
Zélus: A Synchronous Language with ODEs

Tool Paper

Timothy Bourke
NICTA, Sydney

INRIA Paris-Rocquencourt
DI, École normale supérieure
Timothy.Bourke@ens.fr

Marc Pouzet
Univ. Pierre et Marie Curie

DI, École normale supérieure
INRIA Paris-Rocquencourt
Marc.Pouzet@ens.fr

ABSTRACT
Zélus is a new programming language for modeling systems
that mix discrete logical time and continuous time behav-
iors. From a user’s perspective, its main originality is to
extend an existing Lustre-like synchronous language with
Ordinary Differential Equations (ODEs). The extension is
conservative: any synchronous program expressed as data-
flow equations and hierarchical automata can be composed
arbitrarily with ODEs in the same source code.

A dedicated type system and causality analysis ensure
that all discrete changes are aligned with zero-crossing events
so that no side effects or discontinuities occur during integra-
tion. Programs are statically scheduled and translated into
sequential code that, by construction, runs in bounded time
and space. Compilation is effected by source-to-source trans-
lation into a small synchronous subset which is processed by
a standard synchronous compiler architecture. The resul-
tant code is paired with an off-the-shelf numeric solver.

We show that it is possible to build a modeler for explicit
hybrid systems à la Simulink/Stateflow on top of an existing
synchronous language, using it both as a semantic basis and
as a target for code generation.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.3.2 [Programming
Languages]: Language Classifications—Data-flow languages;
I.6.8 [Simulation and Modeling]: Types of Simulation—
Continuous, Discrete Event ; D.3.4 [Programming Lan-
guages]: Processors—Code generation, Compilers

General Terms
Algorithms, Languages

Keywords
Hybrid systems; Hybrid automata; Synchronous languages;
Block diagrams; Type systems;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’13, April 8–11, 2013, Philadelphia, Pennsylvania, USA.
Copyright 2013 ACM 978-1-4503-1567-8/13/04 ...$15.00.

1. INTRODUCTION
Hybrid systems modelers are used not only in the high-

level design and simulation of complex embedded systems,
but also as development platforms in which the same source
is used for formal verification, testing, simulation, and the
generation of target executables. The quintessential exam-
ple is the Simulink/Stateflow suite,1 but there are also
LabVIEW,2 Modelica,3 and several others [6].

These tools are distinguished from the formal model of hy-
brid automata [14] by their focus on modular programming
and simulation of both physical models and their controllers.
In this context, reproducible, efficient simulations and the
ability to generate statically scheduled code are essential fea-
tures. As a major consequence, programming constructs
are typically deterministic whereas hybrid automata are es-
sentially non-deterministic and oriented toward specification
and formal verification through the over-approximation of
piecewise continuous behaviors.

The underlying mathematical model of hybrid modelers
is the synchronous parallel composition of stream equations,
differential equations, and hierarchical automata. But even
with a carefully chosen numeric solver, actual simulations
only ever approximate the ideal behaviors of such models.
A formal semantics exists for discrete subsets [13, 20], but
mixes of discrete and continuous-time signals often have un-
predictable and mathematically weird behaviors [2, 3]. For
instance, a continuous Stateflow state may be triggered
repeatedly if a transition guard remains true, and, although
transitions are instantaneous, the amount of simulation time
that elapses between triggerings is non-zero and depends on
when the solver decides to stop, which in turn is influenced
by simulation parameters, global numerical error, and the
occurrence of other zero-crossings. The behavior of a model
may even change if it is placed in parallel with an indepen-
dent block, for example one that tests the zero-crossings of a
sinusoid signal. In this case, changing the sinusoid frequency
may radically change the output of the other model. This
time leak is not due to numerical artifacts but to a more
fundamental reason: discrete time is not logical but global,
it exposes the internal steps of the simulation engine.

Synchronous languages [5] differ from this approach by
providing a logical notion of time, independent of a physical
implementation. For example, the Lustre equations

x = 0 → pre y and y = if c then x + 1 else z

1http://www.mathworks.com/products/simulink/
2http://www.ni.com/labview/
3http://www.modelica.org/

http://www.mathworks.com/products/simulink/
http://www.ni.com/labview/
http://www.modelica.org/

define the two sequences (xn)n∈IN and (yn)n∈IN which are
computed sequentially with x0 = 0, xn = yn−1, and for all
n ∈ IN , yn = if cn thenxn + 1 else zn.4 Time is logical, that
is, nothing can be inferred about the actual time that passes
between instants i and i+ 1. Synchronous programs see the
environment as a source of input and output sequences and
ignore intervening gaps. They are thus only suitable for the
design of discrete controllers. In contrast, a model expressed
with Ordinary Differential Equations (ODEs) or Differential
Algebraic Equations (DAEs) continues to evolve during such
gaps and a variable-step numeric solver is necessary to ap-
proximate continuous trajectories efficiently and faithfully.

So, what is the best way to combine the precision of syn-
chronous languages for programming discrete components
with the extra expressiveness afforded by ODEs approxi-
mated by numeric algorithms? Any combination must be
conservative: the behavior of a synchronous program should
not change if ODEs are placed in parallel, it should have the
same logical-time semantics and compile to the same code;
in particular to avoid inconsistencies between simulation and
execution. Furthermore, discrete computations and side ef-
fects should not occur during numerical approximation.

In order to avoid the aforementioned time leak and to have
a clear separation between discrete and continuous-time sig-
nals, we proposed the following convention, quoting [3]:

“A signal is discrete if it is activated on a discrete
clock. A clock is termed discrete if it has been
declared so or if it is the result of a zero-crossing
or a sub-sampling of a discrete clock. Otherwise,
it is termed continuous.”

This means that any synchronous program can be paired
with ODEs as long as it is activated on a discrete clock.
The definition is sufficiently general to model, for example,
a discrete controller activated on a timer (periodic or not) or
a deterministic hybrid automata with dynamic conditions.

Previously, we proposed the basis of a Lustre-like lan-
guage extended with ODEs and following the above disci-
pline. We defined the semantics of a minimal language us-
ing non-standard analysis [4], and proposed a type system
that ensures the absence of time leaks, and a compilation
method [3]. We later added hierarchical automata [2]. These
techniques have been implemented in a new language, called
Zélus, which allows arbitrary combinations of data-flow
equations, hierarchical automata, and ODEs. A type system
and causality analysis statically ensure that discrete compu-
tations are aligned with zero-crossings. Compilation is by
source-to-source translation into synchronous code which is
then compiled to sequential code and paired with an off-
the-shelf numeric solver. This paper describes key aspects
of the language and implementation. We use synchronous
programming as both a semantical foundation, where we are
strongly influenced by the work of Lee et al. [17] and Moster-
man et al. [11, 19], and as a target for code generation.

2. AN OVERVIEW OF ZÉLUS
Zélus5 is a first-order synchronous dataflow programming

language extended with resettable ODEs and hierarchical
automata. Rather than define the abstract syntax (available
in [2, §3.1]), we show its main features through examples.

4The unit delay initialized to 0, 0 → pre(.), is 1
z

in Simulink.
5Available at http://www.di.ens.fr/~pouzet/zelus.

A Zélus program is a sequence of definitions. The follow-
ing declares a discrete function that counts the occurrences
of a Boolean v and detects when there have been n:

let node after (n, v) = (c = n) where
rec c = 0 → pre(min(tick, n))
and tick = if v then c + 1 else c

where pre(·) is the non-initialized unit delay, . → . is the
initialization operator of Lustre, min computes the mini-
mum of its arguments and if/then/else is the mux operator
that executes both branches and takes the value of one. The
semantics in terms of infinite sequences is

∀i ∈ IN∗, ci = min(tick i−1, ni−1) and c0 = 0

∀i ∈ IN, tick i = if vi then ci + 1 else ci,

∀i ∈ IN, (after(n, v))i = (ci = ni)

and the compiler infers the signature:

val after : int × bool ⇒ bool

This node can be used in a two state automaton,

let node blink (n, m, v) = x where
automaton
| On → do x = true until (after(n, v)) then Off
| Off → do x = false until (after(m, v)) then On

which returns a value for x that alternates between true for
n occurrences of v and false for m occurrences of v. The key-
word until stands for a weak preemption, that is, x equals
true when after(n, v) is true and becomes false the following
instant. The semantics and compilation of automata, de-
fined in [8], is that of Scade 66 and Lucid Synchrone.7

The blinking behavior can be reset on a boolean condition r
by nesting it inside a one state automaton that tests r, which
we write using the reset/every syntactic sugar:

let node blink reset (r, n, m, v) = x where
reset

automaton
| On → do x = true until (after(n, v)) then Off
| Off → do x = false until (after(m, v)) then On

every r

The type signatures inferred by the compiler are:

val blink : int × int × bool ⇒ bool
val blink reset : bool × int × int × bool ⇒ bool

Up to syntactic details, these Zélus programs could have
been written as is in Scade 6 or Lucid Synchrone.

But Zélus goes beyond discrete dataflow programming
and allows the definition of continuous-time variables. For
instance, consider a boom turning on a fixed pivot. The
boom’s angle can be expressed as a differential equation with
initial value i and derivative v using the der keyword:

der angle = v init i

Its (ideal) value at model time t is:

angle(t) = i(0) +

∫ t

0

v(x) dx,

It is compiled into a continuous state variable whose value
is approximated by a numeric solver as described in §3.2.

6http://www.esterel-technologies.com
7http://www.di.ens.fr/~pouzet/lucid-synchrone

http://www.di.ens.fr/~pouzet/zelus
http://www.esterel-technologies.com
http://www.di.ens.fr/~pouzet/lucid-synchrone

boom in

boom out

stick in

stick out

bucket in

bucket out

legs in
legs out

stop button
extend button
retract button

second

boom push
boom pull
boom drive

stick push
stick pull
stick drive

bucket push
bucket pull
bucket drive

legs extend
legs retract
legs stop

alarm lamp(bool)
done lamp(bool)
cancel lamp(bool)

Figure 1: Idealized Backhoe Loader model

Now, if we wanted to achieve a reference velocity v r using
Proportional-Integral (PI) control, we need only add three
equations in parallel:8

. . . and error = v r −. v
and der v = 0.7 ∗. error +. 0.3 ∗. z init 0.0
and der z = error init 0.0

It could be that we also want to reset the controller state
z when the angle reaches or exceeds a limit max. Two new
constructs are needed: a way of detecting such interesting
events and a way of directly setting the value of a continuous
state. The standard way to detect events in a numeric solver
is via zero-crossings where a solver monitors expressions for
changes in sign and then, if they are detected, searches for a
more precise instant of crossing. We introduce an up(.) op-
erator to monitor an expression for a (rising) zero-crossing;
with this, the definition of z becomes:

der z = error init 0.0 reset up(angle −. max) → 0.0

which says to reset the value of z to 0.0 the instant when
angle−max becomes zero or positive. A der definition defines
two values: a state (z) initially and in response to discrete
events, and its derivative (ż) during continuous phases.

More complicated behaviors are better described as au-
tomata where defining equations and events being monitored
change depending on mode. For instance, if the direction of
the boom’s motion changes in response to the input signals
push and pull, and if the boom becomes stuck when it reaches
a limit of motion, we may define v r as follows:

automaton
| Pushing → do v r = maxf

until up(angle −. max) then Stuck
else pull() then Pulling

| Pulling → do v r = −. maxf
until up(min −. angle) then Stuck
else push() then Pushing

| Stuck → do v r = 0.0 done

The automaton construct is effectively an equation and each
mode contains a set of definitions which, naturally, may
themselves include derivatives and automata. Here, the
value of v r is defined as either maxf, −maxf, or 0.

Transitions are ordered by priority and their guards have
type α signal; events of type α signal are emitted by discrete
components or introduced by up(.) : float ; unit signal. As
a consequence of this typing rule, boolean expressions cannot
serve directly as guards in continuous automata. While it
would be possible to compile an expression up(e : bool) into
up(if e then 1.0 else−1.0), as effectively occurs in Stateflow,

8−., ∗., +. are floating-point arithmetic operators.

let hybrid segment ((min, max, i), maxf, (push, pull, go))
= ((segin, segout), angle) where

rec der angle = v init i
and error = v r −. v
and der v = (0.7 /. maxf) ∗. error +. 0.3 ∗. z init 0.0

reset hit(v0) → v0
and der z = error init 0.0 reset hit() → 0.0
and v r = if go then rate else 0.0
and (segin, segout) = (angle <= min, angle >= max)

and automaton
| Stuck →

do rate = 0.0
until push() on (not segout) then Pushing
else pull() on (not segin) then Pulling

| Pushing → local atlimit in
do rate = maxf and atlimit = up(angle −. max)
until atlimit() on (last v > 0.3 ∗. maxf) then

do emit hit = −0.8 ∗. last v in Pushing
else atlimit() then Stuck
else pull() then Pulling

| Pulling → local atlimit in
do rate = −. maxf and atlimit = up(min −. angle)
until atlimit() on (last v < −0.3 ∗. maxf) then

do emit hit = −0.8 ∗. last v in Pulling
else atlimit() then Stuck
else push() then Pushing

Figure 2: Model of segment (boom, stick, or bucket)

the search for zero-crossings then degenerates into binary
search, and, more unsatisfying still, boolean complement,
like signal absence, is not closed on discrete signals. Ulti-
mately, we think we can better analyze and execute hybrid
programs by restricting the form of triggering expressions.

One of Zélus’s strengths is the way that larger models
can be constructed using abstraction and instantiation. For
example, the various fragments discussed so far are readily
combined into a more interesting model: that of the ideal-
ized backhoe loader that we use to teach discrete reactive
programming. A labeled screen capture from its graphical
simulator is shown in Figure 1. Using input signals from
buttons and * in/* out sensors, and the outputs listed at
right, students must write a discrete controller to operate
the three backhoe segments. The simulator must, of course,
approximate the movement of the segments.

lexing/
parsing

typing causality/
initialization

inlining automata
normalize
let/in

periods
discrete

zero-crossing

present/
signals

variable
completion

ODEs
zero-crossings

last/fby/→optimizationscheduling
code

generation

Figure 3: Compiler architecture

The node declaration for a single segment is shown in Fig-
ure 2. It declares a hybrid node called segment taking three
inputs: a triple of movement parameters (min, max, i), the
maximum force maxf, the control signals (push, pull, go);
and giving as output the sensor values (segin, segout) and
the segment position, angle.

The body of segment combines the elements already dis-
cussed with some minor modifications. For one, the refer-
ence velocity v r is 0 when go is false and rate otherwise.
The value of rate depends on the direction of motion, which
in reality is determined by a hydraulic valve but which we
model as a hybrid automaton. The automaton differs in its
initial state, but also because of the self-loop transitions that
model bouncing at the limits of motion:

until (atlimit() on (last v > 0.3 ∗. maxf)) then do . . .

The operator on : α signal × bool ; α signal filters signals
through boolean expressions. When atlimit occurs and the
expression is satisfied, the transition resets the value of v
and emits the signal hit. We are obliged to write last v in the
guard and do/in equations to respect causality: the value of
v cannot be tested before it is defined! Semantically last v
is the left-limit of v. The hit signal resets the controller
integrator, z, so that the sudden spikes on v are ignored.

A complete simulation is constructed as the parallel com-
position of instantiations of the segment node (three times:
boom, stick, and bucket), a similar node that moves the legs,
a function for updating the visualization, and a node imple-
menting a discrete controller. Whereas a hybrid node like
segment may be executed repeatedly to approximate con-
tinuous states, activations of the visualization function and
controller node must be triggered more conservatively: the
former because it has side-effects (it draws in a window);
the latter because it may update internal discrete states.
For instance, we call the update function with

present period (0.1) →
showupdate (leg pos, boom ang, stick ang, bucket ang,

alarm lamp, done lamp, cancel lamp)

3. COMPILER ARCHITECTURE
Our starting point in developing a compiler for Zélus was

to recycle existing synchronous techniques so that a language
like Scade could be extended without disturbing its existing
semantics and compilation. After a year of trial and error,
we arrived at the architecture depicted in Figure 3. Zélus
is implemented in OCaml;9 the size of each stage is given
in Table 1. The compiler is a pipeline of stages that only
aborts early if one of the front-end passes fails:

1. Parsing turns the program into an abstract syntax tree.

2. Typing annotates expressions with types (refer §3.1).

9http://caml.inria.fr

Compiler LOC
Main driver (incl. main data structures) 1769
Abstract syntax and pretty printers 767
Lexer & parser 1002
Typing 1696
Initialization and causality analysis 839
Transformation of hybrid features 974
Transformation of automata 337
Transformation of synchronous features 940
Inlining and other optimizations 597
Code generation 852

Runtime
Simulation algorithm 317
Solver interface (generic) 340
Solver interface (Sundials, compiler specific) 200
Zero-crossing detection (Illinois) 151

Table 1: Zélus in numbers

3. The causality analysis checks for causality loops (refer
§3.1). Then, the initialization analysis checks for reads
from uninitialized delays [9]; ODEs are readily treated.

After the front-end stages, a series of source-to-source trans-
formations are applied, each yielding a valid program.

4. ‘Small’ functions are inlined as an optimization.

5. Each automaton is replaced with a pair of switch-like
statements [8]; ODEs remain unchanged.

6. Local declarations are un-nested to simplify later steps.
For example, let x = (let y = e1 in e2) in e3 is trans-
formed into let x = e2 and y = e1 in e3.

7. A primitive exists for periodic clocks, like period 0.2(3.4)
which has a phase of 0.2 and a period of 3.4 and is math-
ematically equivalent to z and the sawtooth s:

z = up(s) der s = 1.0 init −0.2 reset z → −3.4

Nonetheless, this direct translation with its costly con-
tinuous state and zero-crossing is avoided in favor of an
output that returns the next horizon to the solver.

8. Each hybrid function is augmented with a boolean flag
go to signal when a weak transition has occurred and
thus that a subsequent discrete reaction is required.

9. The present and emit constructs are replaced, respec-
tively, by a switch statement and the pairing of a value
with an enable bit [7].

10. ODEs and up(.) operators are removed (refer §3.2).

(At this point, the code is purely synchronous.)

11. All last, fby, and→ operators are replaced by pre delays.

http://caml.inria.fr

12. Simple optimizations occur: dead-code removal, elimi-
nation of copy variables and common sub-expressions.

13. Equations are statically scheduled according to data-
flow dependencies.

14. The code is modularly translated into sequential code.

The architecture is mainly that of the Lucid Synchrone
compiler10 and only the highlighted boxes are really novel.
We detail them in the following sections.

3.1 Typing and Causality
As the backhoe example demonstrates, Zélus allows lib-

eral combinations of combinational, discrete, and continuous
elements. Nevertheless, discontinuities and side-effects must
only occur on discrete clocks; programs that violate this rule
are rejected. The principles and formal rules underlying the
type system of Zélus are presented elsewhere [2, 3]; here we
focus on the pragmatic motivations and implementation.

Every function definition, equation or expression is as-
sociated to a kind k ∈ {A,D,C}: A if combinatorial, D if
discrete-time, and C if continuous-time. Kinds are related
by the minimal subtyping relation such that A ≤ D and
A ≤ C. They are ascribed to entire ‘blocks’ rather than to
individual ‘wires’—each node or set of equations has a sin-
gle kind which is inherited by individual inputs and outputs.
The system extends naturally to automata: all the states of
a ‘continuous’ automaton are also of kind C and may thus
contain ODEs. The signature of a function f with input
type t1 and output type t2 is thus of the form:

f : ∀β1, ..., βn.t1
k→ t2 (where the βi are type variables)

(We write
A→ as→,

D→ as⇒, and
C→ as ;). This block-based

scheme greatly simplifies the formal rules, implementation,
and type-related messages (interface files and errors) and so
far we have not found it hinders writing programs.

A combinational function is defined by writing:

let square(x) = x ∗. x

Its inferred type is float → float. A declaration with the
keyword node gives a function that executes in discrete time
and which may thus contain unit delays, and the keyword
hybrid gives a function that executes in continuous time.

As an example of the typing analysis, consider a program
that tries to place an ODE in parallel with a discrete counter:

let hybrid wrong(x) = o where
rec der o = 1.0 init −1.0
and cpt = 0.0 fby cpt +. o

The compiler rejects it with the message:

File ”ex.ls”, line 3, characters 12−25:
> and cpt = 0 fby cpt +. o
> ˆˆˆˆˆˆˆˆˆˆˆˆ
Type error: this is a discrete expression and is
expected to be continuous.

As wrong is defined with keyword hybrid, it must not contain
a discrete-time computation which is not triggered on a dis-
crete clock. It could be made valid by writing, for example,

let hybrid good(x) = o where
rec der o = 1.0 init −1.0 reset z() → −1.0
and cpt = present z() → (0 fby cpt + o) init 0
and z = up(last o)

D C
reaction

[reinitialize]

event
approximate

Figure 4: The basic structure of a hybrid simulation

After typing, a causality analysis is performed to ensure
the absence of instantaneous loops. It follows two simple
principles: every loop on a discrete signal must be broken
by a unit delay and every loop on a continuous-time signal
must be broken by an integrator. This is essentially what
existing tools like Simulink do.

3.2 Compilation of ODEs and Runtime
The typing and causality analyzes help fulfill three funda-

mental requirements: (a) to simulate continuous processes
with state-of-the-art numeric solvers, (b) to import exist-
ing synchronous code without modification, and, (c) to use
existing tools to compile everything.

A hybrid simulation alternates between two phases as de-
picted in Figure 4. In state D, some code next is executed,

y′, go′ = next(y, ~x),

to compute the next values of the discrete state variables
y and go from the current value of y and a continuous
state ~x. This computation occurs when any of the zero-
crossings z1, ..., zn or go are true. Side effects and changes
of state variables (continuous or discrete) may occur at such
instants. A simulation iterates in this state, in which phys-
ical time does not progress, until go becomes false. Then,
integration in a numeric solver begins. A solver takes func-
tions fy and gy parameterized by y and a horizon h with:

~̇x = fy,h(t, ~x) ~z = gy,h(t, ~x)

and approximates ~x(ti + h) from the current time ti while
monitoring the elements of ~z for changes of sign. The solver
stops when it reaches time ti + h or when one or more zero-
crossings has been detected. State D is then entered and
the code is executed and may respond to detected events.

It is up to the compiler to construct next, f, g, the discrete
state y, and the continuous state ~x. This is done by the
source-to-source transformations which turn hybrid func-
tions into discrete nodes with additional inputs and outputs
as shown in this extract from the compilation of der z = . . .
and up(angle −. max) in segment:

let node segment((iz1, iz2), (lz, lv, langle), d,
(min, max, i), maxf, (push, pull, go)) =

((upz1, upz2), (nz, nv, nangle),
go1 or go2 or go3, ((segin, segout), angle))

. . .
and lastz = 0.0 → lz
and dz = error
and match hit with
| (, true) → do go1 = true and z = 0.0 done
| → do go1 = false and z = lastz done

and nz = if d then z else dz
. . .
and atlimit = iz1 and upz1 = angle −. max
. . .

10Through it has been rewritten entirely.

Each up(e) is replaced with a boolean input izi to signal
detection of the corresponding zero-crossing and a floating-
point output upzi to transmit the value of the expression
e. The equation der z = error init 0.0 reset hit() → 0.0 is
translated into dz = error, a match statement on the con-
crete representation of the signal hit (when hit is present z
is set directly to 0.0), and equation nz = if d then z else dz,
where d is a boolean flag that is true in D and false in C, and
nz is an output. The lastz variable replaces all occurrences
of last z, whether implicit or explicit, and lz is an input that
contains the value of the state variable z estimated by the
solver (an element of ~x). This synchronous function is then
compiled to sequential code.

Once the source program has been compiled into an exe-
cutable, it is possible to choose the numeric solver and zero-
crossing detection algorithm, and to set their parameters
from the command-line. We have implemented a modular
framework based on OCaml functors and first-class modules
to integrate solvers. In addition to an interface to the Sun-
dials cvode solver [15], we have implemented several nu-
meric solvers and the ‘Illinois’ false position method for zero-
crossing detection using standard techniques [10] (Butcher
tables, Hermite interpolation, and error estimation).

We have experimented with various examples from the
literature, including the sticky masses [16, Example 6.8] and
air traffic control [21], and from Simulink, including the
bang-bang temperature controller and clutch model.

4. COMPARISON WITH OTHER TOOLS
The Zélus language is most distinguished from Simulink

by the type system that regulates compositions of discrete
and continuous elements and the compilation by source-
to-source transformation. While the basic semantics of a
Simulink model follow simple principles, the behavior of im-
portant corner-cases can really only be understood by careful
operational reasoning, and such intricacies must be faithfully
reproduced by compilers and analysis tools. Users intending
to compile their models into controllers are advised to avoid
certain features, or to favor others; for instance, to use func-
tion call triggers to explicitly determine the execution order
of blocks. In contrast, Zélus has a consistent and simple
semantics, the same source-to-source translations generate
code for simulation and for embedded targets. Only the last
step, that turns basic dataflow assignments into imperative
code, requires customization for specific targets.

Zélus shares the same basic model of executions, that al-
ternate between continuous phases and sequences of ‘run-to-
completion’ discrete actions, as specification frameworks like
Charon [1], SpaceEx [12], and Hybrid I/O Automata [18],
and like them, concerns itself with modular composition.
The biggest difference is the use of synchronous, rather than
interleaved, parallelism, which enforces a strong discipline on
communication through shared variables, which we consider
as clocked streams, and on causality, since the language en-
sures a single value per variable per instant. Furthermore,
we insist on externalizing all non-determinism from models.

Acknowledgments
We warmly thank Cyprien Lecourt for his work on solver
modules and the development of various examples.

5. REFERENCES
[1] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular

specification of hybrid systems in CHARON. In HSCC’00,
pages 6–19, 2000.

[2] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet. A
Hybrid Synchronous Language with Hierarchical
Automata: Static Typing and Translation to Synchronous
Code. In EMSOFT’11, Taiwan, Oct. 2011.

[3] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet.
Divide and recycle: types and compilation for a hybrid
synchronous language. In LCTES’11, USA, Apr. 2011.

[4] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet.
Non-Standard Semantics of Hybrid Systems Modelers. J.
Computer and System Sciences, 78:877–910, May 2012.

[5] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous
languages 12 years later. Proc. IEEE, 91(1), Jan. 2003.

[6] L. Carloni, R. Passerone, A. Pinto, and
A. Sangiovanni-Vincentelli. Languages and tools for hybrid
systems design. Foundations & Trends in Electronic Design
Automation, vol. 1, 2006.

[7] J.-L. Colaço, G. Hamon, and M. Pouzet. Mixing Signals
and Modes in Synchronous Data-flow Systems. In
EMSOFT’06, South Korea, Oct. 2006.

[8] J.-L. Colaço, B. Pagano, and M. Pouzet. A Conservative
Extension of Synchronous Data-flow with State Machines.
In EMSOFT’05, USA, Sept. 2005.

[9] J.-L. Colaço and M. Pouzet. Type-based initialization
analysis of a synchronous data-flow language. J. Software
Tools for Technology Transfer, 6(3):245–255, Aug. 2004.

[10] G. Dahlquist and Å. Björck. Numerical Methods in
Scientific Computing: Volume 1. SIAM, 2008.

[11] B. Denckla and P. Mosterman. Stream- and state-based
semantics of hierarchy in block diagrams. In 17th IFAC
World Congress, pages 7955–7960, South Korea, 2008.

[12] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray,
O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler.
SpaceEx: Scalable verification of hybrid systems. In 23rd
Conf. CAV, pages 379–395, USA, July 2011.

[13] G. Hamon. A denotational semantics for Stateflow. In
EMSOFT’05, pages 164–172, 2005.

[14] T. Henzinger. The theory of hybrid automata. NATO ASI
Series F: Comp. & Systems Sciences, 170:265–292, 2000.

[15] A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban,
D. Shumaker, and C. Woodward. SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers. ACM
Trans. Math. Soft., 31(3):363–396, Sept. 2005.

[16] E. A. Lee and P. Varaiya. Structure and Interpretation of
Signals and Systems. http://LeeVaraiya.org, second
edition, 2011.

[17] E. A. Lee and H. Zheng. Leveraging synchronous language
principles for heterogeneous modeling and design of
embedded systems. In EMSOFT’07, Austria, Sept. 2007.

[18] N. A. Lynch, R. Segala, and F. W. Vaandrager. Hybrid I/O
automata. Info. & Comp., 185(1):105–157, Aug. 2003.

[19] P. Mosterman, J. Zander, G. Hamon, and B. Denckla.
Towards computational hybrid system semantics for
time-based block diagrams. In 3rd IFAC Conf. Analysis &
Design of Hybrid Sys., pages 376–385, Spain, Sept. 2009.

[20] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and
F. Maraninchi. Defining and translating a “safe” subset of
Simulink/Stateflow into Lustre. In EMSOFT’04, pages
259–268, 2004.

[21] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution
for air traffic management: A study in multiagent hybrid
systems. IEEE Trans. Automatic Control, 43(4):509–521,
Apr. 1998.

http://LeeVaraiya.org

	Introduction
	An Overview of Zélus
	Compiler Architecture
	Typing and Causality
	Compilation of ODEs and Runtime

	Comparison with other tools
	References

