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Abstract This paper addresses the question of producing modular sequential impera-

tive code from synchronous data-flow networks. Precisely, given a system with several

input and output flows, how to decompose it into a minimal number of classes executed

atomically and statically scheduled without restricting possible feedback loops between

input and output?

Though this question has been identified by Raymond in the early years of Lustre,

it has almost been left aside until the recent work of Lublinerman, Szegedy and Tripakis.

The problem is proven to be intractable, in the sense that it belongs to the family of

optimization problems where the corresponding decision problem — there exists a

solution with size c — is NP-complete. Then, the authors derive an iterative algorithm

looking for solutions for c = 1, 2, ... where each step is encoded as a satisfiability (SAT)

problem.

Despite the apparent intractability of the problem, our experience is that real pro-

grams do not exhibit such a complexity. Based on earlier work by Raymond, the current

paper presents a new encoding of the problem in terms of input/output relations. This

encoding simplifies the problem, in the sense that it rejects some solutions, while keep-

ing all the optimal ones. It allows, in polynomial time, (1) to identify nodes for which

several schedules are feasible and thus are possible sources of combinatorial explosion;

(2) to obtain solutions which in some cases are already optimal; (3) otherwise, to get

a non trivial lower bound for c to start an iterative combinatorial search. The method

has been validated on several industrial examples.
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Fig. 1 A Scade (v5) block-diagram

The solution applies to a large class of block-diagram formalisms based on atomic

computations and a delay operator, ranging from synchronous languages such as Lus-

tre or Scade to modeling tools such as Simulink.

Keywords Real-time systems, Synchronous languages, Block-diagrams, Compilation,

NP-completeness, Partial orders, Preorders

1 Introduction

The synchronous block-diagram or data-flow formalism is now preeminent in a variety

of design tools for embedded systems. Sequential code generation of synchronous block-

diagrams have been considered in the early years of Lustre [7] and Signal [1] and is

provided by industrial tools such as Scade 1 and RtBuilder 2 for almost fifteen years.

Though it has been considered more recently, modeling and simulation tools such as

Simulink 3 and Modelica 4 are now equipped with automatic code generators.

We focus here on the problem of generating imperative, sequential code, imple-

menting the functional behavior of a parallel data-flow network. We keep abstracted

the (somehow orthogonal) problem of data management, that is, how values are ac-

tually passed from one node to another and even the interpretation of each operator.

In particular, we address both data-flow networks with discrete-time (e.g., Scade) or

continuous-time (e.g., Simulink) semantics. Figure 1 gives an example of a Scade

block-diagram and Figure 2, an example of a Simulink one.

Whatever be the semantics of nodes in a network, there are basically two types

of atomic nodes. Instantaneous nodes need to evaluate all their arguments in order to

produce their outputs (e.g., combinatorial functions). On the contrary, delay nodes are

able to produce their outputs before reading their inputs. They correspond to unitary

registers in synchronous designs (the so-called pre operator of Lustre), initialized

buffers in Kahn process networks [9,10] or continuous integrators in Simulink. Delays

1 http://www.esterel-technologies.com/scade/
2 http://www.geensoft.com/en/article/rtbuilder
3 http://www.mathworks.com/product/simulink
4 http://www.modelica.org
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Fig. 2 A Simulink block-diagram

are essential to cut instantaneous data-dependencies and to restrict to well-founded

feedback loops.

Given a system described as a data-flow network of atomic operators, code gen-

eration aims at producing a static schedule satisfying data-dependencies. This static

schedule is feasible when there is no combinatorial loop, i.e., every loop in the graph

crosses a delay. Data-flow formalism, just like any advanced programming language,

allow the user to abstract his own programs into reusable components, that is, to

build modular functions. This raises the problem of defining what is exactly a reusable

parallel program, and how to compile it once and for all into sequential code. As for

sequential languages, modular (or separate) compilation produces a single sequential

procedure, executed atomically, for every block-diagram definition. Nonetheless, this

modular code generation is not always feasible even in the absence of combinatorial

loops, as noticed by Gonthier [6]: if copy is a node defined by copy(x, y) = (x+1, y+1),

then the equation (y, z) = copy(t, y) defines two valid streams y and z (since y = t+ 1

and z = y+1 = (t+1)+1) but it cannot be statically scheduled if copy is compiled into

one atomic step function. Indeed, it would make both y and z depend on t and y. This

observation has led to two main compilation approaches. With the first one, or white-

boxing, nodes are statically inlined before code generation. This is the solution taken in

the academic Lustre compiler. The opposite solution or black-boxing, keeps maximal

code sharing by compiling each node individually into one step function executed atom-

ically. From the user point of view, a node is considered as instantaneous whichever are

the actual dependencies between its inputs and outputs. As a consequence, every feed-

back loop must cross an explicit delay outside of the node. This compilation method

rejects causally correct programs (such as the copy example) which would have worked

properly in a parallel execution or compiled with a white-box technique. This solution

is the one taken in the industrial compiler of Scade and is combined to inlining, on

demand 5, to accept all causally correct programs [3].

In this paper, we investigate an intermediate approach between the two former

ones, which we call grey-boxing. It is based on the observation that some nodes are

compatible in the sense that they can be executed together without restricting pos-

sible feedback loops between inputs and outputs. Then, the data-flow graph can be

partitioned into a minimal number of classes, each of them executed atomically. The

idea of grey-boxing originally appeared in a work by Raymond published in a French

report in 1988 [15]. Left aside, the subject has been reconsidered recently by Lublin-

erman and Tripakis. Their first proposal [13] was based on dynamic testing to avoid

5 This is manually controlled by the designer with a compilation flag.
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the re-computation of shared values but, as they noticed in [12], this solution is costly

in term of code size and execution time. In this recent work, Lublinerman, Szegedy

and Tripakis come back to the original optimal static scheduling problem. They prove

that the problem is intractable since it belongs to the family of optimization problems

where the corresponding decision problem — is there a solution with at most c classes?

— is NP-complete as it encodes the clique cover in a graph. Then, the authors derive

an iterative algorithm looking for solutions for c = 1, 2, ... where each step is encoded

into a SAT problem.

Despite the apparent intractability of the problem, our experience is that real pro-

grams do not exhibit such a complexity. This calls for a careful look at the sources

of combinatorial explosion and for an efficient encoding which limits this possible ex-

plosion. Moreover, we would like to build a polynomial test checking whether a given

instance of the problem can be polynomially solved or fall into the general case, and

thus, requires an enumerative search. Based on earlier work by Raymond on a study

of input/output relations, this paper proposes a symbolic and efficient representation

of the problem. We show that this encoding simplifies the problem in the sense that it

rejects solutions but keeps all the optimal ones. This symbolic representation allows,

in polynomial time, (1) to identify nodes for which several schedules are feasible and

thus are possible sources of complexity; (2) to obtain solutions which in some cases

are already optimal; (3) otherwise, to get a non trivial lower bound for c to start an

iterative combinatorial search, once the symbolic representation is translated into a

boolean formula. All this is proven using basic properties of partial orders.

The paper is organized as follows. Section 2 gives an overview of the optimal

scheduling problem and Section 3 develops the formalization. We start by giving an-

other proof that optimal scheduling is intractable to help clarifying the sources of

combinatorial explosion. In section 4, we present the symbolic representation based on

input/output analysis, related properties and algorithms. Section 5 gives experimental

results. We discuss related works in Section 6 and we conclude in section 7. The source

code of the Ocaml implementation is given in appendix A.

2 Overview

2.1 From Synchronous Data-flow to Relations

Consider the following synchronous data-flow program given below in Lustre syntax.

The corresponding block-diagram is given on the left side of Figure 3. The block NODE

has two inputs a, b and two outputs x and y, all with data-type ty. The body is made

of two equations defining respectively x and y.

node NODE(a, b: ty) returns (x, y: ty);
let

x = j(a, f(D(a), b));
y = h(b);

tel

There are essentially two kinds of operators in such a network, instantaneous and

delay operators. Instantaneous operators (j, f and h) need their current inputs in order

to produce their current output whereas a delay (D) is able to produce its output before
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Fig. 3 A data-flow network and the corresponding ordered set of actions
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Possible sequential code:

z = D.get()

y = f(x, z)

D.set(y)

Fig. 4 The get/set principle breaks feedback loops

it reads its input 6. Delay nodes are used to program dynamical systems with feedback

loops.

Focusing only on the scheduling problem of a data-flow network with delays — and

not memory representation and optimization — the simplest way to represent a delay

D is to express it as two atomic imperative actions D.get and D.set. D.get returns

the current value of the delay whereas D.set reads the current input and stores it

for remaining execution. More importantly, if the result of D.get is necessary, it must

be executed before D.set is executed. In other words, a delay reverses the data-flow

dependency between its input and its output and thus breaks cycles (Figure 4). Using

this lower-level representation, we consider data-flow networks that are simply partially

ordered sets of atomic actions as defined below.

6 The unitary delay is concretely written pre in Lustre and 1/z in (discrete) Simulink.
From the dependencies point-of-view, an integrator (1/s) for a continuous signal in Simulink
acts similarly.
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Definition 1 (Abstract Data-flow Networks) A system (A, I,O,�) is made of:

1. a finite set of actions A,

2. a subset of inputs I ⊆ A,

3. a subset of output O ⊆ A (not necessarily disjoint from I)

4. and a partial order � to represent the precedence relation between actions.

There is no constraint on I and O with respect to �. In particular, one may have

x�i or o�x with x ∈ A, i ∈ I and o ∈ O.

In the sequel, the static scheduling problem of a concrete data-flow program is

considered only on this representation. We shall not describe further the transformation

encoding from a high level language (like Scade or Simulink) to the abstract model

(A, I,O,�).

Figure 3 shows a block-diagram (left) and the corresponding ordered set of actions

(center). The delay node D is replaced by the corresponding actions set and get.

Note that only the direct dependencies are shown, the partial order is, as usual, the

transitive closure of the represented acyclic graph. From this partially ordered set, code

generation mainly consists in finding a correct schedule for the actions, that is, a total

order including the partial dependency order. One correct schedule is shown on the

right-hand side of Figure 3.

2.2 Feedback Loops and Grey-boxing

In such a network, it makes sense to feed an output back to an input as soon as the

output does not depend combinatorially on this input. We say that such a feedback

is causality correct. This is illustrated by the example of Figure 5. If we allow such

an external loop, it is not possible to use a single, monolithic code for NODE, such as

the one given on the right of Figure 3. In any correct schedule, the computation of

the external node k must take place between the computations of the internal nodes h

and j. As a consequence, at least two atomic pieces of sequential code (or sequential

blocks) are necessary for executing a step in any context: one for h and one for j.
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Fig. 6 Two possible “grey-boxing” and optimal scheduling

However, it is not necessary to introduce a block for each internal variable, which

would be equivalent to inlining (or white-boxing). As a matter of fact, some internal

nodes can be gathered with either h or j without preventing causally correct feedback

loops. For example, whatever the calling context, f can be computed:

– together with h, as soon as b is provided;

– together with (and before) j in order to provide the output x.

The same reasoning holds for the delay D:

– D.get is clearly associated to the computation of f ;

– D.set requires the input a, and for this reason, is related to the action j.

Finally, this intuitive reasoning shows that the node can be abstracted into two blocks

of code:

– the ”class” of h with input b and output y;

– the ”class” of j with input a, output x, and which must always be computed after

the class for h.

The frontier between these two classes is not strict: some internal computations can

be performed on one side or the other, like g and f . Figure 6 shows two particular

solutions, each of them with two classes. Note that this number of classes is optimal,

since it is impossible to produce only one class without forbidding the correct feed-back

from y to a.

The problem of partitioning a data-flow program into a (minimal) number of se-

quential blocks is called the (Optimal) Static Scheduling Problem.

Figure 7 summarizes this principle on our example:

– an optimal partition of the actions is chosen (left),

– a user interface (center) is derived from the partition, which contains:

– the scheduling information: a step of NODE is performed by two atomic actions

N1 and N2. N1 must be performed before N2.

– the input/output ”pins” recalling how the program can be connected by a caller.

– some total order is chosen for each block, giving the actual sequential code (right).
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proc N1 () {

}
N1 before N2
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Fig. 7 Grey-boxing: orderer blocks plus sequential code
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Fig. 8 Modular static scheduling

2.3 Modularity

The formulation with (A, I,O,�) is fully modular and sufficient to address the static

scheduling problem.

At each level of the hierarchy, we can focus on a set of actions, some of them be-

ing inputs and/or outputs and some being local. Consider the example of Figure 8:
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the block NODE is used within a block (P ), with a feedback loop similar to the one

of Figure 5. According to the informations computed during the compilation of NODE

(Figure 7), the block-diagram (left) is interpreted as a partially ordered set of actions

(center). The grey-boxing principle is applied, and as it appears that all outputs are

depending on all inputs, no external feedback is possible without creating a combina-

tional loop. As a consequence, the node P can be implemented by a single block. A

correct sequential code is produced (right).

3 Formalization

3.1 Optimal Static Scheduling

Let A be a set of actions, partially ordered by �, and two subsets I ⊆ A (input nodes)

and O ⊆ A (output nodes).

Definition 2 (Compatibility) Two actions x, y ∈ A are said to be compatible re-

garding static scheduling (noted xχ y) when the following property holds:

xχ y
def
= ∀i ∈ I, ∀o ∈ O, ((i�x ∧ y�o)⇒(i�o)) ∧ ((i�y ∧ x�o)⇒(i�o))

The reverse relation, incompatibility, is the property which formalizes the fact that

two nodes (either internal, input or output) can not be statically scheduled within the

same piece of atomic code: if two actions are not compatible (for instance i�x, y�o and

i�o), it is possible to feedback o to the input i without introducing a combinatorial

loop. Thus, setting x and y together into the same piece of code would improperly

make this feedback impossible.

The goal is to find classes of pairwise compatible actions in A. Note that compati-

bility is not a solution, since it is not an equivalence relation. It is symmetric, reflexive,

but not transitive in general: for example, in Figure 6, fχ j and fχ b hold but not jχ b.

Moreover, not any equivalence relation ' included in χ is a solution: the atomic

blocks must be made of pairwise compatible actions, but they must also be schedulable

with respect to �, without introducing any extra dependencies between inputs and

outputs.

In other terms, we are looking for an equivalence relation plus a (partial) order

over the classes. This is strictly equivalent to search a preorder (reflexive, transitive,

not symmetric relation) over the set of actions.

Definition 3 (Optimal Static Scheduling (OSS)) A static schedule is a relation

- ⊆ A×A such that:

– (SS-0) - is a preorder (reflexive, transitive), and we note ' the underlying equiv-

alence relation (x ' y ⇔ x-y ∧ y-x),

– (SS-1) x�y ⇒ x-y (it contains all the dependency constraints),

– (SS-2) ∀i ∈ I, ∀o ∈ O, i-o ⇔ i�o (the preorder strictly maps the dependency

on input/output pairs).

Moreover, a static schedule is called optimal (OSS) if it satisfies the following

property:

– (SS-3) ' is maximal (i.e. it has a minimal number of classes).
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Property 1 The main property following the definition SS-0 to SS-2 is that the under-

lying equivalence ' implies the compatibility relation:

– (SS-prop) x ' y ⇒ x χ y

Proof Let - be a static schedule. Suppose that there exist some actions x, y, input i

and output o such that x ' y, i�x, y�o and i�o, by SS-1, i-x and y-o, then, since

(in particular) x-y, then i-o and, consequently, by SS-2 i�o must hold, which is a

contradiction.

Note that the dependency � is trivially a non-optimal static schedule: choosing

this solution corresponds to the white-boxing approach (one computation block for

each atomic action).

3.2 Theoretical Complexity of OSS

An equivalent definition of the problem, presented in terms of graphs and clusters, has

been proposed in [12]. Authors have shown that it is NP-complete, through a reduction

of the k-cliques partition problem, also known as clique cover [5].

Definition 4 (Minimal Clique Cover (Richard Karp, 1972)) A clique in a non-

oriented graph G, is a subset of vertices that are all connected pairwise. The MCC

problem consists in finding a partition of the vertices into a (minimal) number of

cliques.

We briefly present an alternative encoding, thereafter called X-encoding (”cross”-

encoding), which establishes the same result. This is motivated as it helps to better

understand why the problem is theoretically hard, while being simple on small but

typical systems such as the one given in Figure 6.

We show that any minimal clique cover problem can be linearly encoded into a

OSS instance. First, we reformulate the problem in terms of relations: given a finite set

L and a symmetric relation ↔ (i.e. a non oriented graph), find a maximal equivalence

relation ' included in ↔ (i.e. with a minimal number of classes, called cliques in the

original formulation).

This problem has indeed many similarities with OSS since OSS mainly consists in

finding a maximal equivalence included in a symmetric relation (the compatibility).

However, it is not trivial that compatibility relations can be as general as symmetric

relations.

X-encoding Let G = (L,↔) be the data of a MCC problem. We build a OSS instance

with an extra set of nodes X: (A = L ]X, I = O = X,�) (i.e. each extra variable is

both an input and an output), in the following way:

1. For each x ∈ L, we introduce 4 extra variables io1x, io2x, oi1x and oi2x that are both

input and output. Each local variable x and its extra input/output variables are

related by the dependency relation in a “X” (cross) shape, as presented on the left

side of Figure 9.

2. For each pair x, y such that x↔y, we add 8 dependencies by connecting each input

of x to each output of y and vice versa, as shown on the right side of Figure 9.
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Fig. 9 The X-encoding, isolated node (left), and related pair (right)

The X-encoding ensures that each additional node (io1x,io
2
x, oi1x and oi2x) is incom-

patible with any other variables. For instance, an extra variable io1x is incompatible:

– with any other extra variable of type io or oi, since it can be fed back to any of

them,

– with any local node y 6= x, since it can be fed back either to io1y or io2y,

– with the associated local variable x since it can be fed back to the other extra input

io2x.

The same reasoning applies for variables of type oi.

The dependencies added for each pair x↔y enforce that x is compatible with y: all

outputs of y depend on all inputs of x and reciprocally. On the contrary, if x6↔y, no

extra dependencies are introduced and x6 χy: any output of x can be fed back to any

input of y and reciprocally.

Finally, we have xχ y ⇔ x↔y. Note that it establishes that a compatibility

relation can be an arbitrary symmetric relation.

Theorem 1 (OSS is NP-hard) OSS is as difficult as MCC, since any instance of

MCC can be linearly reduced to an particular instance of OSS.

Let G = (L,↔) be an instance of the the MCC problem, and XG = (L∪X,�) the

instance of the OSS problem obtained by X-encoding.

Firstly, X-encoding is trivially linear according to the size of the MCC instance.

Secondly, an optimal solution for XG can be (linearly) deduced for any optimal solution

of G, and conversely, as proven in the sequel.

1. Let ' be a solution of the clique cover problem over (L,↔) and consider the

relation R over (L ∪ X,�) which is the transitive closure of the relation ' ∪ �.

This relation:

– is a preorder (SS-0),

– by definition, it contains � (SS-1),

– it does not add any extra dependency between inputs and outputs (SS2).
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Proof Firstly, note that “inputs” (nodes of type io), are minimal by construction

for both ' and �, and then, the transitive closure cannot introduce any relation

between two nodes of type io. The same reasoning holds for “outputs” (type

oi) which are maximal by construction. As a consequence, the transitive closure

necessarily crosses internal nodes.

Secondly, since by construction x�y for any pair of internal nodes, xR y is

necessarily due to the transitive closure of ', which is, by definition already

transitive, thus: xR y ⇔ x ' y.

Now, suppose that there exists an input/output pair such that i R o and i�o;
then one can find two internal nodes x, y such that i�x, x R y, and y�o. But

x R y ⇔ x ' y, and, since ' is a solution of the clique cover, x ' y ⇒ x↔y.

Finally, we have i�x, y�o and x↔y, and then, because of the X-encoding

construction (left side of Figure 9), i�o, which is absurd.

2. Let - be a solution of the X-encoded problem over (L∪X,�) and ' the associated

equivalence. Since ' ⊆ χ and χ only concerns internal nodes, then ' is also an

equivalence over L and thus, a solution of the clique-cover problem.

3. Moreover, an optimal solution for one problem necessarily gives an optimal solution

for the other: suppose, for instance, that ' is an optimal solution of the clique cover,

and that the transitive closure R of ' ∪ � is not an optimal scheduling. Then it

exists a strictly better scheduling - from which we can derive, by (2), a solution

of the clique cover which is strictly better than the optimal: this is absurd.

A main interest of this encoding is that it suggests that, even if OSS is proven

to be at least as complex as MCC, the instances of OSS that are supposed to be

computationally hard are far from what is a typical data-flow program: in order to fit

the general case, we have to consider programs where the number of inputs/outputs is

larger than the number of internal nodes, an uncommon situation in practice.

Our purpose is to establish that the complexity of OSS is strongly related to the

number of inputs/outputs, and the structure of their dependencies.

4 Input/Output Analysis

This section shows that the OSS problem can be reformulated, and in some sense

simplified, by analyzing the relations between input and output.

4.1 Input Saturation and Output Saturation

Let (A, I,O,�) be a data-flow network.

Comparing the sets of inputs (or outputs) of two nodes may give information on

how they can be statically scheduled without forbidding valid feedbacks. Let I(x) be

the input variables on which x depends on. Let O(x) be the output variables depending

on x.

Figure 10 illustrates the possible relations between two actions x and y that are

not related by �. Top (bottom) triangles represent the set of predecessors (successors)

of an action according to �; top (bottom) lines correspond to inputs (outputs). As

shown in this figure:
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I(x)

I(y)

O(x)

�I �O

O(y)

(a) x�Iy (b) x�Oy

In both case: x may be “fed-back” to y, but y cannot

Fig. 10 Preorders x�Iy and x�Oy give extra information on feasible scheduling.

– (a) if the inputs I(x) of x are included in the inputs I(y) of y, then any feedback

from an output of y to some input of x creates a combinatorial loop. As a conse-

quence, it is never the case that y should be computed before x. In other words, x

can always be computed before y. We write x�Iy.

– (b) the same reasoning holds with the (reverse) inclusion of outputs: if O(x) ⊇ O(y)

then x can always be computed before y. We write x�Oy.

These relations �Iand �O, that are trivially preorders, are called respectively the

input and output saturations of the relation �. They are solutions of SS:

– (SS-1) they both include �, since x�y implies I(x) ⊆ I(y) and O(x) ⊇ O(y),

– (SS-2) they do not introduce any extra input/output dependency, since O(i) ⊇
O(o), and, in particular, o ∈ O(o), we have i � o (similarly for the inclusion of

input).

It follows that, from the basic dependency relation (which is a non optimal solution

of SS), one can derive another solution which is still non optimal, but better than the

original.

Figure 11 illustrates the computation of the relation �O:

– on the right-hand side, the subset of outputs is associated to each node; outputs

inclusion allows to relate nodes that where not related before (dashed arrows, tran-

sitivity and symmetry is kept implicit),

– the right-hand side illustrates the whole �O relation, given as a set of partially

ordered classes. This preorder has 4 classes, and thus, it is not an optimal static

scheduling (Figure 6 gives two solutions with only 2 classes). However, it is better

than the trivial solution ≺, where the underlying equivalence is identity (with 9

classes).

Regarding previous definitions, we have build �I and �O starting from the data-

dependence relation� which is already a valid solution to the static scheduling problem.
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Fig. 11 Computing outputs reverse inclusion (left), gives a preorder �O with 4 classes (right).

In fact, the same reasoning holds when starting from any preorder which is a solution

of SS.

Definition 5 (Input and output saturation) Given a solution - of the SS prob-

lem, we define its input (or output) function, saturation preorder and equivalence:

I-(x) = {i ∈ I , i-x}

x-Iy ⇔ I-(x) ⊆ I-(y)

x'Iy ⇔ I-(x) = I-(y)

O-(x) = {o ∈ O , x-o}

x-Oy ⇔ O-(x) ⊇ O-(y)

x'Oy ⇔ O-(x) = O-(y)

We list the main properties of the saturation preorders. We provide proofs only for

the input-saturation -I (the case of -O is dual):

Property 2 -I and -O are solutions of SS.

Proof (for -I)

– (SS-1) since - is itself a solution of SS, x�y ⇒ x-y, and x-y ⇒ I-(x) ⊆ I-(y)

– (SS-2) if I-(i) ⊆ I-(o) then, since in particular i ∈ I-(i), we have i-o, which

implies i�o since - satisfies SS-3

The same reasoning applies for -O.

Property 3 for any SS solution, input-saturation equivalence is identical to compati-

bility on outputs, and output-saturation equivalence equals compatibility on inputs:

∀o, o′ ∈ O o'Io′ ⇔ oχ o′

∀i, i′ ∈ I i'Oi′ ⇔ iχ i′
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Proof (for 'I) For all output o, o′,

– o'Io′ ⇒ oχ o′, because of SS-prop,

– in order to prove the converse, since χ is symmetric, it is enough to show that

oχ o′ ⇒ o-I o′.
If o 6-I o′, then it exists i ∈ I such that i-o and i6-o′, from SS-2, we have also i�o
and i�o′, and then o and o′ are not compatible.

The same reasoning applies for 'O.

Property 4 In any optimal solution of SS, two inputs or two outputs that are compatible

are necessarily in the same class.

Proof (for output pairs)

– Suppose that - is an optimal solution of SS, where two compatible outputs are not

equivalent (o 6' o′) then compute its input-saturation 'I .

– From the properties of 'I , o'Io′, and then 'I and ' are different. Moreover 'I

is greater or equal ('I ⊇ ') than '.

– Finally, 'I has strictly less classes than the supposed optimal solution, which is a

contradiction.

The proof is similar for input pairs.

4.2 Input/Output Saturation

Saturation ”works” only once (applying it twice provides no further changes): let - be

a SS solution and -I its input-saturation, then i-Ix ⇔ i-x. In other words, inputs

according to -I are exactly inputs according to -. The same applies for the output-

saturation.

However, performing input-saturation followed by output-saturation (or vice-versa)

may lead to further improvements.

Figure 12 illustrates the input saturation of the output saturation of � (already pre-

sented Figure 11). Inputs according to �O are computed (left), which leads to a pre-

order with only 2 classes (right). For this particular case, we can state that this is an

optimal solution: it corresponds to the optimal solution already presented in right-hand

side of Figure 6.

In other terms, by computing output-saturation followed by input-saturation, we

can obtain a solution which is better than either �I and �O (in fact optimal for this

particular simple example). In the sequel, we precisely define this combined saturation

and study its main properties.

Definition 6 (Input/output preorder) Let - be a solution of SS, we define its in-

put/output saturation -IO , and equivalence 'IO , as the input-saturation of its output-

saturation:

I-
O(x) = {i ∈ I , i-Ox}

x-IOy ⇔ I-
O(x) ⊆ I-

O(y)

x'IOy ⇔ I-
O(x) = I-

O(y)
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Fig. 12 Computing input saturation of �O

This preorder inherits from the properties of both saturations:

1. It is a solution of SS,

2. it meets the compatibility relation on inputs (iχ i′ ⇔ i'IO i′),
3. it meets the compatibility relation on outputs (oχ o′ ⇔ o'IOo′).

Moreover, it has a new property on input/output pairs:

Property 5 'IO meets compatibility on I ×O:

∀i ∈ I, ∀o ∈ O, iχ o ⇔ i'IOo

Proof – i'IOo implies iχ o from SS-prop.

– iχ o⇒ i� o by definition, i� o⇔ i-IOo from SS-2.

– iχ o ⇒ o-IO i, because, if o 6-IO i it exists i′ such that (a) i′-Oo and (b) i′ 6-Oi;

from (a) and SS-2 i′- o and from (b) ∃o′ i- o′ ∧ i′ 6- o′, thus, from SS-2, i and o

are not compatible.

The consequence of these properties is that, in any optimal solution of the SS

problem, any pair of compatible nodes in I ∪O are necessarily in the same equivalence

class.

Moreover these equivalence classes on I ∪ O can be computed from any known

solution of SS, in particular from the trivial “worst” solution �. We note IO and �IO

the input-output function and saturation of �.

In other words, there is no choice for “gathering” inputs and outputs in an optimal

solution. Moreover, computing IO gives a lower bound to the number of classes: a class

containing an input and/or an output is mandatory in any valid solution. However,

several problems remain to be addressed: where to put local nodes in an optimal

solution? When are additional classes necessary? How many additional classes are

necessary?

Our purpose in the sequel is to precise and solve these problems. We must also try

to identify simple cases for which the optimal solution can be given in polynomial time

from the “hard” ones, that fall into the NP-hard theoretical complexity.
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4.3 Static Scheduling as a Mapping in the Input Power-set

In this section, we show that solving (O)SS is equivalent to finding a (minimal) mapping

of the actions into the power-set of inputs 7. Consider a mapping K : A 7→ 2I , which

satisfies the following properties:

– (KI-1) ∀x ∈ I ∪O, K(x) = IO(x)

– (KI-2) ∀x, y, x� y ⇒ K(x) ⊆ K(y)

We call the problem of finding a mapping satisfying these properties the Keys as

inputs subsets encoding (or KI-enc). Obviously, the dual problem of Keys as outputs is

equivalent. We show that this problem solves the SS one, in the sense that a solution

of KI-enc directly leads to a solution of SS.

Proposition 1 KI-enc solves SS

This proposition states that any solution of KI-enc leads to a solution of SS.

Proof Indeed, the mapping IO is a trivial solution of KI-enc, which provides, through

keys inclusion, a solution of SS which is simply �IO . The result is nonetheless more

general: let K be any solution of KI, then the preorder x-y ⇔ K(x) ⊆ K(y) is a

solution of SS:

– SS-1 follows from KI-2,

– SS-2 follows from KI-1 and the properties of IO.

Proposition 2 SS solves (and is improved by) KI-enc

This proposition states that, from any solution of SS, one can build a solution of KI-enc,

which is itself a better (greater according to relation inclusion) static scheduling.

Proof Suppose that - is a solution of SS, apply output and then input saturation, the

corresponding I-
O is a solution of KI-enc, and, moreover the corresponding preorder is

equal or better (i.e. included) than -.

These properties are interesting for the search of optimal solutions, that is, pre-

orders with a minimum number of classes. They imply that (1) any solution of KI-enc

gives a solution of SS, (2) from any solution of SS, one can build a better or identical

solution of KI-enc. In other terms, the KI-enc formulation has strictly less solutions

than SS, but it does not discard any optimal solution.

4.4 Computing the KI-enc System

Now, we reformulate the KI-enc problem into a more computational problem. First of

all, it is not necessary to compute explicitly the dependency order �. We suppose that

this order is given implicitly by a direct acyclic graph →, deduced linearly from the

wires in the original data-flow program (e.g. given in Scade or Simulink). Finally, we

consider a graph (A, I,O,→):

– where A is a set of n nodes (actions),

7 All the definition and properties we give can be replayed, by computing instead a mapping
into the power-set of outputs.
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– I is the subset of ni inputs,

– O is the subset of no outputs,

– → ∈ A × A is a dependency graph of p arcs, whose transitive closure is the de-

pendency (partial) order �. We do not require this graph to be minimal: the only

interesting property is that is size p is linear with respect to the size of the original

program.

We build a system of (in)equalities with a variable Kx for each x ∈ A such that:

Kx = IO(x) for x ∈ I ∪OS
y→x

Ky ⊆ Kx ⊆
T

x→z
Kz otherwise

Where
S

and
T

are the natural n-ary extensions of union and intersection, that is,

they map 0-argument to their respective neutral element:
S
∅

= ∅, and
T
∅

= I.

Complexity analysis The complexity of building the KI-enc system from a graph

(A, I,O,→) is mainly due to the computation of IO:

– computing the output function O can be done by assigning to each node a set

variable Ox, and then by visiting once, in a bottom-up topological order, the n

nodes and p arcs of the dependency graph. For each arc x→ y, a set union must

be made (Ox := Ox ∪ Oy) whose cost is theoretically in no · logno (negligible, in

practice, for small values of no when sets are encoded as bit-vectors). The global

cost is of the order n+ p · no · logno.

– given O, the IO of each node x can be computed by comparing O(x) to O(i) (cost

in no · logno), if it is included, i is added to the known IO of x (cost in logni).

The cost is globally of the order n · ni · logni · no · logno,

Finally, the system can be built in (roughly) z · m2 · (logm)2, where z = n + p

characterizes the size of the graph, and m = max(ni, no) characterizes the size of its

interface.

If we isolate the cost of set operations (B(m) for binary ones, and A(m) for in-

sertion), we obtain the expression z ·m · B(m) · A(m) which gives a more interesting

information in practice: the cost is mainly the product of the size of the graph by the

size of its interface and the cost of set operations.

Iterating SAT searching The system of inequalities is trivially a SAT problem, since a

subset of I can be represented by a vector of ni Boolean values:

– each variable Kx can be encoded by a vector of Boolean variables [K1
x, · · · ,Kni

x ]

– each constant IO(x) can be replaced by the corresponding vector of ni bits,

–
S

is the bitwise logical or,
T

is the bitwise logical and.

As we have shown in section 4.2, the system outlines the fact that some classes are

mandatory: the ones appearing in equalities, that is, the IO of inputs and outputs. We

call them the c mandatory classes M1, ...Mc. An optimal solution can be obtained by

iterating SAT-solver calls:

– search a solution with c + 0 classes, by adding, for each local variable x, the con-

straint
Wj=c

j=1(Kx = Mj), and calling a SAT solver,
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a

x y

b

m

Ka = Kx = {a}

Kb = Ky = {b}

Km = {a, b}

Fig. 13 A simple “M” shape, where I = {a, b} and O = {x, y}.

– if it fails, search for a solution with c+ 1 classes, i.e., introduce a new vector of ni

free variables S1 and add this variable vector as a new possible value for each local

x:
j=c_
j=1

(Kx = Mj) ∨ (Kx = S1)

– if it fails, introduce another extra variable S2, and so on.

However, before applying an iterative search which may be costly, it is interesting

to study more precisely the system itself and its sources of complexity.

4.5 Simplifying the KI-enc System

Lower and higher bounds For each variable, we define its lower and upper value:

– k⊥x = k>x = IO(x) for x ∈ I ∪O
– k⊥x =

S
y→x

k⊥y and k>x =
T

x→z
k>z otherwise.

It is easily to show that k>x equals IO(x): setting all variables to their upper bound

corresponds to the already known solution �IO . It corresponds to the heuristic “sched-

ule as late as possible” and we call this solution K>. Dually, choosing Kx = k⊥x for

each variable is also a solution which corresponds to the heuristic “schedule as soon as

possible” and we note this solution K⊥. These two solutions are not comparable nor

optimal in general. However, if it appears that all k>x (respectively k⊥x ) are mandatory

keys (i.e. keys of some input or output), we can already conclude that K> (respectively

K⊥) is an optimal solution. That is, no new class have been introduced.

In some cases, computing the bounds may help to discover new mandatory classes:

whenever k⊥x = k>x , the inequality becomes an equality and the class becomes manda-

tory even if it is not the class of any input nor output. This is illustrated in Figure 13:

the local node m must be computed alone in a class that should be scheduled after the

class of a and the class of b.

Bounds reduction Upper and lower bounds can be introduced into the inequalities,

whose general form is then:

k⊥x ∪
[

y→x

Ky ⊆ Kx ⊆ k>x ∩
\

x→z

Kz
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∅ ⊆ Km ⊆ {a, b}

Ka = Kz = {a}

Fig. 14 A “M/W” shape, where I = {a, b, c, d} and O = {x, y, z, t}.

For any y→x such that k>y ⊆ k⊥x , the constraint Ky ⊆ Kx is redundant and can be

removed; similarly for any x→z such that k>x ⊆ k⊥z . This simplification is called the

(redundant) bounds reduction. With this reduction, it may appear that some variables

become bounded by constants:

k⊥x ⊆ Kx ⊆ k>x

Whenever k⊥x 6= k>x for some x, there are several choices for the position of x within

the static schedule, that may lead or not to an optimal solution. Figure 14 shows a small

example with a “M/W” shape where the position of the local variable m is bounded

by two constants. In this case, no extra class is necessary if the intersection of all the

intervals contains a mandatory class. In this example, the answer is trivial since we

have only one interval. It includes both the mandatory classes {a} and {b} and one

can choose either Km = {a} or Km = {b} to obtain an optimal solution.

As soon as there are more than 3 such variables, we fall in a case that is equivalent

to the one of the X-encoded problem: n independent internal variables have to be

organized in a minimum number of classes, according to their bounds.

The problem is even more complex when the bounds are not constant: the position

of some local variable may depend on the position of another variable and so on.

Figure 15 illustrates this case by generalizing the “M/W” shape. Several optimal choices

can be made, that do not require extra classes. For instance, m and m can be gathered

with n, that is, Km = Kn = Kp = {b}. Another possible solution is Km = {a},Kn =

{b},Kp = {a, b} and they are many more. But these optimal solutions cannot be

obtained by considering variables one by one. For instance, Km = {a} is locally a

good choice as well as Kn = {c}; but once these two choices have been made, there is

no solution for p other than Kp = {a, c} and this forces to introduce an extra class.

When several variables are related, they must be considered “all together”, making the

problem computationally hard.

As a conclusion, the proposed encoding may, in some cases, directly give solutions

that are proven optimal and, otherwise, it exhibits the parts of the systems that are real

sources of complexity. This appears when the system still contains inequalities whose

lower and upper bounds are different and involve other variables.
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∅ ⊆ Km ⊆ {a, b} ∩Kp

∅ ⊆ Kn ⊆ {b, c} ∩Kp

Km ∪Kn ⊆ Kp ⊆ {a, b, c, d, e}
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Fig. 15 A generalized “M/W” shape, where I = {a, b, c, d, e} and O = {x, y, z, t, u, v}.

5 Experimentation

We have developed a prototype implementation in Ocaml [11] to experiment the prin-

ciples presented previously. Two kind of examples have been considered: a collection of

relatively small programs taken from the Scade library and two real-size industrial ap-

plications from Airbus. Although not particularly optimized (e.g., all set operation are

implemented using functionals maps provided by the standard library), the implemen-

tation being implemented with the standard Ocaml library), the prototype requires

respectively 0.15, 0.02 and 0.2 seconds on a laptop (CoreDuo II, 2.8Gh, Mac OS X)

to treat the whole three benchmarks presented here. The source code used for this

experiment is given in appendix A 8. It is concise enough to be fully provided, which

makes it available for most users to experiment the method.

For every Scade (or Lustre) code, the dependency information is extracted from

an input file and the KI-system is build. Then, the tool checks whether:

– the KI-system is only made of equalities, in which case the system is solved by

simple propagation of facts. We call this the trivial case.

– it still contains inequalities but either all the upper bounds or all the lower bounds

are mandatory (that is, they appear in some equality). In this case, either K> or

K⊥ are proven to be optimal solutions. The system is called solved. It corresponds

to the situation where a simple heuristic — always compute as soon as possible or

always compute as late as possible — gives an optimal solution.

8 Execution times are smaller than the one given in the EMSOFT paper due to a revised
implementation.
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Scade libs trivials solved others
n. of programs (223) 65 158 0

n. of classes 1 1 to 2 -
n. of in/out 2 to 5 2 to 9 -
n. of nodes 2 to 18 8 to 64 -

av. size 10 24 -

Benchmark 2 trivials solved others
n. of programs (27) 8 19 0

n. of classes 1 1 to 4 -
n. of in/out 2 to 10 2 to 19 -
n. of nodes 2 to 29 9 to 48 -

av. size 14 20 -

Benchmark 3 trivials solved others
n. of programs (125) 41 83 1

n. of classes 1 to 3 1 to 4 3 or 4
n. of in/out 2 to 14 2 to 26 4+2
n. of nodes 7 to 350 12 to 600 25

av. size 50 80 -

Results show the ranges of the number of classes (i.e. the size of the optimal solution); the
programs in a particular benchmark are of various sizes, we give the ranges of the number of
inputs/outputs and of internal nodes, and also the average size (in internal nodes).

Fig. 16 Experimental results: almost 100% of the programs are polynomially solved.

– in the first two cases, an optimal schedule is returned. Otherwise, the system is

considered to be complex. It contains equalities that give a set of mandatory classes.

It also contains inequalities but some upper bounds and some lower bounds are

not mandatory. Thus, neither K> nor K⊥ are proven to be optimal. As we have

presented in 4.4, the tool produces a generic Boolean formula parameterized by the

number of extra classes ec. This formula can be expanded for ec = 0, 1, ... and then

handed to a Boolean solver.

Benchmark 1 (Scade Lib) The problem of modular compilation is clearly interesting

for programs that are supposed to be reusable. This is why we have chosen, as first

benchmark, the libraries of the Scade tool 9. The benchmark is made of 223 block-

diagrams (we simply call them programs in the sequel), which are indeed relatively

small. Not surprisingly, none of them was identified as complex (see Figure 16). More-

over, 91% of the programs are strict: every output depends on all inputs (this is the

case for the mathematical libraries, for example). As a consequence they trivially re-

quire a single computation block. The other operators (19 over 223) are basic temporal

operators (e.g. integrators) which require two blocks.

Since it seems very unlikely to find complex reusable programs, we have tried to

apply the method on bigger industrial examples.

Benchmark 2 This benchmark is extracted from an industrial application from Airbus.

We have extracted 27 components and sub-components of a medium sized application

(about 600 atomic nodes when flattened). Indeed, performing modular compilation is

not really relevant in this case since the components are not intended to be reused. But

9 For practical reasons, we have used the libraries of the version 4.2 of Scade.
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{} <= K(g1) <= {d, a}
{a} <= K(v10) <= {d, a}
{a} <= K(s1) <= {d, c, b, a}
{} <= K(g0) <= {a}
{} <= K(v2) <= {a}
{} <= K(v9) <= {d, a}
{a} <= K(v11) <= {d, a}
{a} <= K(v3) <= {c, b, a}
{a} <= K(s0) <= {d, c, b, a}
{a} <= K(v4) <= {c, b, a}

K(v3) <= K(s0)
K(v3) <= K(v4)
K(v9) <= K(v11)
K(v10) <= K(s1)
K(v10) <= K(v11)
K(g0) <= K(v2)
K(g1) <= K(s1)
K(g1) <= K(v9)

Fig. 17 Inequality system of a (possibly) complex program, as it is echoed by the prototype:
the constants bounds (left) and the variables constraints (right).

the goal here is to experiment the method on programs that are relatively bigger than

those that can be found in libraries. It also measure the practical complexity of the

method on larger programs. Finally, the conclusion is the same as in the first bench-

mark: all the programs are solved by a simple input/output analysis. One particular

program is interesting: it has 11 inputs and 4 outputs for a total of 30 nodes, and its

optimal static scheduling has 4 classes, which is the more complex static scheduling we

found in our experimentation.

Benchmark 3 The last benchmark is also extracted from an Airbus application, but

it is bigger than the previous one: 125 components are extracted from an application

whose flat size is about 8000 nodes. Once again, the components are mostly application-

specific tasks and sub-tasks than reusable operators. Thus, they are not obviously

candidates for separate compilation.

The conclusion is the same as before except for one program that is not of solved

kind (cf. column others in the last table of Figure 16). This program has 24 nodes,

4 inputs and 2 outputs, the minimal number of (mandatory) classes is 3, and both

K> and K⊥ give 4 classes. The corresponding system of inequalities is simplified and

the tool isolates 10 internal variables whose position is not clear. Figure 17 shows the

bounds and the remaining inter-dependencies of these variables.

Looking into the program suggests that it is also of rather simple nature, but that

it requires a heuristic that is not yet implemented in the prototype:

– the intersection of all the intervals is not empty ({a});
– moreover, the class {a} is one of the 3 mandatory classes;

– thus, setting all the variables to {a} satisfies all the constraints without introducing

any extra classes.

Conclusion Is it possible indeed to build an arbitrarily huge and complex data-flow

network, e.g., by multiplying the “M/W” shape given in Figure 15. However, our

experience is that hand-written data-flow networks are rather “simple”. This is so in

particular because the number of inputs/outputs of a program is relatively small with

respect to the number of internal nodes.

If it is admitted that modular compilation is useful — a problem which is briefly

discussed in the next section —, the proposed approach consists in using an inexpensive

algorithm that:

– in most cases, gives an optimal solution;



24

– identifies the problem as being potentially “hard” and calls a third-party non-

polynomial tool for solving it.

6 Discussion and Related Works

Various approaches for code generation from synchronous data-flow diagrams have been

experimented in compilers.

Modular Code Generation Modular code generation, as followed by the Scade com-

piler, essentially translates every stream function into a single function [3]. This way,

modules can be compiled separately. Invocation conventions (to build libraries or to link

synchronous code with others) are almost trivial, which simplifies traceability issues

between the source and target code. It was observed that extra constraints imposed

on feedback loops are well accepted by users 10. Combined with partial inlining, all re-

maining causally correct programs are accepted. Note that in tools such as Scade (but

it also applies to Simulink), many functions are local as they are only used to structure

the code: they are not exported to build libraries and are only instantiated once. Any

good compiler always inlines these functions thus reducing again the set of functions

that need a decomposition into classes 11. A classical variation of this modular code

generation consists in producing two functions: one to produce the outputs, and one

to modify the internal state. This solution allows to compile modularly more programs

(e.g. Moore machines) but it is still incomplete: for instance, it fails to compile the

example given in beginning of Section 2.

This (almost) black-boxing approach to code generation was discarded in the Lus-

tre compiler as it may reject causally correct programs. Programs are compiled after

a full inlining of functions. This allows for the generation of efficient automata [8] but

at the price of modular code generation and code size increase.

Optimal Static Scheduling The question of decomposing a data-flow graph into classes

has been also studied by Benveniste & al. for the compilation of Signal and was

observed to be similar to the problem of code distribution [2]. It is formulated for a

more expressive model of conditional scheduling constraints: a relation x
ck→ y states

that “when ck is true, y must be executed after x”. A graph can be scheduled when

all cycles x1
ck1→ x2

ck2→ ...x1 are such that ¬(ck1 ∧ ... ∧ ckn). We thus have considered

the case where cki = true for all i. Nonetheless, the question of producing an optimal

solution in number of classes have not been addressed.

We have already pointed the main differences with the work of Lublinerman,

Szegedy and Tripakis [12]. The optimal solution is obtained iteratively for c = 1, 2, ...

with a general solution based on a SAT encoding of a decomposition into c classes.

Nonetheless, real programs have simple dependency relations and can be treated with

a dedicated algorithm with mastered worst-case complexity. In most applications we

have found, the optimal is obtained in polynomial time using the direct algorithm

based on the input/output relations.

10 This is also due to the nature of applications written in Scade where closed loops are
programmed to be robust to the insertion of a delay.
11 Nodes can also be inlined on demand, as provided by the Scade compiler.
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Input/Output Analysis vs Direct Boolean Encoding Since programs are simple in prac-

tice, one may argue that there is no much difference in actual cost between a direct

boolean encoding of the OSS problem such as [12] and a dedicated algorithm. We could

expect that each SAT problem — there exist a solution with c classes — is easy to

solve and the number of iterations for c to stay small.

Nonetheless the behavior, and thus, the cost, of a SAT resolution is hard to predict,

whereas the presented algorithm returns in polynomial time whether the KI-enc is

solved or not. In the small remaining cases where an enumerative search is necessary

(if an optimal solution is really expected), the algorithm starts from a non trivial

minimal number of mandatory classes. In several benchmarks, this minimal number of

classes was greater than 1. Moreover, the symbolic representation is also better than a

direct boolean encoding of the static scheduling problem.

Finally, is not clear that finding an optimal solution is central in practice. In all the

examples we have treated K⊥ and/or K> allows to obtain either the optimal solution

or a solution close to the optimal (only one extra class).

7 Conclusion

This paper addresses the static scheduling problem of a synchronous data-flow network,

to be used in a compiler which generate sequential imperative code. We focus on how to

decompose a data-flow network into a minimal number of classes executed atomically

without restricting possible feedback loops between input and output. Though this

optimization problem is intractable in the general case and can be tackled with general

combinatorial methods, our experience is that real programs do not expose such a

complexity. This calls for a specific algorithm able to identify programs which can be

solved in polynomial time. Based on the notion of input/output properties, we build

a symbolic representation (keys as inputs subsets, or KI-enc) of the problem. This

representation simplifies the problem in the sense that it has strictly less solutions but

it contains all optimal ones. This representation gives a non trivial lower bound on the

number of classes, and two particular solutions K⊥ and K>. It can then be checked

whether K⊥ and/or K> are optimal or not by comparing their number of classes with

the lower bound. In most real programs we have encountered, K⊥ is optimal and

computed with a guaranteed polynomial complexity. Otherwise, the non trivial bound

on the number of classes is used to start a combinatorial search with a SAT-solver.
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A The Source Code

Below are the two Ocaml modules that implement the polynomial semi-solver of OSS. The
code is short, the only lacking part being the construction of the graph from a description of
data-dependences written in a file. Yet, all numbers reported in section 5 have been obtained
using these two modules. Sets are represented using the standard Ocaml library of finite maps
represented as balanced binary trees, thus, with logarithmic access. The module Network defines
the basic data-types and representations for sets, the association tables for I, O, IO and KI.
The module Oss defines the IO and KI functions. Given a network (A, I,O,�), the main
function main answers whether the system is trivial, solved or complex. In the first two cases,
it returns an optimal static scheduling of the network.

(** module Network.*)
(** Nodes, graphs and auxiliary functions *)
(** The type of nodes *)
type node = { _nm : string; _index : int; _isin : bool; _isout : bool; }

let name_of_node x = x._nm
let is_input x = x._isin
let is_output x = x._isout

(** A Map associating values to nodes *)
module NodeMap =
Map.Make
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(struct
type t = node
let compare n1 n2 = compare n1._index n2._index

end)

(** A Map associating values to strings *)
module IndexMap =
Map.Make (struct type t = string let compare = compare end)

(** Set of nodes *)
module NodeSet =
struct
include Set.Make
(struct
type t = node
let compare n1 n2 = compare n1._index n2._index

end)

let of_list (l: elt list) =
List.fold_left (fun s e -> add e s) empty l

end

(** A Map associating node sets to node sets *)
module NodeSetMap =
struct
include Map.Make
(struct
type t = NodeSet.t
let compare = NodeSet.compare

end)

let cardinal t = fold (fun _ _ c -> c + 1) t 0

(* Add a new entry node n for a key. If t(key) already exists, extends *)
(* t(key) with n *)
let add k n t =
let p =
try find k t
with | Not_found -> NodeSet.empty

in
add k (NodeSet.add n p) t

end

(** The type of networks *)
type t = {
mutable nbnodes : int ; (* number of nodes *)
mutable nodes : node list ; (* the list of nodes *)
mutable ins : node list ; (* input nodes *)
mutable outs : node list ; (* output nodes *)
mutable pred : node list NodeMap.t; (* the table of predecessors *)
mutable succ : node list NodeMap.t; (* successors *)
mutable nodetab : node IndexMap.t; (* associating nodes to names (string) *)

}

let pred network n =
try NodeMap.find n network.pred with | Not_found -> []

let succ network n =
try NodeMap.find n network.succ with | Not_found -> []

(** end of module Network *)

(** Module OSS *)
(** Definition of I/O, IO and KI *)
open Network

(** Computation of inputs and outputs *)
let input_output network =
(* traveling in a graph *)
let travel is_in next =
(* Memorization table *)
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let table = ref NodeMap.empty in
let rec travelrec n =
try NodeMap.find n !table
with | Not_found ->

let pl = next n in
let acc0 =
if is_in n then NodeSet.singleton n else NodeSet.empty in

let l =
List.fold_left
(fun acc n -> NodeSet.union acc (travelrec n)) acc0 pl in

table := NodeMap.add n l !table;
l

in
List.iter (fun n -> ignore (travelrec n)) network.nodes;
!table in

let input_table = travel is_input (pred network) in
let output_table = travel is_output (succ network) in
input_table, output_table

(** Computation of io for input nodes only *)
let io_of_inputs network toutput =
let table = ref NodeMap.empty in
let compute_io i =
let o = NodeMap.find i toutput in
List.fold_left
(fun acc i’ ->

let o’ = NodeMap.find i’ toutput in
if NodeSet.subset o o’ then NodeSet.add i’ acc else acc)

NodeSet.empty network.ins in

List.iter
(fun i -> let io = compute_io i in table := NodeMap.add i io !table)
network.ins;

!table

(** Computing Kmin or Kmax*)
(** stop: returns the key or raise Not_found *)
(** compose: composition ok keys (intersection or union) *)
(** neutral: neutral element of compose (all or empty) *)
(** next: connected nodes (pred or succ) *)
let travel network stop neutral compose next =
(* Memoization table *)
let table = ref NodeMap.empty in
let rec travelrec n =
try NodeMap.find n !table
with | Not_found ->

let l =
try stop n
with | Not_found ->

let pl = next n in
let acc0 = neutral in
List.fold_left
(fun acc n -> compose acc (travelrec n))
acc0 pl

in
table := NodeMap.add n l !table; l

in
List.iter (fun n -> ignore (travelrec n)) network.nodes;
!table

(** Computation of the KI system *)
let ki network tinput tio =
(* compute the kmin for all nodes *)
let stop n =
if is_input n then NodeMap.find n tio
else if is_output n then NodeMap.find n tinput
else raise Not_found in

let neutral = NodeSet.empty in
let compose = NodeSet.union in
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let kmin = travel network stop neutral compose (pred network) in

(* compute the kmax for all nodes *)
let neutral =
List.fold_left (fun acc n -> NodeSet.add n acc)
NodeSet.empty network.ins in

let compose = NodeSet.inter in
let kmax = travel network stop neutral compose (succ network) in
kmin, kmax

(** Computation of Kbot, Ktop and mandatory classes *)
let mandatory network kmin kmax =
(* build the two inverse tables associating *)
(* set of variables to each kset *)
List.fold_left
(fun (kbot, ktop, mandat, nb_eqs) n ->

let min = NodeMap.find n kmin in
let max = NodeMap.find n kmax in
let mandat’, nb_eqs’ =
if NodeSet.equal min max
then (NodeSetMap.add min n mandat, nb_eqs + 1)
else (mandat, nb_eqs) in

(NodeSetMap.add min n kbot,
NodeSetMap.add max n ktop,
mandat’,
nb_eqs’))

(NodeSetMap.empty, NodeSetMap.empty, NodeSetMap.empty, 0)
network.nodes

(** The type of the result *)
type result =
| Trivial of int (* every constraint is an equation *)
| SolvedBot of int (* kbot is optimal with n classes *)
| SolvedTop of int (* ktop is optimal with n classes *)
| Complex of int * int

(* the number of mandatory classes + min of nb_kbot nb_ktop *)

let print_result = function
| Trivial(i) ->

Printf.printf "TRIVIAL WITH %d classes.\n" i
| SolvedBot(i) ->

Printf.printf "SOLVED (bot) with %d classes.\n" i
| SolvedTop(i) ->

Printf.printf "SOLVED (top) with %d classes.\n" i
| Complex(i,j) ->

Printf.printf "OTHER with %d to %d classes.\n" i j

(** Check whether the system is trivial, solved or complex *)
let check network kbot ktop mandat nb_eqs =
let nb_mandat = NodeSetMap.cardinal mandat in
let nb_kbot = NodeSetMap.cardinal kbot in
let nb_ktop = NodeSetMap.cardinal ktop in
if nb_eqs = network.nbnodes then Trivial(nb_eqs)
else if nb_mandat = nb_kbot then SolvedBot(nb_mandat)
else if nb_mandat = nb_ktop then SolvedTop(nb_mandat)
else Complex(nb_mandat, min nb_kbot nb_ktop)

(** The main function, [main net] returns either: *)
(** - the network [net] is trivial or simple + an optimal SS *)
(** - otherwise, it returns that the system is complex. *)
let main network =
let tinput, toutput = input_output network in
let tio = io_of_inputs network toutput in
let kmin, kmax = ki network tinput tio in
let kbot, ktop, mandat, nb_eqs = mandatory network kmin kmax in
let result = check network kbot ktop mandat nb_eqs in
Printf.printf "Complexity of the system: \n";
print_result result


