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Abstract
The compilation of synchronous block diagrams into sequential
imperative code has been addressed in the early eighties and can
now be considered as folklore. However, separate, or modular, code
generation, though largely used in existing compilers and particu-
larly in industrial ones, has never been precisely described or en-
tirely formalized. Such a formalization is now fundamental in the
long-term goal to develop a mathematically certified compiler for a
synchronous language as well as in simplifying existing implemen-
tations.

This article presents in full detail the modular compilation of
synchronous block diagrams into sequential code. We consider a
first-order functional language reminiscent of LUSTRE, which it ex-
tends with a general n-ary merge operator, a reset construct, and a
richer notion of clocks. The clocks are used to express activation
of computations in the program and are specifically taken into ac-
count during the compilation process to produce efficient impera-
tive code. We introduce a generic machine-based intermediate lan-
guage to represent transition functions, and we present a concise
clock-directed translation from the source to this intermediate lan-
guage. We address the target code generation phase by describing
a translation from the intermediate language to JAVA and C.

Categories and Subject Descriptors C.3 [SPECIAL-PURPOSE
AND APPLICATION-BASED SYSTEMS]: Real-time and embed-
ded systems; D.3.2 [Language Classifications]: Data-flow lan-
guages; D.3.4 [Processors]: Code generation, Compilers
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1. Introduction
Block diagram formalisms as found in SCADE/LUSTRE [22] or
SIMULINK [18] are widely used for embedded system design.
Among these, synchronous block diagrams are based on a discrete
model of time where signals are infinite streams and blocks define
stream functions. The code generation from synchronous block
diagrams into sequential imperative code is an old topic and has
been addressed in the early years of LUSTRE [4]. The subject can
now be considered as a part of the original folklore in synchronous
programming [2].

Given a stream function f : Stream(T ) → Stream(T ′) and
a stream equation y = f(x), the code generation consists in
producing a pair (ft, s0) made of a transition function ft of type
S → T → T ′ × S and an initial state s0 of type S, such that ∀n ∈
IN.yn, sn+1 = ft sn xn if x = (xi)i∈IN and y = (yi)i∈IN . The
transition function takes a state and the current input, and it returns
the current output with a new state. Its infinite repetition produces
the sequence of outputs. In actual implementations, the transition
function is written in imperative style with in-place modification
of the state. Synchrony finds a very practical justification here:
an infinite stream of type Stream(T ) is represented by a scalar
value of type T and no intermediate memory nor complex buffering
mechanism is needed. These principles are generalized to functions
with multiple inputs and multiple outputs.

Code generation is obtained through a static scheduling of equa-
tions according to data dependencies. Separate, or modular, code
generation aims at producing a transition function for each block
definition and composing them together to produce the main tran-
sition function. As noticed by Gonthier [13], even in the absence
of a causality loop, modular code generation is not always feasi-
ble. This is illustrated by the equation (y, z) = copy(t, y) with
copy(x, y) = (x, y). This equation defines two perfectly valid
streams y and z (since y = t and z = y = t), but it cannot be
scheduled independently of the way copy is compiled. Said differ-
ently, it is not possible to produce only one transition function for



copy which can be called in every context. This observation has
led to two different approaches to the compilation problem. The
first one aims to keep maximal expressiveness of the source lan-
guage and consists in compiling the program after a full inlining
of function calls. The resulting set of equations can then be trans-
lated into imperative code through simple scheduling techniques.
Techniques for forward or backward enumeration of state variables
can be used to generate an explicit finite state automaton leading
to a very efficient code [4, 15]. Unfortunately, this efficiency gain
comes at the price of modular compilation, and, moreover, the size
of the generated code may explode in practice. For this reason the
enumeration must be restricted to a selected set of state variables,
as done in the academic LUSTRE compiler [16]. But finding the
adequate variables which lead to efficient code is difficult both in
time and size. Conversely, modular compilation is mandatory in
industrial compilers like the one of SCADE. function is translated
into one imperative function with no preliminary inlining unless
requested by the programmer. Consequently, modular compilation
imposes stronger causality constraints stating that every feedback
loop must cross an explicit delay. Nonetheless, these constraints
are well accepted by SCADE users. They are also justified by the
need for tracability of the generated code and the simplicity of the
code-generation step, as required by certification authorities in the
context of critical software. Between these two approaches — max-
imal code duplication vs maximal code sharing — an intermediate
solution consists in decomposing a function body into a minimal
number of functions, each of them leading to one atomic transition
function [21]. This solution is complementary to the modular com-
pilation technique and can be included in a compilation chain as a
pre-processing step.

Modular compilation of synchronous block diagrams, though
largely used in the industrial compiler of LUSTRE has never been
described precisely or formalized entirely. Such a formalization ap-
pears now as a fundamental need in the long-term goal to develop
a mathematically certified compiler of a synchronous language in-
side a proof assistant such as COQ [10] as well as in simplifying
existing implementations. This would give an opportunity to im-
prove pure process-based certification as imposed by certification
authorities by introducing stronger mathematical validation using
proof techniques. To this aim, our contribution is to provide a min-
imal and complete description of the code generation step in order
to serve as building block in a certified compilation chain.

This article presents in detail the modular compilation of syn-
chronous block diagrams into sequential code. The source language
we consider is a first-order declarative language reminiscent of
LUSTRE, general enough to make a suitable intermediate language
for the compilation of automata as introduced in [17, 6]. The lan-
guage provides a n-ary merge operator as a way to combine com-
plementary streams, a reset construct to restart a component in a
modular way, and a generalized notion of clocks used to express
various activation conditions. We introduce a generic object-based
intermediate language to represent sequential transition functions,
and we illustrate its versatility by giving a translation into JAVA and
C. Synchronous programs are translated modularly into programs
from the intermediate language. Clocks play a central role during
the process of translation and are specifically treated to generate
efficient control structures. This approach is in contrast to classical
compilation methods based on enumeration techniques. The use of
an intermediate language and the special treatment of clocks leads
to a very concise description of the compilation process, yet pro-
duces efficient sequential code which competes with the one used
in the new SCADE compiler.

This work is part of a long-term project to develop a certified
LUSTRE compiler implemented in COQ. A reference compiler,
based in particular on the material presented in this article, has

-- count the number of top between two tick
node counting (tick:bool; top:bool)
returns (o: int)
var v: int;
let o = if tick then v else 0 -> pre o + v;

v = if top then 1 else 0;
tel;

Figure 1. The counting node in SCADE and in LUSTRE

been written in OCAML and in the programming language of COQ.
Proofs of semantics equivalence in COQ are under way. For lack of
space, we only describe the main steps in the compilation chain and
do not give the formal semantics of the source and target languages.

The article is organized as follows. In section 2, we present our
input language, a synchronous data-flow kernel. In section 3, we
address the issue of schedulability of a set of equations and lower
our programs into a simpler normal form. Section 4 introduces
the intermediate sequential language, and in section 5, we define
the translation from the data-flow language to this intermediate
language. In section 6, we describe code generation to JAVA and
C . In section 7, we sketch the construction of the entire compiler.
Finally, in section 8 and 9, we discuss related and future work.

2. A Clocked Data-flow Language
A program in LUSTRE consists of a number of node definitions,
where each node computes its output from its input via a collection
of parallel equations. In Figure 1 we present an example LUSTRE
program along with its graphical representation programmed us-
ing the SCADE language. At each instant the output of the node
counting (parameter o) is computed based on the inputs (tick
and top) and its previous value (pre o), using a local variable (v),
and it counts how many times the value of top has been true since
the last time the value of tick was true.

In this section, we define a synchronous data-flow kernel con-
sidered as a basic calculus that is powerful enough to express any
LUSTRE program. Additionally, this language contains some ad-
vanced features such as a means to reset a function application in
a modular way, and value constructors belonging to enumerated
types and filtering mechanisms. Since the code generation in our
compiler is done after static analyzes, such as type and clock veri-
fication, we present the grammar of the language where every term
is fully annotated with type and clock information.

2.1 Syntax and Intuitive Semantics
A program in the kernel language is made of a list of global type
(td) and node (d) declarations. To simplify the presentation, only
abstract and enumerated types are provided here. A global node
declaration is of the form node f(p) = p with var p in D,
where p stands for a list of variable declarations, and D is a list
of parallel equations. An equation (pat = a) defines the val-
ues of the variables mentioned in the pattern pat, where pat may
be either a variable or a tuple of patterns (pat, ..., pat). a stands
for an annotated expression (e) with its clock (ct). Expressions



are values (v), variables (x), tuples (a1, ..., an), initialized delays
(v fby a), point-wise applications (op (a1, ..., an)), node instan-
tiations with a possible reset condition (f (a1, ..., an) every a),
a sampling operation (a when C(x)), and a combination op-
eration (merge x (C1 → a1) ... (Cn → an)). The expression
a when C(x) is the sampled stream of a on the instants where
x equals C. Symmetrically, merge is the combination operator: if
a is a stream producing values belonging to a finite enumerated
type bt = C1 + ...+Cn and a1, ..., an are complementary streams
(i.e., at a given cycle, at most one stream is producing a value), then
it combines them to form a faster stream. f (a1, ..., an) every a
is the resetable function application: the internal state of the ap-
plication of f is reset every time the boolean stream a is true. To
simplify the presentation, we write op (a1, ..., an) for the point-
wise application of an external function op (e.g., +, not) to its
arguments and f (a1, ..., an) every False for the application of a
stateful function. A value (v) can be a constructor (C) belonging
to an enumerated type or any immediate value (i) (e.g., an inte-
ger). We assume the existence of an initial environment defining
the boolean type bool = False + True. In the same way, com-
binatorial functions are provided externally. Here is the grammar
defining the syntax of the clock-annotated programs:

td ::= type bt | type bt = C + ... + C
d ::= node f(p) = p with var p in D
p ::= x : bt; ...; x : bt
D ::= pat = a | D andD
pat ::= x | (pat, ..., pat)
a ::= ect

e ::= v | x | (a, ..., a) | v fby a | op (a, ..., a)
| f (a, ..., a) every a | a when C(x)
| merge x (C → a) ... (C → a)

v ::= C | i
ct ::= ck | ct× ...× ct
ck ::= base | ck on C(x)

Clock annotations do not play any role in the data-flow seman-
tics of the language, so we omit them in the examples below. It is as-
sumed that the first parameter in the initialized delay v fby a is an
immediate value. If op is a combinatorial function, op (a1, ..., an)
applies it point-wise to its arguments (classical arithmetic opera-
tions are written in infix form). Here are some examples:

x x0 x1 x2 x3 ...
y y0 y1 y2 y3 ...
v fby x v x0 x1 x2 ...
x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 ...

The kernel provides a general sampling mechanism based on
enumerated types. This way, the classical sampling operation
e when x of LUSTRE, where x is a boolean stream, is writ-
ten e when True(x). In the same way, e when not x is written
e when False(x). The conditional if/then/else, the delay pre
and initialization operator -> of LUSTRE can be encoded in the
following way:

if x then e2 else e3 = merge x
(True→ e2 when True(x))
(False→ e3 when False(x))

e1 -> e2 = if True fby False then e1

else e2

pre (e) = nil fby e

The conditional if/then/else is built from the merge opera-
tor and the sampling operator when. The initialization operation
e1 -> e2 first returns the very first value of e1 and then the current
value of e2. The uninitialized delay operation pre (e) is a shortcut

for nil fby e where nil stands for any constant value which has
the type of e. 1 The examples below illustrate these operators.

h True False True False ...
x x0 x1 x2 x3 ...
y y0 y1 y2 y3 ...
x -> y x0 y1 y2 y3 ...
pre (x) nil x0 x1 x2 ...
z = x when True(h) x0 x2 ...
t = y when False(h) y1 y3 ...
merge h

(True→ z)
(False→ t)

x0 y1 x2 y3 ...

Forgetting clock annotations, the counting example of Figure 1
is written in the kernel language as follows:

node counting (tick:bool; top:bool) = (o:int) with
var v: int in

o = if tick then v else 0 -> pre o + v
and v = if top then 1 else 0

2.2 Annotating Terms with Their Clocks
The code generation applies once type verification and clock cal-
culus have been performed. At the end of these steps, every term is
annotated with its type and clock. Typing is almost standard [20].
The purpose of the clock calculus is to reject programs which can-
not be executed synchronously, and is also defined as a type infer-
ence system. Clocks do not have to be explicitly given in the source
language, e.g., the programmer writes (v fby x) + y instead of

((v fby xck)
ck

+ yck)
ck

, if ck is the clock of x and y, and simi-
larly he writes merge h (True→ z)(False→ t) instead of
(merge h (True→ zck on True(h))(False→ tck on False(h)))

ck
, if

ck is the clock of h.
To make the article more self-contained, we present the asso-

ciated clock conditions that must be verified by annotated terms
(Figure 2). In a real implementation, the clock calculus applies to
unannotated terms and produces annotated terms (the clock cal-
culus shown here is based on [6]). We express that a program is
well-clocked using several judgements. For instance, the judgement
H ` e : ct states that the expression e has a clock type ct under the
clock environment H , H ` D states that D is a set of well-clocked
equations under the clock environment H . An environment H is of
the form [x1 : ck1, ..., xn : ckn], where xi 6= xj for i 6= j.

In the rules for when and merge, it is assumed that the type
correctness of the control variable and the type constructors has
been verified by the type checker.

3. Toward Sequential Code
The language of Section 2 is declarative, with the evaluation of
expressions controlled by the clock formalism. In order to generate
sequential code from the source language, we first need to address
the issues of finding a correct order for the equations, as well
as dealing with fast, possibly stateful, computations inside slower
ones.

3.1 Syntactic Dependencies and Scheduling
Following the definition introduced in [15], we say that an expres-
sion a statically depends on x if x appears free in a and not as
an argument of a delay fby. Left (a) returns the set of variables
appearing this way in a (we overload the notation for Left (e)
and Left (D)). Def (D) defines the set of variables defined in D.

1 It is the purpose of the initialization analysis to check that the computation
result does not depend on the actual nil value.



H ` e : ct

H ` ect : ct

H ` a1 : ck ... H ` an : ck

H ` op (a1, ..., an) : ck

H ` v : base

H, x : ck ` x : ck

H ` a1 : ck ... H ` an : ck H ` a : ck

H ` f (a1, ..., an) every a : ck × ...× ck

H ` a1 : ct1 ... H ` an : ctn

H ` (a1, ..., an) : ct1 × ...× ctn

H ` a : ck H ` x : ck

H ` a when C(x) : ck on C(x)

H ` a : ck

H ` v fby a : ck

H ` x : ck H ` a1 : ck on C1(x) ... H ` an : ck on Cn(x)

H ` merge x (C1 → a1) ... (Cn → an) : ck

H ` pat : ct H ` a : ct

H ` pat = a

H ` D1 H ` D2

H ` D1 andD2

H ` pat1 : ct1 ... H ` patn : ctn

H ` (pat1, ..., patn) : ct1 × ...× ctn

`base p : Hp `base q : Hq ` r : Hr Hp, Hq, Hr ` D

` node f(p) = q with var r in D

` x1 : t1, ..., xn : tn : [x1 : ck1, ..., xn : ckn]

`base x1 : t1, ..., xn : tn : [x1 : base, ..., xn : base]

Figure 2. Clock Constraints

Vars(D) is the set of variables appearing in D. If pat = a is an
equation in D, every variable from pat immediately depends on
variables from Left (a). The transitive closure of this relation de-
fines the notion of static dependency. A program is causal when for
each node the corresponding graph of dependencies is acyclic. The
corresponding definitions are given in figure 3.

In a set of equations D, an equation pat = a is ready ((pat =
a) ∈ R (D)) when it does not depend on any other equations.
We make a particular treatment of equations of the form x =
(v fby a)ck. In this case, x corresponds to a memory so it will
have to be scheduled after any other computation reading variable
x.

(x = (v fby a)ck) ∈ R (D) if (Vars(a) ∩Def (D)) = ∅
∧ x 6∈ Vars(D)

(pat = a) ∈ R (D) if Vars(pat) ∩ (Left (D) ∪ Left (a)) = ∅

We write D|pat=e for the exclusion of the equation pat = e from
D. A sequence of equations l = pat1 = e1, ..., patn = en is a
feasible schedule of D if l ∈ Sch (D), where:

pat = a ∈ Sch (pat = a) if Left (a) ∩Vars(p) = ∅
pat = a, l ∈ Sch (D) if (pat = a) ∈ R (D|pat=a)

∧ l ∈ Sch (D|pat=a)

For the remainder, we assume that programs have passed a causality
check that insure the existence of a schedule.

The data-flow nature of this language makes the implementa-
tion of classical graph-based optimizations (e.g., copy elimination,
common-subexpression elimination) particularly easy. We do not
detail them here.

Left (eck) = Left (e) ∪Vars(ck)
Left (v fby a) = ∅
Left (op (a1, ..., an)) = ∪1≤i≤nLeft (ai)
Left (f (a1, ..., an) every a) = ∪1≤i≤nLeft (ai) ∪ Left (a)
Left (x) = {x}
Left (v) = ∅
Left (merge x (C1 → a1)

...
(Cn → an))

= ∪1≤i≤nLeft (ai) ∪ {x}

Left (a when C(x)) = {x} ∪ Left (a)

Left (pat = a) = Left (a)
Left (D1 andD2) = Left (D1) ∪ Left (D2)

Def (x = (v fby a)ck) = ∅
Def (pat = a) = Vars(pat)
Def (D1 andD2) = Def (D1) ∪Def (D2)

Vars(x) = {x}
Vars((pat1, ..., patn)) = ∪1≤i≤nVars(pati)

Figure 3. Syntactic Dependencies

3.2 Putting Equations in Normal Form
We introduce a source-to-source transformation which consists in
extracting stateful computations that appear inside expressions.
This is a necessary step toward the translation into sequential code.
For example, the following equation (omitting nested clock anno-
tations for clarity):

z = ((((4 fby o) ∗ 3) when True(c)) + k)ck on True(c)

and o = (merge c (True→ (5 fby (z + 1)) + 2)
(False→ ((6 fby x)) when False(c)))ck

is rewritten into:

t1 = (4 fby o)ck

and z = (((t1 ∗ 3) when True(c)) + k)ck on True(c)

and t2 = (5 fby (z + 1))ck on True(c)

and t3 = (6 fby x)ck

and o = (merge c (True→ t2 + 2)
(False→ t3 when False(c)))ck

In the same way, node instances (f (a1, ..., an) every e) are ex-
tracted from nested expressions. The extraction is made through a
linear traversal, introducing equations for each stateful computa-
tion.

After the extraction, terms and equations can be characterized
by the following grammar:

a ::= eck

e ::= a when C(x) | op (a, ..., a) | x | v
ce ::= merge x (C → ca) ... (C → ca) | e
ca ::= ceck

eq ::= x = ca | x = (v fby a)ck

| (x, ..., x) = (f (a, ..., a) everyx)ck

D ::= D andD | eq

The normalization functions are given in Figure 4. NormED (a)
returns a normalized expression for a; NormCAD (a) returns a
normalized expression of the form ca for a and a new set of
declarations; NormDD (D1) normalizes the definitions D1 and
NormV D (a) returns a fresh variable storing the result of the nor-
malized expression of a and a new set of declarations. To avoid



duplications, definitions of normalization functions are given in
order.

Note that it would also be possible to introduce a new interme-
diate language instead of the source-to-source transformation. This
is essentially a matter of taste, the main advantage of the present
formulation being to save the redefinition of auxiliary notions.

4. A Simple Object-based Language
A classical way to encapsulate a state and a collection of func-
tions that manipulate this state is given by the object-orientation
paradigm. We are not interested in inheritance or object polymor-
phism aspects, but only in the capability to encapsulate a piece of
memory managed exclusively by the methods of the class. We pro-
pose here to define a very simple object-based language that will
be used as an intermediate language for the translation. Adopting
this point of view has two main advantages compared to a direct
translation into one target language. First, object orientation is a
well-known paradigm, and this may help to understand the basic
principles of the first level of our transformation. Second, using it
as a generic intermediate language allows one to derive a very sim-
ple translation to any target language like C or JAVA.

A stateful stream function or node can be considered as a simple
class definition with instance variables and two methods step and
reset. Variables are used to represent the internal state of the node
(i.e., one for each delay). The method step inherits its signature
from the node it was generated from, and it implements a single
step of the node. The method reset is parameterless, and it is in
charge of the initialization of the state variables. One difference
with respect to object orientation is the absence of dynamic object
creation; this is not necessary as we do not consider recursive block
diagrams.

The syntax of the language is given below. A program is made
of a sequence of global definitions (d) of classes. An instruction S
may be an assignment of a local variable (x := c) or of a state
variable (state (x) := c), a sequence (S ; S), a reinitialization
method invocation of an object o (o.reset), an invocation of the
step method of object o (o.step (e1, . . . , en)), a void statement
(skip), or a control structure (case (x) {C1 : S1; ...; Cn : Sn}).
If x is of type bt = C1 + ... + C + ... + Cn, we shall indif-
ferently write case (x) {C1 : skip; ...; C : S; ...; Cn : skip} or
case (x) {C : S}. An expression (e) can be either an access to a
local variable (x) or to a state variable (state (x)), an immediate
integer constant (i) or a value constructor (C), a tuple (e1, ..., en),
or a function call (f (e1, . . . , en)). A machine (f ) defines a set of
memories (m), a set of instances for objects used inside the body
of the methods step or reset (j), and these two methods.

d ::= machine f =
memory m
instances j
reset() = S
step (p) returns (p) = var p in S

S ::= x := c | state (x) := c | S ; S | skip
| o.reset | (x, ..., x) = o.step (c, ..., c)
| case (x) {C : S; ...; C : S}

c ::= x | v | state (x) | op(c, ..., c)
v ::= C | i
j ::= o : f, ..., o : f

p, m ::= x : t, ..., x : t

We only define the minimal intermediate language which is
sufficient for the translation. One may consider a more general form
with several methods, in particular to give access to the components
of a structured output and avoid copying the output when calling a
node. Nonetheless, this optimization is orthogonal to the translation
and can be done afterwards.

5. The Translation
The translation closely follows the principle of the co-iterative se-
mantics described in [5], restricted to the first-order language. The
main differences are that absent values are not explicitly repre-
sented at run-time and states are modified in-place instead of being
returned by transition functions.

We introduce the following notation. If p = [x1 : t1; ...; xn :
tn] and p2 = [x′1 : t′1; ...; x

′
k : t′k] then p1 + p2 = [x1 :

t1; ...; xn : tn; x′1 : t′1; ...; x
′
k : t′k] provided xi 6= x′j for all i,

j such that 1 ≤ i ≤ n, 1 ≤ j ≤ k. [ ] denotes the empty list of
variable declarations. In the same way, we write m1 + m2 for the
composition of two substitutions on memory variables and j1 + j2
on object instances. If s1 = S1, ..., Sn and s2 = S′

1, ..., S
′
k are

two lists of instructions, we write s1@s2 for their concatenation
S1, ..., Sn, S′

1, ..., S
′
k.

Clocks in the source language are transformed into control
structures in the target language. Intuitively, a computation S on
clock base on C1(x1) on C′

1(x
′
1) is transformed into the code:

case (x1) {C1 : case (x′1) {C′
1 : S}}. We define the function

Control(., .) such that Control(ck, S) returns a control structure
so that S is executed only when ck is true:

Control(base, S) = S
Control(ck on C(x), S) = Control(ck, case (x) {C : S})

We also define the function Join(., .) which merges two control
structures gathered by the same guards:

Join( case (x) {C1 : S1; ...; Cn : Sn},
case (x) {C1 : S′

1; ...; Cn : S′
n})

= case (x) {C1 : Join(S1, S
′
1); ...; Cn : Join(Sn, S′

n)}
Join(S1, S2) = S1; S2

JoinList(S) = S
JoinList(S1, ..., Sn) = Join(S1, JoinList(S2, ..., Sn))

The translation is defined by a set of mutually recursive func-
tions. TE (m,si,j,d,s) (e) defines the translation of an unannotated
expression e in a context (m, si, j, d, s) and returns an expres-
sion from the target language c. We overload the notation for an-
notated expressions a. m stands for a memory environment, si
stands for a list of instructions that initialize the memory, j is
an environment for node instances, d is an environment for local
variables and s is a list of instructions. TA(m,si,j,d,s) (x, ca) de-
fines the translation of an expression which is stored into x and
it returns a new context. TEq(m,si,j,d,s) (eq) defines the transla-
tion of an equation. We use two auxiliary functions: the opera-
tion TEList(m,si,j,d,s) (a1, ..., an) translates a list of expressions
and returns a list of expressions from the target language, whereas
TEqList(m,si,j,d,s) (l) translates a list of equations.

The definitions of the translation functions are given in Figure 5.
The first six rules apply to stateless expressions. The translation
of a merge operator, whose result is stored into a pattern pat, is
obtained by translating each branch and storing the corresponding
result in pat. Note that since the result of each branch is annotated
with its proper clock, the merge construction does not generate
any code by itself. For a node instance (f (a1, ..., ak) everyx)ck,
we introduce a fresh name o which is an object of the machine
f . The initialization code consists in calling the reset method.
The step function is essentially the result of calling the reset
method when x is true and calling the step function associated to
o. These two actions must be performed only when ck is true. A
memory equation x = (v fby a)ck is translated into an assignment
of the state variable x, executed when ck is true. Finally, the code
generation of a node consists in first scheduling the set of equations
and then translating them iteratively.



NormED ((v fby a)ck) = let a, D = NormED (a) in x, x = (v fby a)ck
andD,

where x 6∈ Vars(D)

NormED ((a when C(x))ck) = let a, D = NormED (a) in (a when C(x))ck, D
NormED (xck) = xck, D
NormED (vck) = vck, D

NormED (op(a1, ..., an)ck) = let (a1, ..., an), D = NormElistD (a1, ..., an) in op(a1, ..., an)ck, D

NormED ((merge x (C1 → a1) ... (Cn → an))ck) = let a1, ..., an, D = NormCAlistD (a1, ..., an) in

y, y = (merge x (C1 → a1) ... (Cn → an))ck
andD,

where y 6∈ Vars(D)
NormED (a) = NormCAD (a), for the remaining forms of a

NormV D (a) = let a, D = NormED (a) in x, x = a andD, where x 6∈ Vars(D)

NormCAD ((f (a1, ..., am) every a)ck) = let (a1, ..., am), D = NormElistD (a1, ..., am) in

let x, D = NormV D (a) in y, y = (f (a1, ..., am) everyx)ck
andD,

where y 6∈ Vars(D)

NormCAD ((merge x (C1 → a1) ... (Cn → an))ck) = let a1, ..., an, D = NormCAlistD (a1, ..., an) in
(merge x (C1 → a1) ... (Cn → an)), D

NormCAD (a) = NormED (a), for the remaining forms of a

NormDD (D1 andD2) = NormDNormDD (D1) (D2)

NormDD (px = (v fby a)ck) = let x, D = NormV D (a) in (px = (v fby x)ck) andD

NormDD ((x1, ..., xn) = (f (a1, ..., am) every a)ck) = let (a1, ..., am), D = NormElistD (a1, ..., am) in
let x, D = NormV D (a) in

(x1, ..., xn) = (f (a1, ..., am) everyx)ck
andD

NormDD ((pat1, ..., patn) = (a1, ..., an)) = let D = NormDD (pat1 = a1) in
...let D = NormDD (patn = an) in D

NormDD (x = a) = let a, D = NormCAD (a) in (x = a) andD,
for the remaining forms of a

NormElistD (a1, ..., an) = let a1, D = NormED (a1) in
...let an, D = NormED (an) in (a1, ..., an), D

NormCAlistD (a1, ..., an) = let a1, D = NormCAD (a1) in
...let an, D = NormCAD (an) in (a1, ..., an), D

Figure 4. The Normalization Function

Considering the set of normalized equations given in Sec-
tion 3.2, it is first scheduled, obtaining, for example:

z = (((t1 ∗ 3) when True(c)) + k)ck on True(c)

and o = (merge c (True→ t2 + 2)
(False→ t3 when False(c)))ck

and t2 = (5 fby (z + 1))ck on True(c)

and t1 = (4 fby o)ck

and t3 = (6 fby x)ck

Then, it is translated into:

case (c){
True : z := state (t1) ∗ 3 + k;

o := state (t2) + 2;
state (t2) := z + 1;

False : o := state (t3);
};
state (t1) := o;
state (t3) := x

This example illustrates the effect of scheduling decisions of equa-
tions on the resulting code. Control optimization, i.e., fusion of
control structures, depends on the ability to put together equations

on the same clocks, provided data dependencies are respected. Of
course, one could do control optimization on the target code, but
this would require rebuilding much of the data-flow information,
which is already available in the source program.

We now illustrate modular compilation on the so-called activa-
tion condition of SCADE (or enabled subsystem in SIMULINK), in-
stantiated on the counter. 2 The activation condition, implemented
by the node condact below, takes an input i and a boolean se-
quence c and runs the node count on the sub-sequence of i on the
instants where c is true. Otherwise, it keeps the previous value of
i:
node count(i:int) = (o:int) with
o = (0 fby o) + i

node condact(c:bool;i:int) = (o:int) with
o = merge c (True -> count(i when True(c))

(False -> (0 fby o) when False(c))

Then, the node condact is translated into the following code:

machine condact =

2 The activation condition is an example of a higher-order primitive which
takes a node as a parameter, so it cannot be expressed as is in our source
language (unless treated specifically or first inlined).



TE (m,si,j,d,s) (ect) = TE (m,si,j,d,s) (e)

TE (m,si,j,d,s) (v) = v

TE (m,si,j,d+[x:t],s) (x) = x

TE (m+[x:t],si,j,d,s) (x) = state (x)

TE (m,si,j,d,s) (op(a1, ..., an)) = let c1, ..., cn = TEList(m,si,j,d,s) (a1, ..., an) in
op(c1, ..., cn)

TE (m,si,j,d,s) (a when C(x)) = TE (m,si,j,d,s) (a)

TEList(m,si,j,d,s) (a1, ..., an) = (TE (m,si,j,d,s) (a1), ...,TE (m,si,j,d,s) (an))

TA(m,si,j,d,s) (y, (merge x (C1 → ca1)
...
(Cn → can)

)
ck

) = case (x) { C1 : TA(m,si,j,d,s) (y, ca1)
...
Cn : TA(m,si,j,d,s) (y, can)

}

TA(m,si,j,d,s) (x, eck) = x := TE (m,si,j,d,s) (e), for the remaining forms of e

TEq(m,si,j,d+[x:t],s) (x = (v fby a)ck) = let c = TE (m,si,j,d,s) (a) in
(m + [x : t], [state (x) := v]@si, j, d,
[Control(ck, state (x) := c)]@s)

TEq(m,si,j,d,s) (p = (f (a1, ..., ak) everyx)ck) = let (c1, ..., ck) = TEList(m,si,j,d,s) (a1, ..., ak) in
(m, [o.reset]@si, [(o, f)] + j, d,
Control(ck, case (x) {(True : o.reset)})@
Control(ck, p = o.step (c1, . . . , ck))@s)
where o 6∈ Dom(j)

TEq(m,si,j,d,s) (x = eck) = (m, si, j, d,Control(ck,TA(m,si,j,d,s) (x, eck))@s)

TEqList(m,si,j,d,s) (eq) = TEq(m,si,j,d,s) (eq)

TEqList(m,si,j,d,s) (eq, l) = TEqTEqList(m,si,j,d,s) (l) (eq)

TP (node f(p) = q with var r in D) = let m, si, j, d, s = TEqList([],[],[],r,[]) (l) in
machine f =
memory m
instances j
reset() = si
step (p) returns (q) = var d in JoinList(s)

where l ∈ Sch (D)

Figure 5. The Translation Function

memory x2: int
instances x4: count
reset () =

x4.reset ();
state(x2) = 0;

step(c:bool;i:int) returns (o:int)
var x3:int in
case(c) { True: o = x4.step(i);

False: o = state(x2) };
state(x2) = o;

This example illustrates the memory model that is used for the
generated code: it is essentially a tree structure, each machine

allocating the memory for its sub-machines. There is no dynamic
allocation of memory, thus conforming with what is practiced on
most of safety critical embedded applications.

6. Target code generation
The intermediate language of Section 4 can be quite naturally trans-
lated into either a full-fledged object-oriented language or into a
low-level imperative language. Our main interest lies in the gen-
eration of C code which is the traditional target of compilers of
synchronous languages. Moreover, a compiler for C has been re-
cently certified in COQ [3] which should make it possible to de-
velop a complete certified compiler from LUSTRE to assembly



code. Nonetheless, in order to illustrate the versatility of the in-
termediate language, we also consider JAVA code generation.

6.1 Translation into Java
As already pointed out, the intermediate language of Section 4
can be seen as a sequential language with the data encapsulation
mechanism characteristic of object-oriented languages. As such,
it lends itself to a straightforward translation into existing object-
oriented languages, e.g, JAVA.

Each machine definition is translated into a JAVA class definition
with two methods step and reset. The state variables specified
in the memory section are translated into field declarations. The
instance variables specified in the instances section are translated
into object creations using their default constructors. Actions and
expressions are directly translated into the corresponding JAVA
constructs. In case of multiple outputs, the answer type of the step
method is represented as a structure with the fields representing the
subsequent elements of the tuple.

For instance, the counting example of Figure 1 is translated into
the following JAVA code:

public class counting {
boolean x_1;
int x_2;

public void reset() {
x_1 = true;
x_2 = 0; }

public int step(boolean tick, boolean top) {
int o; int x_3; int v; boolean b;
b = x_1;
x_1 = false;
if (top) {v = 1;} else {v = 0;}
if (b) {x_3 = 0;} else {x_3 = x_2 + v;}
if (tick) {o = v;} else {o = x_3;}
x_2 = o;
return o; }}

6.2 Translation into C
The C code generator follows the principles already demonstrated
by the RELUC compiler. 3 For each machine, the state variables
specified in the memory section and the instance variables specified
in the instances section are gathered in a separate structure, used
for representing the internal state of each object. Both the reset
and the step functions are translated into functions that accept an
additional argument self, passed by reference, that points to a con-
crete instance of the corresponding state structure (object). If nec-
essary, the answer type of the step function is again represented as
a structure to allow tuples to be returned. 4 Actions and expressions
are directly translated into the corresponding C constructs.

For instance, the counting example of Figure 1 is translated into
the following C code:

typedef struct {
int x_1; int x_2; } counting_mem;

void counting_reset(counting_mem *self) {
self->x_1 = 1;
self->x_2 = 0; }

int counting_step(int tick, int top,

3 RELUC is a prototype compiler developed at Esterel Technologies; it is
used as an implementation reference for the next SCADE generation.
4 As a matter of fact, RELUC differs from our approach in the way multiple
outputs are handled. In RELUC a memory structure is extended with an
appropriate number of fields for storing the outputs.

counting_mem *self) {
int o; int x_3; int v; int b;
b = self->x_1;
self->x_1 = 0;
if (top) {v = 1;} else {v = 0;}
if (b) {x_3 = 0;} else {x_3 = x_2 + v;}
if (tick) {o = v;} else {o = x_3;}
self->x_2 = o;
return o; }

7. The Complete Compiler
Based on the material presented in this article, we have built a com-
piler to serve as a reference implementation for a certified compiler.
The goal was to make it as small as possible and mostly based
on local program transformations. Figure 6 describes the various
parts of the compiler with the corresponding numbers of lines of
OCAML code. Another version has also been implemented in the
programming language of COQ, but only up to the generation of
the object-based intermediate language. We have also implemented
three classical optimizations directly on the clocked-data flow lan-
guage: inlining, dead-code removal, and automata minimization –
the general form of common-subexpression elimination. They are
all defined as source-to-source transformations and largely benefit
from the data-flow nature of the language. Finally, language exten-
sions proposed in [6] have been implemented as well.

The source language we have presented is a first-order data-
flow language similar to LUSTRE. Nonetheless, it exhibits specific
constructions that make it both a good target for implementing ex-
tensions as well as a good input language for generating efficient
sequential code. The two specificities are the n-ary merge (instead
of the current operator of LUSTRE) and a modular reset construct
(also absent in LUSTRE). The merge is used to combine n com-
plementary streams and introduces a general notion of clocks. The
reset is used to restart the behavior of a node. These two construc-
tions can be encoded in LUSTRE but the generated code is then in-
efficient or calls for complex optimization techniques to cancel the
effects of the encoding. Providing merge and reset as basic primi-
tives allows for a more direct and efficient compilation.

In [6], a conservative extension of LUSTRE with hierarchical
state automata is proposed, based on a translation semantics into
a clocked data-flow kernel similar to the one considered in this
article. The merge and reset constructs are used extensively in this
encoding. The authors advocate that such a translation not only
gives the semantics of the whole language, but is an effective way
to implement the compiler in the sense that the generated code
is good in terms of size and efficiency. This solution has been
integrated in the RELUC compiler of LUSTRE. Thus, the present
article completes this work and highlights the missing part of the
compilation chain. Altogether, these results serve as the basis of
SCADE 6, the next version of SCADE.

The code generation is done after type checking, clock check-
ing, and specific static analyzes such as causality or initialization
analysis. If one of these steps fails, the compilation process stops.
Type checking is almost standard [20]. The clock calculus rejects
programs that cannot be executed synchronously and is defined as
a type inference problem [7]. The causality analysis checks the ab-
sence of instantaneous loops in order to ensure that a static schedule
is feasible. Finally, the initialization analysis checks that the behav-
ior does not depend on the initial values of delays [8]. At the end
of these analyzes, the program is annotated with type and clock in-
formation. Then, constructs that are not part of the data-flow kernel
(e.g., control structures such as activation conditions or state ma-
chines) are translated into the clocked data-flow kernel.

In Section 1, we have stressed the importance of modular com-
pilation for separate compilation, code tracability, as well as to keep



Ocaml (LOC)
Administrative code abstract syntax + printers 546

lexer & parser 335
main driver (including symbol tables, loader, etc.) 285

Basis graph structures 74
scheduling 67
type checking 269
clock checking 190
causality checking 30
normalization 95
control fusion 45
translation to the intermediate language 136

Emitters to concrete languages (C, Java and OCaml) arround 300 each
Optimizations inlining 250

dead-code removal 42
data-flow network minimization 162

Language extensions automata 107
control-structures 54
shared variables 59
reset conditions 199
translation to the basic clocked language 172

Figure 6. MiniLustre in Numbers

the size of the generated code linear in the size of the source pro-
gram. The price to pay is an extra constraint on feedback loops that
must explicitly cross a delay (not nested inside nodes). Thus, in
practice, modular compilation affects the causality analysis which
has to reject semantically correct programs because they cannot be
compiled modularly. To avoid this restriction, an industrial com-
piler such as the one present in the SCADE-Suite proposes to in-
line, on user demand, specific nodes of the model. This feature
can also be used to find a good compromise in terms of program
size/program speed (as any compiler optimizer silently does). This
explains why it is important to complement a synchronous compiler
with an inliner. Note that such an inliner is a trivial task in LUSTRE
thanks to its substitution principle. The other solution in order to
avoid the restriction on feedback loops would rely on the decompo-
sition mechanism proposed by Raymond [21]. Taking dependences
between inputs and outputs, a stream function is decomposed into
a minimal number of atomic functions, each of them leading to a
single transition function. Then, every call to a non atomic func-
tion is statically inlined when it appears in a feedback loop. Such
a solution is complementary to what is considered in the present
paper and would be inserted as a pre-processing step in the whole
compilation chain.

In Section 5 we have presented a control optimization which
gathers two consecutive control structures on the same guard. There
are other optimizations that can be implemented in this translation,
particularly around the scheduling policy. The role of scheduling
is to transform a partially ordered set of equations into a sequence
of assignments. The solution is not unique in general, and we can
take advantage of the freedom to favor certain optimizations. For
instance, the scheduling can contain heuristics that try to sched-
ule consecutively equations that are guarded by the same clock.
Then, the merging of consecutive control structures will be able to
factorize more control conditions. Another classical optimization
is related to the reuse of variables (which corresponds to remov-
ing copy variables in classical compilation terminology [19]). As
mentioned in [15], a stream x and its previous value pre x can be
stored in the same variable if the computation of x is not followed
by a use of pre x. The RELUC compiler as well as the reference

compiler we have developed to support the present article imple-
ment a scheduling heuristics for that purpose.

8. Related Work
This article is related to the work done on the code generation of
synchronous languages and in particular LUSTRE and SIGNAL. We
have already pointed out the differences with the academic com-
piler of LUSTRE. The distinction with SIGNAL comes from the
different expressiveness of our source language and its associated
clock calculus. For example, the language does not allow the ex-
pression of relations as SIGNAL does, but only functions, and is
based on a Kahn semantics. Moreover, we use a simpler clock cal-
culus based on ML-type inference whereas the clock calculus of
SIGNAL calls for boolean resolution [1, 11]. In our language, it
is for example not possible to express the disjunctive clocks of
the form ck1 ∨ ck2 (stating that a value is present if one of the
two clocks is true) as is SIGNAL. Clocks are only of the form
base on c1 on ... on cn, and they correspond directly to nested
control structures. The introduction of an n-ary merge and the gen-
eral form of clocks presented here does not seem to have been con-
sidered in SIGNAL. Even though this construction could be encoded
in SIGNAL, obtaining good code would call for the full expressive-
ness of its clock calculus and a more complex code generation step.
It would be interesting to know if the resulting code would coincide
with the one obtained here with simpler but dedicated techniques.

This work is connected also with the works on the DC for-
mat [14] and its extension DC+ [9] introduced for the compila-
tion of synchronous languages. The DC format allows for similar
control properties as the source language which we consider. How-
ever, as the author in [14] points out, DC was not considered as
a programming language, whereas the language we consider does
have a static and dynamic semantics. This means that the result of
all steps in the compilation chain can be statically typed or clock
checked. This feature is important in compilers used for critical
software and has already been used in the qualification process of
industrial projects that use SCADE as a development tool.

Finally, code generation is often related to code distribution
(see [12] for a survey and most recent references). However, it
does not seem that the description of the modular compilation of



a language such as the one treated here has been considered in this
context.

9. Conclusion and Future Work
This article has presented the code generation of a synchronous
data-flow language into imperative code. This code generation is
modular in the sense that each node definition is translated into
an independent pair of imperative functions. The principles pre-
sented in this article are implemented in the RELUC compiler of
SCADE/LUSTRE and experimented on industrial real-size exam-
ples. However, their precise description has never been published
or described before. Such a formalization now appears as a fun-
damental need in order to develop a certified compiler for a syn-
chronous language in a proof assistant, as well as to simplify exist-
ing implementations. Moreover, it offers an opportunity to improve
process-based certification as used today by SCADE customer with
a stronger mathematical argument of certification using proof tech-
niques.
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