0.003014263717812 0.000000000000000

0.006430429264665 0.006229478350144 0.038783526502508 0.006430429264665 0.006229478350144 0.000000000000000

0.012860858529329 0.012659907614808 0.090226960619824 0.012860858529329 0.012659907614808 0.000000000000000

0.025721717058658 0.025520766144137 0.205974687383786 0.025721717058658 0.025520766144137 0.000000000000000

0.051443434117316 0.051242483202795 0.463191857970367 0.051443434117316 0.051242483202795 0.000000000000000

0.102886868234632 0.102685917320112 1.029069633260845 0.102886868234632 0.102685917320112 0.000000000000000

0.205773736469265 0.205572785554744 2.263712052076434 0.205773736469265 0.205572785554744 0.000000000000000

0.405773736469265 0.411346522024009 4.863712052076434 0.405773736469265 0.411346522024009 0.000000000000000

0.605773736469265 0.817120258493274 7.663712052076435 0.605773736469265 0.817120258493274 0.000000000000000

0.805773736469265 1.422893994962538 10.663712052076436 0.805773736469265 1.422893994962538 0.000000000000000

1.000000000000000 2.228667731431803 13.771332268568196 1.000000000000000 2.228667731431803 0.000000000000000

1.000000000000014 3.228667731431803 13.771332268568424 0.000000000000000 3.228667731431803 0.000000000000000

1.200000000000014 4.228667731431817 17.371332268568423 0.200000000000000 3.228667731431803 0.000000000000000

1.400000000000014 5.428667731431831 21.171332268568424 0.400000000000000 3.428667731431803 0.000000000000000

1.600000000000014 6.828667731431845 25.171332268568424 0.600000000000000 3.828667731431803 0.000000000000000

1.800000000000014 8.428667731431858 29.371332268568423 0.800000000000000 4.428667731431803 0.000000000000000

2.000000000000014 10.228667731431871 33.771332268568422 1.000000000000000 5.228667731431803 0.000000000000000

2.000000000000045 12.228667731431885 33.771332268569140 0.000000000000000 6.228667731431803 0.000000000000000

2.200000000000045 14.228667731431930 38.571332268569137 0.200000000000000 6.228667731431803 0.000000000000000

2.400000000000046 16.428667731431975 43.571332268569137 0.400000000000000 6.428667731431803 0.000000000000000

2.600000000000046 18.828667731432020 48.771332268569140 0.600000000000000 6.828667731431803 0.000000000000000

2.800000000000046 21.428667731432064 54.171332268569138 0.800000000000000 7.428667731431803 0.000000000000000

3.000000000000004 24.228667731432111 59.771332268567946 0.999999999999957 8.228667731431804 0.000000000000000

.

.

.

.

.

.

.

.

.

(a) Sine Wave frequency = 1 rad/s

t w x yi y z
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000

0.000200950914521 0.000000000000000 0.000401901829042 0.000200950914521 0.000000000000000 0.000000000000000

0.000401901829042 0.000200950914521 0.001004754572604 0.000401901829042 0.000200950914521 0.000000000000000

0.000803803658083 0.000602852743562 0.002612361888770 0.000803803658083 0.000602852743562 0.000000000000000

0.001607607316166 0.001406656401645 0.006631380179185 0.001607607316166 0.001406656401645 0.000000000000000

0.003215214632332 0.003014263717812 0.016277024076182 0.003215214632332 0.003014263717812 0.000000000000000

0.006430429264665 0.006229478350144 0.038783526502508 0.006430429264665 0.006229478350144 0.000000000000000

0.012860858529329 0.012659907614808 0.090226960619824 0.012860858529329 0.012659907614808 0.000000000000000

0.025721717058658 0.025520766144137 0.205974687383786 0.025721717058658 0.025520766144137 0.000000000000000

0.051443434117316 0.051242483202795 0.463191857970367 0.051443434117316 0.051242483202795 0.000000000000000

0.102886868234632 0.102685917320112 1.029069633260845 0.102886868234632 0.102685917320112 0.000000000000000

0.205773736469265 0.205572785554744 2.263712052076434 0.205773736469265 0.205572785554744 0.000000000000000

0.314159265358979 0.411346522024009 3.672723927642722 0.314159265358979 0.411346522024009 0.000000000000000

0.314159265358985 0.725505787382988 3.672723927642797 0.314159265358985 0.725505787382988 1.000000000000000

0.314159265358992 1.039665052741973 3.672723927642907 0.314159265358992 1.039665052741973 0.000000000000000

0.514159265358992 1.353824318100966 6.872723927642907 0.514159265358992 1.353824318100966 0.000000000000000

0.628318530717959 1.867983583459958 8.813431438745333 0.628318530717959 1.867983583459958 0.000000000000000

0.628318530717969 2.496302114177917 8.813431438745503 0.628318530717969 2.496302114177917 1.000000000000000

0.628318530717980 3.124620644895885 8.813431438745727 0.628318530717980 3.124620644895885 0.000000000000000

0.828318530717980 3.752939175613866 12.813431438745727 0.828318530717980 3.752939175613866 0.000000000000000

0.942477796076923 4.581257706331846 15.210776011283528 0.942477796076923 4.581257706331846 0.000000000000000

0.942477796076938 5.523735502408769 15.210776011283837 0.942477796076938 5.523735502408769 1.000000000000000

0.942477796076954 6.466213298485707 15.210776011284210 0.942477796076954 6.466213298485707 0.000000000000000

1.000000000000000 7.408691094562661 16.591308905437309 1.000000000000000 7.408691094562661 0.000000000000000

1.000000000000016 8.408691094562661 16.591308905437696 0.000000000000000 8.408691094562661 0.000000000000000

1.057522203923062 9.408691094562677 18.086886207436887 0.057522203923046 8.408691094562661 0.000000000000000

1.115044407846108 10.466213298485739 19.639985713359124 0.115044407846092 8.466213298485707 0.000000000000000

1.230088815692200 11.581257706331847 22.861229133049690 0.230088815692183 8.581257706331799 0.000000000000000

.

.

.

.

.

.

.

.

.

(b) Sine Wave frequency = 10 rad/s

Table A.9: A ‘badly-typed’ Simulink example: result detail
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The simulation is performed anyway, and the result with a Sine Wave frequency
of 1 rad/s is shown in Figure A.6a, and the result with a frequency of 10 rad/s
is shown in Figure A.6b. The only value that is, more or less, the same is that
of yi , the integrator with reset. That the value of z differs between the two
runs is expected: increasing the frequency of the sine way increases the number
of zero-crossings. All of the other values, however, finish larger in the run at
10 rad/s than in the run at 1 rad/s. Changing the behaviour of the Sine Wave
block has changed the behaviour of unrelated components running in parallel!

This happens because the behaviour of a discrete component without ex-
plicit triggering depends on the discretization scheme chosen by the simulation
engine. That is, the discrete components with inherited sample times that are
connected to continuous components are triggered at every major time step of
the simulation. When the number of zero-crossings is increased, by changing
the sine wave frequency, there are more major time steps in the simulation and
the unit delays accumulate samples at a higher rate. This can be seen in the
detailed log extracts of Figure A.9.
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