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Abstract—Many critical real-time embedded systems
are implemented as a set of processes that execute
periodically with bounded jitter and communicate with
bounded transmission delay. The quasi-synchronous ab-
straction was introduced by P. Caspi for model-checking
the safety properties of applications running on such
systems. The simplicity of the abstraction is appealing:
the only events are process activations; logical steps
account for transmission delays; and no process may
be activated more than twice between two successive
activations of any other.

We formalize the relation between the real-time
model and the quasi-synchronous abstraction by in-
troducing the notion of a unitary discretization. Even
though the abstraction has been applied several times
in the literature, we show, surprisingly, that it is not
sound for general systems of more than two processes.
Our central result is to propose necessary and sufficient
conditions on both communication topologies and tim-
ing parameters to recover soundness.

I. Introduction
The Synchronous Real-Time Model [2], [10] characterizes

many distributed embedded systems: it applies whenever
bounds exist on successive process executions and trans-
mission delays. In particular, whenever computing units
that execute periodically with jitter are connected together
by network links. It is commonly employed in critical
aerospace, power, and rail systems.

The quasi-synchronous approach [6], [8] formalizes a set
of techniques for building distributed control systems that
were observed by P. Caspi while consulting at Airbus on
the distributed deployment of Lustre/SCADE1 [17] designs.
One of the key ideas is to model the computing units,
network links, and shared memories themselves as a syn-
chronous program [6, §3]. Such models can be verified using
model-checking tools for discrete programs. This approach
has, for instance, been applied to a Proximity Flight Safety
(PFS) case-study from EADS Space Transportation [19]
and to the analysis of systems specified in the Architecture
Analysis and Design Language (AADL) [5], [20], [28].

An alternative way of developing real-time applications
is to synchronize process executions. The Time-Triggered
Architecture (TTA) [21], [22] thoroughly develops this
approach and there are several clock synchronization
protocols suitable for embedded systems. Once a clock

1http://www.ansys.com/Products/Embedded-Software/
ANSYS-SCADE-Suite

synchronization scheme is adopted and assumed or verified
correct, modeling and reasoning about applications is
greatly simplified because non-determinism, in the form of
possible interleavings, is either eliminated or reduced. The
quasi-synchronous approach is nevertheless appropriate
in certain applications either due to their simplicity, for
example, microprocessors communicating directly over
serial links, or the need for complete independence between
subsystems, for example, as in redundant subnetworks
connected only at voting units.

Figure 1 gives an overview of the quasi-synchronous
approach. On the left is a real-time model comprising
two processes, A and B, communicating through network
links. Processes and links are annotated with timing
bounds on executions (Tmin and Tmax) and transmission
delays (τmin and τmax). Underneath is an example trace
showing process activations and corresponding message
transmissions. On the right is a discrete-time abstraction
in which timing parameters are replaced by a discrete
program called Scheduler that overapproximates their
effect by controlling process activations, and, importantly,
message transmissions are modeled by a single logical step.
Underneath is a trace of the discrete-time model.

The ultimate aim is to verify properties of the real-time
model in the simpler discrete-time model. The essential
property is that every sequence of states that occurs in
the real-time model can also occur in the discrete-time
model.2 Such an association guarantees soundness: all
safety properties provable in the discrete-time model also
hold of the real-time model. Since changes in state are
directly related to received messages, we focus on traces
without modeling process and network states explicitly.
This means that a discrete model is a valid abstraction if
every real-time trace has a discrete-time counterpart.

Contributions: We formalize the relation between real-
time and discrete-time traces in the quasi-synchronous
approach by introducing a unitary discretization based
on the respective causality relations of the two models.
With this tool we show that abstracting transmission
delays as unit delays is not sound in general. We state
and prove necessary and sufficient conditions on commu-
nication topologies and timing characteristics to recover
soundness. We provide practical criteria for using the

2Assuming the state of the processes does not reference real time.
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Fig. 1: Soundness: A property ϕ that can be verified in the discrete-time model
will also holds for the real-time model, RT |= ϕ ⇐= DT |= ϕ.

quasi-synchronous abstraction to formally verify real-time
systems in discrete-time model-checking tools [16], [18].

A. The Real-time Model
We consider the classic synchronous real-time model [2],

[10], noting that ‘synchronous’ does not mean ‘lock step’.

Definition 1 (Synchronous Real-Time Model). A syn-
chronous real-time model is a finite set of processes P,
where for every process, the delay T between two successive
activations is bounded:

0 ≤ Tmin ≤ T ≤ Tmax. (RP)

Values are transmitted between processes with a delay τ ∈ R,
bounded by τmin and τmax:

0 ≤ τmin ≤ τ ≤ τmax. (RT)

Each message is buffered at receivers until a newer value
is received. Execution time (τexec) can be modeled either
as a part of the communication delay (τ = τexec + τtrans),
or as part of the activation period (τexec < Tmin) with
the convention that application components communicate
through logical delays: values computed in one reaction
are sent at the beginning of the next one.

For readability, we assume global bounds on successive
process activations, but our results are readily generalized
to multirate systems (see appendix C).

B. The Discrete-time Model
The simplest discrete abstraction is the asynchronous

model where time is ignored altogether and process activa-
tions may be interleaved arbitrarily. This is sound but far
from complete: many properties that hold in the real-time
model cannot be shown in the discrete one. Furthermore,
the many possible interleavings complicate reasoning about
or model-checking the discrete-time model.

A finer abstraction was proposed by Caspi for processes
that execute ‘almost periodically’, that is, Tmin ≈ Tmax.

He realized that the interleavings of systems satisfying RP
can be constrained [7, §3.2]:

It is not the case that a component process
executes more than twice between two successive
executions of another process.

Furthermore, he observed that when transmission delays
are ‘significantly shorter than the periods of [process
activations]’ they can be modeled by unit delays in the
discrete-time model, but that ‘if longer transmission delays
are needed, modeling should be more complex’ [6, §3.2.1].
A unit delay models the fact that a message sent at one
logical instant is received at the next one.

More complex modeling refers to the standard approach
of placing buffer processes between communicating pro-
cesses. Such buffers provide receive and send events and
maintain internal state to track messages in transmission.
The quasi-synchronous abstraction eschews explicit link
models thereby simplifying scheduling logic and halving
the number of variables needed to model communication.

These observations allow abstraction from the timing
details of the real-time model in definition 1 to give a non-
deterministic and discrete-time model of systems termed
quasi-synchronous. In the discrete-time model, boolean
variables called clocks are set to true to activate processes.

Definition 2 (Quasi-Synchronous Model). A quasi-
synchronous model comprises a scheduler and finite set
of processes P. The scheduler is connected to each process
by a discrete clock signal. It activates the processes non-
deterministically but ensures that no pair of clock signals
(cA, cB), for a pair of processes A,B ∈ P, ever contains the
subsequence [

t
]
·
[
f
f

]∗
·
[
t
f

]
·
[
f
f

]∗
·
[
t
]

,

where t indicates an activation, f means no activation,
and means either of the two. Processes communicate
through unit delays activated at every scheduler tick.



This restriction on subsequences of pairs of clock sig-
nals [6, §3.2.2] expresses formally the constraint quoted
beforehand. The forbidden subsequence involves at least
three activations of one process (A) between two successive
activations of another (B). A finite state scheduler that
produces valid sequences is readily constructed from the
given regular expression (using, for instance, the reglo
tool [29]). The processes and unit delays can be modeled
directly in Lustre [17], for instance, and verified by model-
checking [5], [19], [20], [28].

The quasi-synchronous model aims to reduce the state-
space of a model in two ways: 1) by limiting the in-
terleavings of process activations and 2) by simplifying
message transmission modeling. In this paper, we show
how the constraints imposed by the latter choice limit the
applicability of the abstraction.

C. Relating Real time and Discrete time
Given definitions 1 and 2, it is natural to query the exact

relationship between them, namely: what are necessary
and sufficient conditions on the architecture to ensure the
soundness of the abstraction?

The first step is to formalize real-time traces and their
causality (section II). The main contribution of this paper
is then to characterize the link between this causality
relation and the causalities expressible in the discrete model.
Specifically, we define a ‘unitary discretization’ that relates
real-time traces to discrete-time traces (section III). It is
quite constraining due to the modeling of communications
as unit delays, but it still allows for the treatment of
practically-relevant systems of two processes [19], [20]
and those with certain communication topologies. Based
on these results, we define precisely when the quasi-
synchronous model can be applied to a real-time system
(section IV). We relate our work to classic distributed
systems models, to the expression of causality in distributed
systems, and to existing work on the quasi-synchronous
abstraction (section V).

II. Traces and Causality
We define a formal model for reasoning about real-time

models and their discretization. It has two components:
(real-time) traces and their induced causality relations. In
the following, we fix an arbitrary real-time model with
processes P and parameters Tmin, Tmax, τmin, and τmax
that satisfy definition 1. We formalize pairs of sending and
receiving processes using a communicates-with relation,
written ⇒, between the processes of a real-time model.
This relation is not necessarily symmetric, A ⇒ B need
not imply B ⇒ A, but it must be reflexive (A⇒ A).

Definition 3 (Trace). A (real-time) trace E is a set of
activation events {Ai | A ∈ P ∧ i ∈ N} and two functions:
• t(Ai), the date of event Ai with respect to an ideal

reference clock, and
• τ(Ai, B), the transmission delay of the message sent

at Ai to a process B.
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Fig. 2: A trace (above) and a possible unitary discretization.

Both t(Ai) and τ(Ai, B) are non-negative reals satisfying
the constraints of definition 1, namely if A⇒ B,

0 ≤ Tmin ≤ t(Ai+1)− t(Ai) ≤ Tmax, and
0 ≤ τmin ≤ τ(Ai, B) ≤ τmax.

The causality relation between events within a given
trace is essentially the happened before relation of Lam-
port [23]. Unlike Lamport, however, we do not explicitly
model message reception. A message is received if the next
execution of the receiver occurs after the corresponding
transmission delay.

Definition 4 (Happened Before). For a trace E, let → be
the smallest relation on activation events that satisfies

(local) If i < j then Ai → Aj, and
(recv) If A⇒ B and t(Ai) + τ(Ai, B) ≤ t(Bj)

then Ai → Bj.
Activations at a single process are totally ordered (local);
an activation at one process happens before an activation
at another process when a message sent at the former is
received before the latter (recv).

Compared to Lamport, we do not close the relation by
transitivity. In this way, Ai → Bj means that Bj occurs
strictly after the reception of the message sent by process
A at Ai (otherwise, appendix A shows a counterexample).
The same technique is used elsewhere [31, definition 1].

III. Unitary Discretization
We now address the central question of relating the real-

time and discrete-time models. The problem is essentially
one of correctly discretizing real-time traces.

If process A sends messages to process B, the most
general approach is to ensure that when an event Ai occurs
before an event Bj in the discrete-time trace, Ai happens
before Bj (Ai → Bj) in the corresponding real-time trace
and vice versa. Figure 2 shows an example trace for a
three-process system and a possible unitary discretization.

Definition 5 (Unitary Discretization).
A function f : E → N that assigns each event in a (real-
time) trace to a logical instant of a corresponding discrete
trace, is a unitary discretization if for all Ai, Bj ∈ E,

Ai → Bj ⇐⇒ (f(Ai) < f(Bj) and A⇒ B) . (UD)



Discretizing a real-time model satisfying definition 1 to a
model of the form given in definition 2 amounts to finding a
unitary discretization for each of its (real-time) traces. The
forward half of the equivalence comes from the fact that the
→ relation induces a partial order on events. Completing
this relation to a total order gives a discretization that
respects the causality of the real-time model [23].

A unitary discretization links the causality of events in
the real-time model to the causality implicit in the discrete-
time model. The backward direction of the equivalence
imposes that if an event y occurs after an event x in
the discrete-time model, that is, f(x) < f(y), it is either
because y is a later activation of the same process as x, or
because y occurs strictly after the receipt of the message
sent at x. It is the communication through unit delays on a
common clock that tightly links the two causality relations.

In distributed systems terminology, condition UD is
called strong consistency [30]. The problem of finding a
unitary discretization is thus equivalent to the problem
of finding a strongly consistent scalar clock. Raynal and
Singhal report in their survey [30] that this is not possible
in general, that is, there is no scalar clock function f that
satisfies UD. This was already noted by Lamport in his
original paper: ‘We cannot expect the converse condition
to hold as well [...]’ [23, p.560].

The aim is to formulate sufficient conditions on the
(static) ⇒ relation and on the timing characteristics of the
real-time model to guarantee the existence of a unitary
discretization. The following proposition will be useful.

Proposition 1. If f is a unitary discretization for a trace,
for a pair of processes where A⇒ B we have that

Ai → Bj =⇒ f(Ai) < f(Bj), and
Ai 6→ Bj =⇒ f(Ai) ≥ f(Bj).

Proof. The first implication is a direct consequence of the
definition of a unitary discretization. The second one follows
by contraposition. If f(Ai) < f(Bj), and since A⇒ B, we
have Ai → Bj by the definition of f .

An intermediate step to defining a static condition on
communications is to characterize traces for which there
is no unitary discretization. Our characterization will be
based on a graph of the constraints of proposition 1.

Definition 6 (Trace Graph). Given a trace E, its directed,
weighted trace graph G has as vertices {Ai | A ∈ P∧ i ∈ N}
and as edges the smallest relations that satisfy

1) If Ai → Bj then Ai
1−→ Bj, and

2) If A⇒ B and Ai 6→ Bj then Bj
0−→ Ai.

An example trace graph is shown in figure 3. Edges
labeled with one (x 1−→ y) represent the constraints
f(x) < f(y). Each such edge indicates that the source
activation must come before the destination activation in a
unitary discretization, that is, the value of f , from source
to destination, must increase by at least one. Edges labeled

A1 A2

B1 B2

C1 C2

Fig. 3: The trace (sub-)graph of the trace in figure 2. Black
thick arrows denote x 1−→ y/f(x) < f(y). Thin gray arrows
denote x 0−→ y/f(x) ≤ f(y).

with zeros (x 0−→ y) represent the constraints f(x) ≤ f(y).
Each such edge indicates that the source activation cannot
be placed before the destination activation in a unitary
discretization, that is, the value of f , from source to
destination, must be the same or larger. A path through
several activations defines their relative ordering in all
unitary discretizations.

The satisfaction of the required constraints, or the
impossibility of satisfying them, can now be phrased in
terms of cycles in the graph. A cycle comprising only 0−→’s
is acceptable: its activations are all assigned the same
discrete slot (for example, B1 and C1 in figure 3). Any cycle
containing a 1−→ represents a set of unsatisfiable constraints:
one of the events must be placed in two different slots.

Lemma 1 (∃UD ⇐⇒ ∃PC). For a trace E, there is a
unitary discretization (∃UD) if and only if there is no cycle
of positive weight in the corresponding trace graph G (∃PC).

Proof. Assume there is a cycle of positive weight. By the
construction of G there is an event x such that, for any
unitary discretization function, f(x) < f(x), which is
impossible.

Conversely, if there are no cycles of positive weight,
we may define a function f that maps each event x to
the weight of the longest path in G that leads to x. By
construction, Ai → Bj =⇒ f(Ai) < f(Bj), which is
the forward implication of UD (definition 5). The other
direction of UD follows by contraposition. Assume Ai 6→ Bj .
If A ⇒ B, we have Bj 0−→ Ai and thus, by the definition
of f , that f(Bj) ≤ f(Ai). This gives ¬(f(Ai) < f(Bj)) as
required. The other case, A 6⇒ B, is trivial.

The unitary discretization described in the proof above is
the most concise one and can be expressed as

f(x) = max ({f(y) + 1 | y 1−→ x} ∪ {f(z) | z 0−→ x} ∪ {0}) .

Other discretizations are constructed by adding ‘extra’
instants between process activations as in figure 2.

A. Discretizing general systems
One might expect that real-time models are unitary

discretizable if the transmission delays are ‘significantly
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Fig. 4: A real-time trace that is not unitary discretizable
(x 1−→ y 0−→ z 0−→ x) and that may occur whenever τmax > 0.

shorter’ than the period of the process, that is τmax � Tmin.
Unfortunately this is not the case.

Theorem 1 (No General Unitary Discretization). General
real-time models with three processes or more communicat-
ing non-instantaneously are not unitary discretizable.

Proof. If τmax > 0, figure 4a shows a trace with a cycle
of positive weight, x 1−→ y 0−→ z 0−→ x, for which there is no
unitary discretization (lemma 1).

Figure 4 shows the two possible discretizations of the
counterexample. In figure 4b the message sent at z should
have been received at y (z → y); whereas in figure 4c the
message sent at x should have been received at z (x→ z).
Neither correctly abstracts the real-time trace of figure 4a.

B. Recovering Soundness
The counterexample of figure 4 shows that when three

processes communicate such that A⇒ B ⇔ C ⇔ A, there
is at least one trace that has no unitary discretization.
Problematic cycles in traces can be prevented either by
constraining the timing parameters of the model or by
restricting communication graphs: forbidding A ⇒ B
removes Ai

1−→ Bj and Bj
0−→ Ai, for all i and j, in

associated trace graphs (if A 6= B). We propose conditions
that preclude cycles of positive weight in all possible traces
and thus guarantee the existence of unitary discretizations.

Theorem 2. Let Lc be the size of the longest elementary
cycle in the communication graph. A real-time model
satisfying definition 1 is unitary discretizable if and only if,

1) all u-cycles of the communication graph are cycles or
balanced u-cycles, or τmax = 0, and

2) there is no balanced u-cycle in the communication graph
or τmin = τmax, and

3) there is no cycle in the communication graph or

Tmin ≥ Lcτmax. (CD)

A u-cycle is an elementary cycle in the undirected
communication graph, that is, the graph obtained from
the communication graph by forgetting the direction of

A B

D C

(a) cycle

A B

C

(b) u-cycle

A B

D C

(c) b-cycle

Fig. 5: Examples of communication topologies.

the edges. A balanced u-cycle has the same number of
edges in both directions. Figure 5 shows three examples
of u-cycles, the rightmost one is also a balanced u-cycle.
In the following C, uC, and bC denote the sets of cycles,
u-cycles, and balanced u-cycles, respectively.

In simpler terms, theorem 2 states that communication
topologies containing u-cycles are only permissible if
communication is perfectly instantaneous. Cycles can be
allowed by imposing the additional constraint CD and
balanced u-cycles can be allowed by imposing τmin = τmax.
The following proposition is needed in the proof.

Proposition 2. If a trace graph has a cycle of positive
weight, then it has a cycle of positive weight of the form:3

A+ b0−→ B+ b1−→ C+ b2−→ . . . bn−→ A+

where processes A,B,C, . . . are pairwise distinct.

We write A+ to denote successive activations of process A.

Proof. From any cycle of positive weight one can build
another cycle of positive weight with the correct form. The
proof is given in appendix B-A.

We now present a proof sketch for theorem 2, the
complete proof can be found in appendix B-A.

Proof. The proof is by contraposition in both directions.
Using lemma 1 we have ∃UD⇐⇒ ∃PC. Therefore we prove
the following statement, which is equivalent to theorem 2.

∃PC⇐⇒

∣∣∣∣∣∣∣
∃c ∈ C and CD, or,
∃c ∈ bC and τmin < τmax, or,
∃c ∈ uC \ (C ∪ bC) and τmax > 0

(C1)
(C2)
(C3)

To prove that C1 or C2 or C3 =⇒ ∃PC we show that
in each of the three possible cases one can build a trace
with a cycle of positive weight. Figure 6 shows such a
counterexample for a u-cycle of 5 processes.

To prove that ∃PC =⇒ C1 or C2 or C3, suppose that
there exists a trace with a cycle of positive weight. By
proposition 2, there also exists a trace with a cycle of
positive weight of the form:

A+ b0−→ B+ b1−→ C+ b2−→ . . . bn−→ A+, (1)

where processes A, B, C, . . . are pairwise distinct. By
proposition 2, for two processes A and B, a transition

3 bi−→ is used as a generic notation for either 1−→ or 0−→.
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Fig. 6: Counterexample e0
1−→ e1

1−→ e2
0−→ e3

0−→ e4
0−→ e0,

based on the u-cycle A⇒ B ⇒ C ⇔ D ⇔ E ⇔ A.

Ai
0−→ Bj corresponds to a communication channel A⇔ B

with A 6= B and a transition Ai
1−→ Bj corresponds to a

communication channel in the opposite direction A⇒ B
with the possibility that A = B for activations of the same
process. Since the processes of (1) are pairwise distinct, the
sequence of processes c = A,B,C, . . . , A forms a u-cycle
of the communication graph. There are three cases:

1) c ∈ C imposes Tmin < Lcτmax (CD), hence C1 holds.
2) c ∈ bC imposes τmin < τmax and C2 holds.
3) c ∈ uC \ (C ∪ bC) imposes τmax > 0 and C3 holds.

Theorem 1 is a particular case of theorem 2. Without
assumptions on the communication graph there could be a
u-cycle that is neither a cycle nor a balanced u-cycle.

Corollary 1 (2-process Unitary Discretization). A real-
time model satisfying definition 1 with two processes can be
unitarily discretized if and only if

Tmin ≥ 2τmax. (2D)

Proof. Direct consequence of theorem 2: for systems of two
processes, Lc = 2 and CD becomes Tmin ≥ 2τmax.

Two-process models were the focus of the original work on
the quasi-synchronous approach [6] and they are relevant
in practice [19], [20]. This result is coherent with Caspi’s
requirement that transmission delays be ‘significantly
shorter than the periods of [process activations]’ [6, §3.2.1].

IV. The Quasi-Synchronous Abstraction
We now apply the preceding definitions and results on

unitary discretizations to precisely describe when the quasi-
synchronous model can be applied to a real-time system.

A discrete-time model is termed quasi-synchronous if ‘it
is not the case that a component process executes more
than twice between two successive executions of another
process’ [7, §3.2]. Since any given process only detects
the activations of another by receiving the corresponding
messages, the quasi-synchronous condition corresponds to
two constraints. For any process, 1) there are no more
than two activations between two message receptions, and
2) there are no more than two message receptions between

A

B
Bi Bi+1 Bi+2

Aj Aj+1 Aj+2Tmax Tmax

Tmin Tmin

τmax τmin τmin

A

B

Fig. 7: A trace (above) and a possible discretization that
violates definition 2.

two activations. This definition can be formalized using
unitary discretizations.

Definition 7 (Quasi-Synchronous Model). A real-time
model is quasi-synchronous if, for every trace t,

1) it has a unitary discretization f, and
2) for processes A⇔ B, there are no i and j such that

f(Bj) < f(Ai) < f(Ai+2) ≤ f(Bj+1) or,
f(Aj) ≤ f(Bi) < f(Bi+2) < f(Aj+1).

(QS)

This definition expresses the two central features of quasi-
synchrony: 1) communications as ‘logical’ unit delays, and
2) constraints on interleavings of process activations.

Condition QS is less constraining than definition 2 from
section I-B. That definition, proposed by Caspi, has the
advantage of forbidding a single symmetric subsequence,
but the link with process interleavings is obscured. In fact,
the proposition below shows that it is violated in any real-
time system with unidirectional communications (A⇔ B
but A 6⇒ B) that is not perfectly synchronous. So, while
definition 7 does not directly translate definition 2, we
argue that it more faithfully describes quasi-synchronous
systems in terms of process interleavings.

Proposition 3. A pair of (real-time) processes A and B
where A⇔ B but A 6⇒ B cannot be quasi-synchronous in
the sense of definition 2 if Tmin + τmin < Tmax + τmax.

Proof. If Tmin+τmin < Tmax+τmax, figure 7 shows an execu-
tion trace where Aj 0−→ Bi

1−→ Bi+1
1−→ Aj+1

0−→ Bi+2. A dis-
cretization f with f(Aj) = f(Bi) and f(Aj+1) = f(Bi+2)
is a valid unitary discretization that violates the condition
of definition 2.

While definition 7 conveys the essence of quasi-synchrony,
its conditions are rather abstract. The following theorem in-
corporates the results of sections II and III to state concrete
requirements on real-time parameters and communication
topologies. Appendix B-B gives a full proof.

Theorem 3. A real-time model satisfying definition 1 is
quasi-synchronous (condition QS) if and only if,

1) the conditions of theorem 2 hold, and
2) the following condition holds,

2Tmin + τmin ≥ Tmax + τmax. (QT)
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Fig. 8: Witness for QS =⇒ QT.

Proof. The first condition ensures that the system is
unitary discretizable. Now, if QS does not hold, there is a
chain of events such that either

f(Bj) < f(Ai) < f(Ai+2) ≤ f(Bj+1) or,
f(Aj) ≤ f(Bi) < f(Bi+2) < f(Aj+1).

This gives Bj → Ai, and Bj+1 6→ Ai+2 in the first case;
and, Bi 6→ Aj and Bi+2 → Aj+1 in the second; which
implies 2Tmin + τmin < Tmax + τmax, that is, QT.

Conversely, if QT does not hold, then figure 8 shows a
trace where Bj 1−→ Ai

1−→ Ai+1
1−→ Ai+2

0−→ Bj+1. Then, by
definition 5, the discretization f such that

f(Bj) < f(Ai) < f(Ai+2) = f(Bj+1).

is a valid unitary discretization that violates QS.

Theorem 3 states precisely when the quasi-synchronous
abstraction is sound. If a real-time system satisfies the given
constraints on (logical) topology and timing, then the quasi-
synchronous abstraction can be used to formally verify its
properties. To give a few concrete examples, providing
condition QT holds, it applies to: 1) topologies without
feedback, for example, three filter sequences connected
to a triple voter; 2) trees of communicating pairs if
Tmin ≥ 2τmax, for example, a ‘daisy chain’ or a star of
intercommunicating neighbours; and 3) any feedback loop
of n nodes if Tmin ≥ nτmax, for example, unidirectional ring
networks or filters with ‘non-overlapping’ feedback loops. It
does not apply if condition QT is violated, or in topologies
with certain cycles, notably those with more than one path
between two processes. Figures 8 and 9 in the appendices
show a few examples of allowed and forbidden topologies.

V. Related Work
a) Distributed systems: The spectrum of formal mod-

els for distributed systems runs from completely syn-
chronous (definition 1) to completely asynchronous [26].
The completely synchronous model makes the strongest
timing assumptions—though they are not unreasonable for
embedded systems—and it is possible to simulate round-
based applications and solve problems like consensus and
leader election even in the presence of failures [2], [10].

The impossibility of consensus in the asynchronous
model [14] and the desire to treat more general systems
than the synchronous model motivates the study of partially

synchronous models [26, Part III]. There are models
with bounds on transmissions and the relative speeds of
processes, and these bounds are not necessarily known or
may only hold eventually [12]. In the θ-model [33] bounds
are not given on transmissions but rather on the ratio of
the longest and shortest end-to-end delays of messages
simultaneously in transit. The Finite Average Response
time model [13] only assumes a lower bound on activations
and a finite average response time for transmissions. Timing
assumptions may also be allowed to vary across different
communication links [1]. The Asynchronous Bounded-Cycle
model [31] avoids any reference to transmission delays or
bounds on activations and instead constrains the causality
chains induced by transmission.

We treat the standard synchronous distributed sys-
tems model and our treatment of causality and timing
constraints has nothing to do with recovering possibility
results or determining algorithmic complexity in a partially
synchronous model. We study a different question: when is a
very specific discrete abstraction sound for the synchronous
real-time model? Our main problem comes from the
unusual but potentially advantageous modeling of trans-
missions as unit delays. This gives rise to a unique form
of causality—the unitary discretization—that is relevant
to the model-checking problem we consider but not to the
theory of distributed computing.

Unsurprisingly, our notion of causality follows Lamport’s
seminal work [23]. His causality relation was recently
extended to a syncausality relation [3, Definition 2] by
using upper bounds on transmission delays to complete
causality chains. Our causality relation is similar but
message reception is not modeled explicitly, the (recv)
clause is based on actual transmission delays not an upper
bound, and transitivity is not avoided. The syncausality
relation is developed into ‘centipede’ and ‘centibroom’
abstractions to study coordination problems, whereas we
develop the unitary discretization to verify the soundness
of a discrete model. Our approach is closer to work on
execution graphs [31]: we also use a non-transitive relation
and count along causality chains. But our trace graphs
incorporate two types of constraints ( 0−→ and 1−→) due to the
different nature of the problem we study. Furthermore, the
work on execution graphs focuses on asynchronous systems
and does not propose constraining real-time parameters
and communication topologies to eliminate cycles.

b) Logical clocks: As already mentioned in section III,
the existence of a unitary discretization is equivalent to the
problem of finding a strongly consistent scalar clock. As
this is not possible in general [23], [30], research has sought
more powerful mechanisms, like vector clocks [27] and
matrix clocks [15], for capturing the causalities of events.
These mechanisms do not resolve the problem posed in
this paper, since the modeling of transmissions as unit
delays and the activations of processes on boolean streams
require the total ordering given by a global scalar clock: a
synchronous modeling of an asynchronous system.



c) Quasi-synchrony: Most existing work on the quasi-
synchronous abstraction either assumes instantaneous
communication [5], [28]—which may be valid in a shared
memory model but not a message-passing one—or takes
the discrete model as given and applies it directly to model
and analyze systems [19], [20], [32]. We seek to clarify the
original definitions [6] and to precisely define the relation
between the real-time and discrete-time models. This leads
to the understanding of discretization in terms of causality
and the restrictions on process intercommunications and
timing which are the central contributions of this paper.

Our work is complementary to the development of
abstract domains to statically analyze synchronous real-
time systems [4], and to the verification of properties like
maximal lost messages, message inversions, and message
latency, in an interactive theorem prover [24], [25].

In n-synchrony, unlike in quasi-synchrony, the difference
of cumulative process activation counts is bounded [9]. The
relation between a similar model and real-time has recently
been studied [11]. Both n-synchrony and quasi-synchrony
can be related to ‘clock bounds’ and ‘drift bounds’ [32].

VI. Conclusion
The quasi-synchronous abstraction provides a way to

model and reason about a class of distributed embedded
systems whose processes communicate by sampling with
bounded jitter. Given a real-time model satisfying certain
constraints on timing parameters and communication
topologies, properties obtained of the corresponding quasi-
synchronous model are also true of the original model.
In other words, a precise class of practically-relevant dis-
tributed control systems can be verified without resorting
to timed formalisms and tools, and by modeling message
transmission as a unit delay, but not all of them.
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Appendix A
Transmissions and the Happened Before Relation

Unlike Lamport, we do not close the → relation by
transitivity. Hence Ai → Bj means that the message sent
by process A at Ai is received by B strictly before Bj .
Otherwise figure 1 shows an example with three events x,
y and z, where the message sent by B to C at x is not
received at z even though x→ y → z.

A

B

C

y

x

z

Fig. 1: Example trace where x 6→ z, but x→ y → z.

Remark 1. The trace of figure 1 is not unitary discretizable.
Indeed, x→ y → z imposes f(x) < f(y) < f(z), but x 6→ z
also imposes f(x) ≥ f(z), which is impossible. This is a
particular case of lemma 1. The corresponding trace graph
is x 1−→ y 1−→ z 0−→ x, that is, a cycle of positive weight. This
counterexample is thus impossible under the assumptions
of theorem 2. It requires B ⇒ A ⇒ C ⇔ A, which is a
u-cycle that is neither a cycle nor a balanced u-cycle.

Appendix B
Detailed Proofs

Notation. We write TAi = t(Ai+1) − t(Ai) to denote the
delay between the ith and (i+ 1)th activations of process A.
For an event ek we write Pk for the corresponding process.

A. Unitary Discretization
Proposition 2. If a trace graph has a cycle of positive
weight, then it has a cycle of positive weight of the form:4

A+ b0−→ B+ b1−→ C+ b2−→ . . . bn−→ A+

where processes A,B,C, . . . are pairwise distinct.

Remark 2. If there is a transition Pi
0−→ Pj in a block of

activation P+ we also have Pi 1−→ Pj by definition 6. To
simplify the proofs we assume in the following that a block
P+ only contains 1−→ edges.

Proof. Consider a cycle of positive weight c that is not of
the form:

A+ b0−→ B+ b1−→ C+ b2−→ . . . bn−→ A+

where processes A,B,C, . . . are pairwise distinct. Then
there exist two processes P and Q where P 6= Q, such that

c = e0
b′

0−→ . . .
b′

k−→ Pi
b′

l−→ Qk
b′

m−−→ . . .
b′

n−→ Pj
b′

p−→ . . .
b′

q−→ e0

4 bi−→ is used as a generic notation for either 1−→ or 0−→.

Now i and j can be related in three different ways. For each
there is another cycle of positive weight where Pi and Pj
are regrouped into a block of successive activations P+.5

• If i < j, we take e0
b′

0−→ . . .
b′

k−→ Pi→j
b′

p−→ . . . e0.
• If i > j, we take Pi

b′
l−→ Qk

b′
m−−→ . . .

b′
n−→ Pj→i.

• If i = j, since c has a positive weight, one of the
following two cycles has a positive weight:
– e0

b′
0−→ . . .

b′
k−→ Pi

b′
p−→ . . .

b′
q−→ e0, or

– Pi
b′

l−→ Qk
b′

m−−→ . . .
b′

n−→ Pi.
By iterating this result, we obtain a cycle of positive weight
of the form:

A+ b0−→ B+ b1−→ C+ b2−→ . . . bn−→ A+

where processes A,B,C, . . . are pairwise distinct.

Theorem 2. Let Lc be the size of the longest elementary
cycle in the communication graph. A real-time model
satisfying definition 1 is unitary discretizable if and only if,

1) all u-cycles of the communication graph are cycles or
balanced u-cycles, or τmax = 0, and

2) there is no balanced u-cycle in the communication graph
or τmin = τmax, and

3) there is no cycle in the communication graph or

Tmin ≥ Lcτmax. (CD)

Proof. The proof is by contraposition in both directions.
Using lemma 1 we also have ∃UD⇐⇒ ∃PC. Therefore we
will prove the following result which is logically equivalent
to theorem 2.

∃PC⇐⇒

∣∣∣∣∣∣∣
∃c ∈ C and CD, or,
∃c ∈ bC and τmin < τmax, or,
∃c ∈ uC \ (C ∪ bC) and τmax > 0

(C1)
(C2)
(C3)

1) C1 or C2 or C3 =⇒ ∃PC: We show that each
condition C1, C2, or C3, allows the construction of a trace
that contains a cycle of positive weight.

a) C1: Assume that

∃c ∈ C and Tmin < Lcτmax (C1)

Consider one of the longest cycles of the communication
graph: P0 ⇔ P1 ⇔ . . . ⇔ PLc

⇔ P0. We define
ε = (Lcτmax − Tmin)/Lc > 0 and E a trace where for
all events e the transmission delay is as long as possible,
∀e ∈ E , τ(e, ) = τmax, and

t(e′0) = 0
t(e0) = Tmin

t(ei+1) = t(ei)− (τmax − ε), ∀0 ≤ i ≤ Lc

with PLc+1 = P0. We thus have

t(eLc+1) = t(e′0) + Tmin − Lc(τmax − ε) = t(e′0),

5Pi→j denotes the successive activations of P between Pi and Pj .
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e′0 e0

e1
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Fig. 2: Counterexample e′0 1−→ e0
0−→ e1

0−→ e2
0−→ e3

0−→ e′0,
based on the cycle A⇔ B ⇔ C ⇔ D ⇔ A.

that is, eLc+1 = e′0 and we have ∀0 ≤ i ≤ Lc

Pi+1 ⇒ Pi

t(ei) < t(ei+1) + τ(ei+1, Pi).

Hence e′0 1−→ e0 and ∀0 ≤ i ≤ Lc we have ei 0−→ ei+1. This
is a cycle of weight 1. Figure 2 gives an example of such a
trace for four processes.

b) C2, C3: Suppose

∃c ∈ bC and τmin < τmax, or, (C2)
∃c ∈ uC \ (C ∪ bC) and τmax > 0. (C3)

In both cases c is a chain of processes P0, . . . , Pn, P0. Let p
be the number of ⇒ edges, and q the number of ⇔ edges.
One can assume without loss of generality that q ≥ p > 0.
Note that p > 0, otherwise c would be a cycle, contradicting
the assumptions c ∈ bC or c ∈ uC \ (C ∪ bC).

Let ε = (qτmax − pτmin)/q. In both cases, ε > 0. Indeed
if c ∈ bC we would have p = q but also 0 ≤ τmin < τmax,
and, conversely, if c ∈ uC \ (C ∪ bC) we have q > p and
τmax > 0. Finally, let E be a trace where t(e0) = 0 and
∀0 ≤ i ≤ n,

Pi ⇒ Pi+1 =⇒
{
t(ei+1) = t(ei) + τmin

τ(ei, Pi+1) = τmin

Pi ⇔ Pi+1 =⇒
{
t(ei+1) = t(ei)− (τmax − ε)
τ(ei+1, Pi) = τmax,

with Pn+1 = P0. We thus have

t(en+1) = t(e0) + pτmin − q(τmax − ε) = t(e0),

that is, en+1 = e0 and ∀0 ≤ i ≤ n

Pi ⇒ Pi+1 =⇒ t(ei+1) ≥ t(ei) + τ(ei, Pi+1)
Pi ⇔ Pi+1 =⇒ t(ei) < t(ei+1) + τ(ei+1, Pi).

Hence

Pi ⇒ Pi+1 =⇒ ei
1−→ ei+1

Pi ⇔ Pi+1 =⇒ ei
0−→ ei+1.

This is a cycle of weight p > 0. Figure 3 gives an example
of such a trace for five processes.

A

B

C

D

E

e0

e1

e2

e3

e4

τmin

τmin

τmax

τmax

τmax

Fig. 3: Counterexample e0
1−→ e1

1−→ e2
0−→ e3

0−→ e4
0−→ e0

based on the u-cycle A⇒ B ⇒ C ⇔ D ⇔ E ⇔ A.

2) ∃PC =⇒ C1 or C2 or C3: Suppose that there
exists a trace that contains a cycle of positive weight. By
proposition 2, there exists a trace with a cycle of positive
weight of the form:

x = A+ b0−→ B+ b1−→ C+ b2−→ . . . bn−→ A+ (2)

where the processes A,B,C, . . . are pairwise distinct. For
two processes A and B, by proposition 2, a transition
Ai

0−→ Bj corresponds to a communication channel A⇔ B,
and a transition Ai 1−→ Bj corresponds to a communication
channel in the opposite direction, A ⇒ B, with the
possibility that A = B for activations of the same process.
Since the processes of (2) are pairwise distinct, the sequence
of processes c = A,B,C . . . , A forms a u-cycle in the
communication graph.

We define x = e0
b0−→ e1

b1−→ . . . bn−→ en
bn+1−−−→ e0 to refer

to the particular activation ek, and Pk as the corresponding
process. Depending on the nature of c there are three cases
to consider (see figure 4):

a) c ∈ C (cycle): Note that according to definition 1
we have x 1−→ y =⇒ t(x) < t(y). This implies that a cycle of
positive weight cannot contain only 1−→ edges. Furthermore
if a cycle of positive weight is based on a cycle of
the communication graph, an edge 1−→ can only reflect
subsequent activations of the same process. Otherwise 0−→
and 1−→ edges correspond to communications in opposite
directions and c cannot be a cycle.

Let p be the number of 1−→ edges and q the number of 0−→
edges in trace x. We have by definition of 1−→ and 0−→ that

ei
1−→ ei+1 =⇒ t(ei+1) ≥ t(ei) + TPi

i

≥ t(ei) + Tmin, and

ei
0−→ ei+1 =⇒ t(ei+1) > t(ei)− τ(ei+1, Pi)

≥ t(ei)− τmax.

Following the cycle we have t(e0) + pTmin − qτmax < t(e0)
and hence qτmax > pTmin. By definition Lc is the maximum
length of a cycle thus Lc ≥ q and x is a cycle of positive
weight, that is, p ≥ 1. Hence,

Lc τmax ≥ qτmax > pTmin ≥ Tmin

which violates CD. Therefore C1 holds.



c ∈ uC
c ∈ C

c 6∈ C
c ∈ bC

c 6∈ bC

=⇒ Tmin < LCτmax

=⇒ τmin < τmax

=⇒ τmax > 0

(C1)

(C2)

(C3)

Fig. 4: Proof scheme for ∃PC =⇒ C1 or C2 or C3. There are three possible topologies for a u-cycle c,
each implies one of the conditions C1, C2, or C3.

b) c ∈ bC (balanced u-cycle): Let p be the number
of edges ei 1−→ ei+1 in x such that Pi 6= Pi+1 (message
transmission), r the number of edges ei 1−→ ei+1 such that
Pi = Pi+1 (subsequent activations of the same process,
denoted here by 1−→N ), and q the number of edges 0−→. By
definition of 1−→, 1−→N , and 0−→, we have

ei
1−→ ei+1 =⇒ t(ei+1) ≥ t(ei) + τ(ei, Pi+1)

≥ t(ei) + τmin

ei
1−→N ei+1 =⇒ t(ei+1) ≥ t(ei) + TPi

i

≥ t(ei) + Tmin

ei
0−→ ei+1 =⇒ t(ei+1) > t(ei)− τ(ei+1, Pi)

≥ t(ei)− τmax.

Along the cycle x: t(e0) + pτmin + rTmin − qτmax < t(e0).
Since c ∈ bC, we also have p = q, thus p(τmin − τmax) +
rTmin < 0 which imposes τmin < τmax. Therefore C2 holds.

c) c ∈ uC \ (C ∪ bC) (general u-cycle): In the same
notation, we also have t(e0)+pτmin +rTmin−qτmax < t(e0),
that is, pτmin + rTmin − qτmax < 0. Since τmin, Tmin ≥ 0
and p, q, r ≥ 0 this implies τmax > 0. Hence C3 holds.

B. The Quasi-Synchronous Abstraction
Theorem 3. A real-time model satisfying definition 1 is
quasi-synchronous (condition QS) if and only if,

1) the conditions of theorem 2 hold, and
2) the following condition holds,

2Tmin + τmin ≥ Tmax + τmax. (QT)

Proof. Consider a pair of communicating processes A and
B where A⇔ B.

To show that QT =⇒ QS, assume that QS does not hold,
that is, there exist i and j such that

f(Bj) < f(Ai) < f(Ai+2) ≤ f(Bj+1) or,
f(Aj) ≤ f(Bi) < f(Bi+2) < f(Aj+1).

In the first case we have Bj → Ai and Bj+1 6→ Ai+2.
Then, from definition 4,

t(Ai) ≥ t(Bj) + τ(Bj , A)
t(Ai+2) < t(Bj+1) + τ(Bj+1, A)
t(Bj+1) = t(Bj) + TBj
t(Ai+2) = t(Ai) + TAi + TAi+1

From definition 3 we obtain:
t(Ai) ≥ t(Bj) + τmin

t(Ai+2) < t(Bj+1) + τmax
t(Bj+1) ≤ t(Bj) + Tmax
t(Ai+2) ≥ t(Ai) + 2Tmin

Giving

t(Bj) + τmin + 2Tmin ≤ t(Ai) + 2Tmin

≤ t(Ai+2)
< t(Bj+1) + τmax

≤ t(Bj) + Tmax + τmax

Hence 2Tmin + τmin < τmax + Tmax, that is QT.

The second case is similar. We have Bi 6→ Aj and
Bi+2 → Aj+1. Then, from definition 4,

t(Aj) < t(Bi) + τ(Bi, A)
t(Aj+1) ≥ t(Bi+2) + τ(Bi+2, A)
t(Aj+1) = t(Aj) + TAj
t(Bi+2) = t(Bi) + TBi + TBi+1

From definition 3 we obtain:
t(Aj) < t(Bi) + τmax

t(Aj+1) ≥ t(Bi+2) + τmin
t(Aj+1) ≤ t(Aj) + Tmax
t(Bi+2) ≥ t(Bi) + 2Tmin

Giving

t(Aj) + 2Tmin + τmin < t(Bi) + τmax + 2Tmin + τmin

≤ t(Bi+2) + τmin + τmax

≤ t(Aj+1) + τmax

≤ t(Aj) + Tmax + τmax

Hence 2Tmin + τmin < τmax + Tmax, that is QT.

On the other hand, if QT does not hold:

2Tmin + τmin < Tmax + τmax,

figure 5 shows a trace where

Bj
1−→ Ai

1−→ Ai+1
1−→ . . . 1−→ Ai+n

0−→ Bj+m−1.

Then a discretization f such that f(Bj) < f(Ai) and
f(Ai+2) = f(Bj+1) is a valid unitary discretization which
violates QS.
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Fig. 5: Witness for QS =⇒ QT.

Appendix C
Multirate Systems

In this section we extend our results to multirate systems.
Definition 1 becomes:

Definition 8 (Synchronous Real-Time Model). A syn-
chronous real-time model is a finite set of processes P, where
for each process P , the delay TP between two successive
activations is bounded.

0 ≤ TPmin ≤ TP ≤ TPmax. (RP)

Values are transmitted between processes with a delay τ ∈ R,
bounded by τmin and τmax.

0 ≤ τmin ≤ τ ≤ τmax. (RT)

We still assume global bounds on the transmission delay.
This generalization requires very few changes to the results.
Theorem 2 becomes

Theorem 4. A real-time model satisfying definition 1 is
unitary discretizable if and only if,

1) all u-cycles of the communication graph are cycles or
balanced u-cycles, or τmax = 0,

2) there is no balanced u-cycle in the communication
graph, or τmin = τmax,

3) there is no cycle in the communication graph, or for
all cycle c

T cmin ≥ Lcτmax (CD)

where Lc = size(c), and T cmin = min{TPmin | P ∈ c}.

Proof. The proof is similar to that of theorem 2. The only
difference is the treatment of cycles. Condition C1 becomes:

∃c ∈ C such that T cmin < Lcτmax (C1)

Assume that C1 holds. Let c be such a cycle

c = P0 ⇔ P1 ⇔ . . .⇔ PLc
⇔ P0

where P0 is the process with the smallest lower bound in c,

TP0
min = T cmin.

Following the proof of theorem 2, we show it is possible to
build a trace with a cycle of positive weight based on c. Let
ε = (Lcτmax − Tmin)/Lc > 0 and E be a trace where for

all events ei the transmission delay is as long as possible,
∀e ∈ E , τ(e, ) = τmax, and

t(e′0) = 0
t(e0) = TP0

min = T cmin

t(ei+1) = t(ei)− (τmax − ε), ∀0 ≤ i ≤ Lc
with PLc+1 = P0. We thus have

t(eLc+1) = t(e′0) + T cmin − Lc(τmax − ε) = t(e′0),

that is, eLc+1 = e′0 and we have ∀0 ≤ i ≤ Lc,

Pi+1 ⇒ Pi

t(ei) < t(ei+1) + τ(ei+1, Pi).

which is a cycle of weight 1.
On the other hand suppose there exists a cycle of positive

weight of the form

x = A+ b0−→ B+ b1−→ C+ b2−→ . . . bn−→ A+ (3)

such that the sequence c = A,B,C . . . , A is a cycle.
Let p be the number of 1−→ edges and q the number of 0−→

edges in trace x. If a cycle of positive weight is based on
a cycle of the communication graph, an edge 1−→ can only
reflect subsequent activations of the same process. Hence
Lc = size(c) = q. We have by definition of 1−→ and 0−→, that

ei
1−→ ei+1 =⇒ t(ei+1) ≥ t(ei) + TPi

i

≥ t(ei) + TPi
min

≥ t(ei) + T cmin, and

ei
0−→ ei+1 =⇒ t(ei+1) > t(ei)− τ(ei+1, Pi)

≥ t(ei)− τmax.

Following the cycle we have t(e0) + pT cmin − qτmax < t(e0)
and hence qτmax > pTmin. Since x is a cycle of positive
weight, p ≥ 1. Hence,

Lc τmax = qτmax > pT cmin ≥ T cmin

which violates CD. Therefore C1 holds.

We now apply the preceding definitions and results on
unitary discretizations to generalize the quasi-synchronous
model to multi-rate systems after the work of [28], [32].

A discrete-time model is termed n/m-quasi-synchronous
if there are no more than n activations of one process
between m successive activations of another. Since any
given process only detects the activations of another by re-
ceiving the corresponding messages, the quasi-synchronous
condition corresponds to two constraints. For any two
processes, 1) there are no more than n activations be-
tween m message receptions, and 2) there are no more
than n message receptions between m activations. This
definition can be formalized using unitary discretizations.

Definition 9 (n/m-Quasi-Synchronous Model). A real-
time model is n/m-quasi-synchronous with n ≥ m > 1 if,
for every trace t,



1) it has a unitary discretization f, and
2) for processes A⇔ B, there is no chain of activations

of length greater than n, that is, no i and j such that

f(Bj) < f(Ai) < · · · < f(Ai+n) ≤ f(Bj+m−1) or,
f(Aj) ≤ f(Bi) < · · · < f(Bi+n) < f(Aj+m−1).

(QS)

Remark 3. Definition 7 of section IV is a particular case
of definition 9 with n = m = 2.

Theorem 5. A real-time model satisfying definition 1 is
n/m-quasi-synchronous (condition QS) if and only if,

1) the conditions of theorem 2 hold, and
2) the following conditions hold,

nTAmin + τmin ≥ (m− 1)TBmax + τmax (QT1)
nTBmin + τmin ≥ (m− 1)TAmax + τmax (QT2)

QT1 ensures that there are no more that n activations of
A between m message receptions from B, and QT2 ensures
that there are no more than n message receptions from B
between m activations of A.

Proof. The proof follows that of theorem 3. For n ≥ m > 1,
consider a pair of communicating processes A and B where
A⇔ B. To show that QT1 and QT2 =⇒ QS, assume that
QS does not hold, there then exist i and j such that

f(Bj) < f(Ai) < · · · < f(Ai+n) ≤ f(Bj+m−1) or,
f(Aj) ≤ f(Bi) < · · · < f(Bi+n) < f(Aj+m−1).

In the first case we have Bj → Ai and Bj+m−1 6→ Ai+n.
Then, from definitions 3 and 4 we obtain:

t(Ai) ≥ t(Bj) + τmin
t(Ai+n) ≤ t(Bj+m−1) + τmax

t(Bj+m−1) ≤ t(Bj) + (m− 1)TBmax
t(Ai+n) ≥ t(Ai) + nTAmin

Giving

t(Bj) + τmin + nTAmin ≤ t(Ai) + nTAmin

≤ t(Ai+n)
< t(Bj+m−1) + τmax

≤ t(Bj) + (m− 1)TBmax + τmax

Hence nTAmin + τmin < τmax + (m− 1)TBmax, that is QT1.

The second case is similar. We have Bi 6→ Aj and
Bi+n → Aj+m−1. Then, from definitions 3 and 4 we obtain:

t(Aj) ≤ t(Bi) + τmax
t(Aj+m−1) ≥ t(Bi+n) + τmin
t(Aj+m−1) ≤ t(Aj) + (m− 1)TAmax

t(Bi+n) ≥ t(Bi) + nTBmin

Giving

t(Aj) + nTBmin + τmin < t(Bi) + τmax + nTBmin + τmin

≤ t(Bi+n) + τmin + τmax

≤ t(Aj+m−1) + τmax

≤ t(Aj) + (m− 1)TAmax + τmax

A . . .

B . . .

n times

m times

Fig. 6: Maximal overwrites and oversamplings.

Hence nTBmin + τmin < τmax + (m− 1)TAmax, that is QT2.

Conversely, if either of the conditions QT1 or QT2
does not hold, figure 7 shows traces and valid unitary
discretizations that violate QS.

A classic property of the quasi-synchronous abstraction
is the existence of bounds on the numbers of successive
overwrites (message losses) and oversamplings (message du-
plications) [6, §3.2.3]. These properties follow directly from
the n/m-quasi-synchronous model (definition 7). Figure 6
shows the worst acceptable case: a chain of n activations of
a process A between two successive activations of another
process B and then no activation of A before m − 1
activations of B. This trace respects QS.

Proposition 4 (Overwrites, Oversamples). The maximum
number of successive overwrites or oversamplings in an
n/m-quasi-synchronous system is n− 1.

Proof. Consider a pair of processes A and B such that
A ⇒ B and A ⇔ B. The proof is straightforward given
definition 5 and the worst acceptable case shown in figure 6:

Bj → Ai → Ai+1 → . . .→ Ai+n−1 → Bj+1.

For the maximum number of overwrites, the n−1 messages
sent between Ai and Ai+n−2 are overwritten by the
message sent at Ai+n−1 which is received by B at Bj+1.
Symmetrically, for the maximum number of oversamplings,
the n − 1 activations of A between Ai+1 and Ai+n−1
oversample the value sent by B at Bj which is already
received by A at Ai.
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Fig. 7: Witness for QS =⇒ (QT1 and QT2) and the associated discretizations.
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(a) Voter
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(b) Daisy chain
Tmin ≥ 2τmax

A B C

D E F

(c) Star
Tmin ≥ 2τmax

A B C

D E F

(d) Unidirectional ring
Tmin ≥ 6τmax

Fig. 8: Some examples of allowed communication topologies and associated timing constraints.
In all these cases, condition 2Tmin + τmin ≥ Tmax + τmax holds.
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(a) u-cycle
τmax = 0

A B C

D E F

(b) b-cycle
τmax = τmin

A B C

D E

(c) Cycle composition
τmax = 0

A B C

D E F

(d) Bidirectional ring
τmax = 0

Fig. 9: Some examples of forbidden communication topologies and associated timing constraints.
In each of these cases, there is more than one path between two processes.


	Introduction
	The Real-time Model
	The Discrete-time Model
	Relating Real time and Discrete time

	Traces and Causality
	Unitary Discretization
	Discretizing general systems
	Recovering Soundness

	The Quasi-Synchronous Abstraction
	Related Work
	Conclusion
	References
	Appendix A: Transmissions and the Happened Before Relation
	Appendix B: Detailed Proofs
	Unitary Discretization
	C1 or C2 or C3 implies PC
	PC implies C1 or C2 or C3

	The Quasi-Synchronous Abstraction

	Appendix C: Multirate Systems

