
Programming Mixed Music in ReactiveML

Guillaume Baudart
École normale supérieure de Cachan

Antenne de Bretagne
DI, École normale supérieure

Guillaume.Baudart@ens-cachan.org

Louis Mandel
Univ. Paris-Sud 11

DI, École normale supérieure
INRIA Paris-Rocquencourt

Louis.Mandel@lri.fr

Marc Pouzet
Univ. Pierre et Marie Curie

DI, École normale supérieure
INRIA Paris-Rocquencourt

Marc.Pouzet@ens.fr

Abstract
Mixed music is about live musicians interacting with electronic
parts which are controlled by a computer during the performance. It
allows composers to use and combine traditional instruments with
complex synthesized sounds and other electronic devices. There
are several languages dedicated to the writing of mixed music
scores. Among them, the Antescofo language coupled with an
advanced score follower allows a composer to manage the reactive
aspects of musical performances: how electronic parts interact with
a musician. However these domain specific languages do not offer
the expressiveness of functional programming.

We embed the Antescofo language in a reactive functional pro-
gramming language, ReactiveML. This approach offers to the com-
poser recursion, higher order, inductive types, as well as a sim-
ple way to program complex reactive behaviors thanks to the syn-
chronous model of concurrency on which ReactiveML is built.
This article presents how to program mixed music in ReactiveML
through several examples.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Concurrent, distributed, parallel languages; H.5.5 [Infor-
mation Interfaces and Presentation]: Sound and Music Computing.

Keywords Synchronous Programming; Language Embedding;
Mixed Music; Live Coding.

1. Introduction
Technical progresses since the 1950’s have led composers to write
music mixing live performers with electronic parts. At first, per-
formers simply followed a pre-registered magnetic band. But the
advances in computing rapidly allowed real interaction between
musicians and electronic parts.

Developed at IRCAM, Antescofo [5]1 is a state-of-the-art score
following system dedicated to mixed music. Since 2008, Antescofo
has been used in the creation of more than 40 original mixed elec-
tronic pieces by world renowned artists and ensembles, including

1
http://repmus.ircam.fr/antescofo

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FARM ’13, September 28, 2013, Boston, MA, USA.
Copyright c� 2013 ACM 978-1-4503-2386-4/13/09. . . $15.00.
http://dx.doi.org/10.1145/2505341.2505344

Listening Machine

t
e
m
p
o

p
o
s
i
t
i
o
n

control
messages

signal

Sequencer

Antescofo
score

Audio

Antescofo

Figure 1. Architecture of the Antescofo system. Continuous arrow
represent pre-treatment, and dotted ones real-time communications

Pierre Boulez, Philippe Manoury, Marco Stroppa, New York Phil-
harmonics, Berlin Philharmonics, and the Radio France Orchestra.

Figure 1 describes the organization of the Antescofo system. It
is composed of two distinct subsystems: a listening machine and a
sequencer. During a performance, the listening machine estimates
the tempo (i.e., execution speed) and the position of the live per-
formers in the score. The role of the sequencer is to use these infor-
mation to trigger electronic actions by sending control messages to
a music programming environment. e.g., Max/MSP.2 Then, the en-
vironment uses these messages to handle complex sound synthesis,
manage lights, etc.

The language of Antescofo [9] is a descriptive language inspired
by classical western music notation: a score is an interleaving of
instrumental notes and electronic actions. An original aspect of
this language is that it specifies synchronization and error-handling
strategies for the electronic actions. It means that during the perfor-
mance, depending on the tempo variations and the errors made by
the musician or the listening machine, the sequencer will react in a
way which is defined by the composer.

The sequencer of Antescofo is a synchronous reactive system:
it continuously reads inputs from the listening machine, produces
outputs to the musical environment and is subject to the strong
timing requirement related to ear tolerance (typically 30 ms). Syn-
chronous languages [2] have been invented and are used widely3

for programming a wide range of critical control software: on board
control of trains and track interlocking, fly-by-wire and cockpit dis-
plays for planes, etc. Therefore, they would have been well suited
for programming the sequencer. But, to ensure statically that pro-
grams execute in bounded time and memory, synchronous lan-

2
http://cycling74.com/

3
http://www.esterel-technologies.com

http://repmus.ircam.fr/antescofo
http://cycling74.com/
http://www.esterel-technologies.com

guages like Lustre and Esterel intentionally forbid the dynamic cre-
ation of processes which is a feature of the Antescofo language. To
overcome this limitation, we have implemented an Antescofo se-
quencer in ReactiveML [1], an extension of the functional language
OCaml4 with synchronous parallelism. Note that we are interested
in the language and the sequencer, the link with live musicians still
relies on the actual Antescofo listening machine.

Contribution of the Paper The main contribution of this paper
is to show, through a collection of examples, the benefit of the
embedding of Antescofo in ReactiveML for programming mixed
music. This embedding combines the expressiveness of the two. It
facilitates the creation process for the composer by using higher-
order combinators. It can be used to prototype new programming
constructs for Antescofo. In all our experiments, response times
were less than the reaction time of human ear, using the current
version of the ReactiveML compiler and run-time.

The paper is organized as follows. Section 2 presents Reac-
tiveML through a simple library for electronic music. In Section 3,
we introduce the main features of the Antescofo language. Then,
Section 4 illustrates our approach on a complete example. In Sec-
tion 5, we show how this work can be used to design new kinds of
interactions between a live performer and electronic parts. Related
work is discussed in Section 6 and we conclude on Section 7.

The code presented in the article is available on a companion
web site: http://reactiveml.org/farm13. Links to music or
video demos are indicated with the symbol ✏.

2. Music in ReactiveML
ReactiveML [17] is a synchronous reactive language built as an
extension of the functional programming language OCaml. There-
fore, following the work of Hudak [12] we can easily define musi-
cal structures, in a functional programming style.

This section presents the language ReactiveML and its concur-
rency model through a simple music library.

2.1 Music data types
Traditionally, in western music, a melody is a sequence of notes,
where a note is a sound event characterized by a pitch and a
duration. Notes can be defined with the following types.

type pitch_class =

| A | B | C | D | E | F | G

| As | Bs | Cs | Ds | Es | Fs | Gs

| Af | Bf | Cf | Df | Ef | Ff | Gf

type octave = int

type pitch = pitch_class * octave

type dur = float

type note = dur * pitch

The pitch is represented by a pair (pitch_class, octave),
where pitch_class denotes one of the twelve semi-tones, e.g.,
A, A#, A[, B, B#..., and octave is an integer. For instance (A,4)

denotes the famous A 440Hz. Here, as in Hudak’s work, As stands
for A sharp and Af for A flat.

A classic melody is just a sequence, or list, of notes. For in-
stance, Figure 2 presents the theme of a traditional French musical
round: Frère Jacques and the beginning of its representation in our
data structure.

It is often convenient to treat pitches as integers. Functions
int_of_pitch and pitch_of_int convert a symbolic pitch,
e.g., (A,4) to an integer and vice versa (one can, for example,
associate the corresponding MIDI note, e.g., A4 = 69).

4
http://caml.inria.fr

let jacques =
[1.0, (F,4); 1.0, (G,4); 1.0, (A,4); 1.0, (F,4);
1.0, (F,4); 1.0, (G,4); 1.0, (A,4); 1.0, (F,4);
1.0, (A,4); 1.0, (Bf,4); 2.0, (C,5); ...]

44
!

!

"

"

$

$

$#

$#

#
#

#

#

#5

44
!

!

"

"

$

$

$#

$#

#
#

#

#

#5

Figure 2. The traditional French musical round Frère Jacques and
the beginning of its representation in our data structures.

Now that we can represent musical structures, we write func-
tions to manipulate them. For instance, the following defines func-
tions to transpose a sequence.5

let move_pitch inter p =

pitch_of_int ((int_of_pitch p) + inter)

val move_pitch: int -> pitch -> pitch

let transpose inter sequence =

List.map

(fun (d, p) -> d, (move_pitch inter p))

sequence

val transpose: int -> note list -> note list

The function move_pitch transposes a symbolic pitch by an inter-
val inter in semi-tones. To transpose an entire melody, we use the
higher-order function List.map from the standard OCaml library
that applies move_pitch to every note in a sequence.

2.2 Time in ReactiveML
ReactiveML is a synchronous language based on the reactive model
introduced by Boussinot [4]. It relies on the notion of a global
logical time. Time is viewed as a sequence of logical instants.
Regular OCaml functions are considered to be instantaneous, i.e.,
when called it returns its result in the very same instant. In addition,
we can define processes that may last over several logical instants.
It is introduced by the keyword process.

To start with, consider the programming of a simple countdown.
The following program awaits a given amount of time value given
in seconds.

let process countdown value =

let deadline = Unix.gettimeofday () +. value in

while Unix.gettimeofday () < deadline do

pause

done

val countdown: float -> unit process

First, the date of the deadline is computed using the function
gettimeofday of the Unix module6. Then, while the current date
if less than the deadline, the process countdown awaits the next
logical instant (pause).

Communications between processes are made through signals
that are values characterized by a status defined at every logical
instant: present or absent. For instance, the following process im-
plement a standard timer similar to the Unix timer. It awaits a first

5 The type of the functions given in italic can be less general than the
one inferred by the compiler.
6
+., *., /. are floating-point addition, multiplication and division opera-

tors.

http://reactiveml.org/farm13
http://reactiveml.org/farm13/videos.html
http://caml.inria.fr

duration value, and then periodically emits the signal alarm with
a period interval.7

let rec process timer value interval alarm =

run (countdown value);

emit alarm ();

run (timer interval interval alarm)

val timer:

float -> float -> (unit, unit) event ->

unit process

The process timer is the interface between physical time and
synchronous logical time. This process is non-deterministic: the
number of logical instants between two emissions of the signal
alarm is not necessarily constant. Yet, if the duration of every
logical instant is much smaller than interval, the error between
two emission of the signal alarm will be negligible with respect to
the reaction time of the human ear, i.e., 30 ms [10]. The important
point is that we have isolated the source of non-determinism in the
program. Now, it is possible to express delays with respect to a
signal which is supposed to be periodic.

In the following, alarm denotes a global signal. It will be gen-
erated by the process timer described above, with period period

defined as a global constant. Using this signal, one can write a pro-
cess that does nothing but wait for a duration dur. For simplicity,
we assume in this section that all durations are expressed in sec-
onds:

let process wait dur =

let d = int_of_float (dur /. period) in

for i = 1 to d do

await alarm

done

val wait: dur -> unit process

This process waits for d occurrences of the signal alarm where d

is the duration dur expressed as a number of instants.
In ReactiveML, signals can also carry values. Different values

can be emitted during an instant, which is termed multi-emission.
In this case, when the signal is declared, a function defining how to
combine the multiple emissions must be provided. Here, we declare
a signal perf which accumulates in a list the multiple simultaneous
emissions.

signal perf default [] gather (fun x y -> x::y)

val perf: (note, note list) event

The default value is set to the empty list, [], and the gathering
function (fun x y -> x::y) appends the value x to the head of
the list y. This function is used to fold all the values emitted during
an instant into a list, starting from the default value.

Now, we write a process play which iteratively emits the notes
from a sequence sequence on the signal perf.

let rec process play sequence perf =

match sequence with

| [] -> ()

| ((dur, pitch) as note) :: s ->

emit perf note;

run (wait dur);

run (play s)

val play:

note list -> (note, note list) event ->

unit process

7 In order to avoid time shifting and floating point errors, the actual imple-
mentation is slightly different.

To play a note, the program sends it on the signal perf. Then,
it waits for the delay corresponding to the note duration before
sending the next note.

To produce sound, notes emitted on signal perf are sent to the
audio environment.

let process sender perf =

loop

await perf (notes) in

List.iter (fun n -> send_to_audio n) notes

end

val sender: (note, note list) event -> unit process

This process loops infinitely: it waits for an emission on signal
perf and sends all received notes to the audio environment, by
calling the function send_to_audio.

A musical performance is the parallel composition of the two
previous processes.✏

2.3 Parallel and Sequential Execution
Thanks to the notion of global logical time inherited from the syn-
chronous model, it is easy to combine processes. Two expressions
can be evaluated in sequence (e1; e2) or in parallel (e1 || e2).
In the latter case, they execute synchronously (or lockstep). There-
fore, they remain synchronous during an execution.

Imagine we want to double a voice one third higher (i.e., four
semi-tones). Of course, it is possible to write a function that takes
a list of notes and returns a new list of notes containing the two
voices. But, we can also use the deterministic parallel execution
provided by ReactiveML to play in parallel the voice and its trans-
position. This construct will be very useful to combine the musical
performance with other processes (see for instance Section 5.2).

let process double sequence =

run (play sequence) ||

run (play (transpose 4 sequence))

val double: note list -> unit process

In ReactiveML, processes are first class citizens. Thus, it is
possible to write higher order processes. For instance, the following
code delays the execution of a process p by a duration in seconds.

let process delayed p dur =

run (wait dur);

run p

val delayed: unit process -> dur -> unit process

Finally processes can be iterated with the classical constructs:
loop/end for an infinite loop, for/do/done for a finite sequential
loop and for/dopar/done for a finite parallel loop.

With these constructs, we are able to execute the round pre-
sented in Figure 2.✏ Four different voices play the theme in loop.
Each voice starts two measures, i.e., 8s after the previous one.

let process theme =

loop

run (play jacques)

end

val theme: unit process

let process round =

run theme ||

run (delayed theme 8.0) ||

run (delayed theme 16.0) ||

run (delayed theme 24.0)

val round: unit process

http://reactiveml.org/farm13/code/jacques.html
http://reactiveml.org/farm13/code/jacques.html

!44" # $#Voice

a0
group

a1 a2

0.5

1.0

e1 e2 e3

a3
1.0

Figure 3. Representation of an Antescofo score. Musical notes
correspond to the musician’s part and the rest to electronic actions.

This process can also be written with a parallel loop:

let process round =

for i = 0 to 3 dopar

run (delayed theme (float (i*8)))

done

val round: unit process

or, using a recursive process taking the number of voices as an
argument.

let rec process round nb_voices =

if nb_voices <= 0 then ()

else begin

run theme ||

run (delayed (round (nb_voices - 1)) 8.0)

end

val round: int -> unit process

We are now able to describe and execute electronic music in
ReactiveML. But what about mixed music?

3. Toward Mixed Music
Mixed music is about interaction between a live musician and elec-
tronic parts.✏ The Antescofo language [9] allows a composer to
specify electronic parts and how they interact with musicians dur-
ing a performance. This language is the result of a close collabora-
tion between composers and computer scientists. Figure 3 shows a
graphical representation of a very simple Antescofo score.

3.1 Relative Time in Music
In most classical western scores, durations and delays are expressed
relative to the tempo i.e., the execution speed expressed in beats per
minute (bpm). On the example of Figure 3, the duration of the first
two notes is set to 1.0 beat, i.e., a quarter note. If the current tempo
is 60 bpm it means 1s, but 0.5s if the tempo is 120 bpm. Musicians
are free to interpret a score with a moving tempo. Indeed, in classi-
cal western music, tempo is one of the most prominent degrees of
freedom for interpretation. It partially explains the huge difference
between a real interpretation by a live musician and an automatic
execution of the same score by a computer.

One of the main features of the Antescofo system is tempo in-
ference. During a performance, the listening machine decodes both
the position in the score and the execution speed. The tempo is not
estimated from the last duration alone but rather from all durations
detected since the beginning of the performance. In this way, the
listening machine adds some inertia to tempo changes which cor-
responds to the real behavior of musicians playing together [5, 15].

3.2 The Antescofo language
In this framework, the most basic electronic actions, called atomic
actions are simple control messages destined for the audio envi-
ronment. Unlike traditional musical notes, atomic actions are in-

stantaneous; they are not characterized by a duration but by the de-
lay needed before their activation. Moreover, delays between elec-
tronic actions, like note durations, can be specified in relative time.
Thus, electronic parts can follow the speed of the live performer as
a trained musicians would.

Sequences of electronic actions are linked to an instrumental
event, the triggering event. For instance, in Figure 3, action a0 is
bound to the first note with a delay of 0.0. When the first note is
detected, action a0 is sent immediately.

Actions can be regrouped into structures called groups. Groups
are treated as atomic actions and are bound to an instrumental event
and characterized by a delay. On the example of Figure 3, a group
containing a sequence of three actions is bound to event e2.

Furthermore, groups can be arbitrarily nested. It allows to faith-
fully capture the hierarchical structure of a musical piece. Actions
contained in a nested group are executed in parallel with the actions
following them in the embedding group, not in sequence.

A score can be described with the following types:

type score_event =

{ event : instr_event_label;

seq : sequence; }

and sequence = delay * asco_event list

and asco_event =

| Action of action

| Group of group

and action =

| Message of audio_message

| Signal of (unit, unit list) event

and group =

{ group_synchro: sync;

group_error: err;

group_seq: sequence }

and sync = Tight | Loose

and err = Local | Global | Causal | Partial

The type score_event represents a sequence of electronic
actions seq bound to an instrumental event event. A sequence is
just a list of electronic actions characterized by a delay relative to
the tempo (see Section 3.1).

Atomic actions can be either simple control messages destined
to the audio environment, Message, or classic ReactiveML signals
to control other processes, Signal. ReactiveML signals are useful
to couple the electronic accompaniment with other reactive pro-
cesses (see Section 5).

The problem is that during a performance, the computer is sup-
posed to act as a trained musician, following the other performers.
Thus, the specification of mixed music scores faces two major chal-
lenges:

• During a live performance a musician can make a mistake, or
worse, the listening machine may fail to recognize an event. In
both cases, an expected event is missing. But what happens to
actions bound to this event?

• Sometimes, a sequence of actions bound to an instrumental
event may last longer than the duration of the triggering event.
For instance, on our example, actions a2 and a3 should occur
after event e3 although they are triggered by event e2. In this
case, the question is: how should an electronic part synchronize
with instrumental event that occur during its execution?

http://reactiveml.org/farm13/videos.html#presentation

group

a0 a1

e1 e2

group local

group causal

a1a0

group global

a0 a1

group partial

e1X

e1X

e1X

e1X

�0

�1

�2

�2

�1 + �2 � �0

�1 + �2 � �0

a1

Figure 4. Illustration of the four error-handling attributes on a
simple score (on top). e1 and e2 represent instrumental events.
Suppose that e1 is missed and e2 is detected.

Error-handling and synchronization strategies depend very
much on the musical context. The Antescofo language proposes
solutions to reflect different musical behaviors. Groups are char-
acterized by two attributes [6], a synchronization attribute (see
Section 3.4) and an error handling attribute (see Section 3.3).

3.3 Error handling
The error-handling attribute defines the behavior of the group when
the expected triggering event is absent. There are several ways to
deal with errors depending on the musical context. We present here
four exclusive error handling strategies: Partial, Causal, Local
and Global. Figure 4 illustrates the four different behaviors.

The most basic accompaniment is perhaps a simple harmoniza-
tion of the musician’s voice. In this case, if a triggering event is
missed, electronic part must keep on going as if the error never oc-
curred. This is, for instance, the behavior of a pianist accompanying
a beginner. Thus, attributes Partial and Causal aim to preserve
a simple property: the future of a performance does not depend on
past errors.

Now, the question is: what about actions that should already
have been launched when the error was detected? If the error-
handling attribute is set to Partial, these actions are simply dis-
carded. On the other hand, if the error handling-attribute is set
to Causal, these actions are immediately launched. This strategy
could be useful if some actions are used to initialize an external
process, e.g., turn on the light.

Moreover, a group can be used to define a complex control unit,
e.g, parameters needed to synthesized the sound of a gong. Then,
the integrity of the group must be preserved. Thus, when an error is
detected, Global groups are launched with a zero delay, whereas
Local groups are completely ignored.

3.4 Synchronization Strategies
A composer is allowed to specify how actions contained in a group
will synchronize with instrumental events that occur during the ex-
ecution of the group. Currently, the language proposes two distinct
strategies: Tight and Loose.

If the synchronization attribute is set to Tight, every action con-
tained in the group is triggered by the most recent corresponding in-
strumental event. The nearest event is computed with respect to the
ideal timing of the score regardless of tempo changes. This strat-
egy is ideal when electronic parts and the musician must remain
as synchronous as possible, e.g., if an electronic voice is a simple
harmonization of the performer’s part. In the example of Figure 3,
if the group has a synchronization attribute set to Tight, actions
a2 and a3 will be triggered by e3 even though the entire group is
bound to the second instrumental event.

The strategy Loose allows the composer to define groups that,
once triggered, only synchronize with the tempo. Due to the inertia
of the tempo inference, an electronic action contained in such a
group and an instrumental event that seems to be simultaneous in
the score may be desynchronized during the performance. Indeed,
a performer may accelerate or decelerate between two events. This
strategy is used to preserve temporal relations between actions
contained in the group. For instance, it can be very useful when
the electronic part is treated as an independent background sound.

4. A First Example: The house of the rising sun

As a first example, let us take a classical folk song, The house of
the rising sun. The score is presented in Figure 5. In this example,
we want to define an electronic accompaniment which follows the
main theme played by a real musician.✏

First, we need to create and initialize the asco environment
that contains the instrumental score. This environment allows us to
manage inputs from the listening machine and the outputs destined
for the audio environment.

let asco = create_asco "rising_sun.asco" 120.

val asco: Ascolib.asco

To create the environment, we need the instrumental score of the fu-
ture performance, here "rising_sun.asco" and an initial tempo,
typically 120 bpm.

4.1 The basics
The accompaniment is roughly described in the score by a sequence
of chords: Am, C, D. . . bound to instrumental events. For instance,
the first chord is related to the second instrumental event, the
second to the fourth one and so on.

First, we need a symbolic description of chords. Like pitch
describe in Section 2.1, a chord is characterized by a pitch class:
A, C, D... and a color: major or minor.

type color = Maj | Min

type chord = pitch_class * color

We can define the bass line of our example as a sequence of
chords characterized by a delay:

let bass = [0.0, (A, Min); 2.0, (C, Maj); ...]

val bass: (delay * chord) list

Then, we need to turn this sequence of chords into a sequence
of electronic actions. Perhaps the most simple accompaniment is to
play only the roots of the bass line.

let root_of_chord chord octave =

let (pitch_class, color) = chord in

(pitch_class, octave)

val root_of_chord: chord -> octave -> pitch

http://reactiveml.org/farm13/videos.html#live_coding

!

!!!!

!!

!

!!
!

"44

#

#
$%&

$$%$ $ &

$$ $$$ $%

$%$$ $%$ $%

$%$ $$%$
$$ $%$%$% $

$ $%$%
$

''5

Am C D F Am C E

!

!!!!

!!

!

!!
!

"44

#

#
$%&

$$%$ $ &

$$ $$$ $%

$%$$ $%$ $%

$%$ $$%$
$$ $%$%$% $

$ $%$%
$

''5

Am C D F Am E Am

Figure 5. Score of the house of the rising sun (classical folk song)

let only_roots chords octave dur =

List.map

(fun (delay, chord) ->

let root = root_of_chord chord octave in

(delay, action_note (dur, root)))

chords

val only_roots:

(delay * chord) list -> octave -> dur -> sequence

Given an octave, the function root_of_chord returns the pitch
corresponding to the root of a chord. Then, the function only_roots
defines the sequence of electronic actions corresponding to the
roots of a sequence of chords, chords. Function action_note

converts a note into an atomic action destined for the audio envi-
ronment (a value Action message where the message contains
the characteristics of the note).

Remark that in Figure 5, no octave is specified on the score for
the bass. We choose to instantiate the bass with the octave set to 3
(i.e., the first root of the bass is set to A3 = 220 Hz) and the duration
to 2.0 beats which corresponds to the delay between two chords.

let roots = only_roots bass 3 2.0

val roots: sequence

The next thing to do is to build the link between the in-
strumental part and the electronic accompaniment. The process
link asco evt seq links a sequence of actions seq to an instru-
mental event evt, in the environment asco. This process waits for
the event to be detected or missed and it triggers the sequence. For
instance, on the example of Figure 5, the first chord is bound to the
second instrumental event. We can link the sequence roots to this
event to obtain a basic accompaniment.

let process basic_accomp =

run (link asco 2 roots)

val basic_accomp: unit process

If the performer does not play at constant speed, the accompa-
niment part may become desynchronized at some point. We can
easily avoid this behavior if we put the bass line inside a Tight

group (see Section 3.4). Moreover, it allows us to specify an error-
handling strategy for the accompaniment. In our case, if an instru-
mental event is missed we do not want to hear the associated chord.
Therefore we use the Partial strategy (see Section 3.3).

let process tight_accomp =

let g = group Tight Partial roots in

run (link asco 2 [(0.0, g)])

val tight_accomp: unit process

Here, the function group sync err seq is a simple constructor
for a group with attributes sync and err containing the sequence
of actions seq.

Note that the sequence bound to the second instrumental event
contains only one zero delay electronic action: the group that de-
fines the entire accompaniment. When this instrumental event is

detected, each chord of the accompaniment is linked to its closest
preceding instrumental event.

The last thing to do is to launch the listening machine and the
reactive accompaniment.

let process main =

run (init_asco asco);

begin

run (listener asco) ||

run (tight_accomp) ||

run (sender asco)

end

val main: unit process

It first initializes the environment. Then, the process listener
links the listening machine of Antescofo to the environment. In
parallel, it executes the accompaniment part, and sends it to the
audio environment sender asco.

4.2 Hierarchical structure
The harmonization defined above is a bit minimalist. One solution
could be to add several other voices following the previous method.
But we can do better.

In the original song, the accompaniment is made with arpeg-
gio over the bass line. Thanks to functional composition, such an
accompaniment is very easy to define.

First, we define the arpeggio style we want to apply:

let arpeggio chord octave =

let fond = root_of_chord chord octave in

let third =

match color with

| Min -> move_pitch 3 fond

| Maj -> move_pitch 4 fond

in

let fifth = move_pitch 7 fond in

let dur = 0.125 in

group Loose Local

[0.0, action_note (dur, fond);

0.625, action_note (dur, third);

0.125, action_note (dur, fifth);

0.125, action_note (dur, move_octave 1 fond);

0.125, action_note (dur, move_octave 1 third);

0.333, action_note (dur, move_octave 1 fond);

0.333, action_note (dur, fifth);]

val arpeggio : chord -> octave -> asco_event

An arpeggio corresponds to a Loose Local group. Thus, an
arpeggio related to a missing event is entirely dismissed (Local).
Besides, the synchronization strategy preserves the rhythm of
the arpeggio (Loose). The function move_octave is similar to
move_pitch and shift the pitch a given number of octaves.

Then, we can define the accompaniment by applying the func-
tion arpeggio to the bass line.

let arpeggio_bass chords octave =

List.map

(fun (delay, chord) ->

(delay, arpeggio chord octave))

chords

val arpeggio_bass:

(delay * chord) list -> octave -> sequence

As for the basic accompaniment, we encompass the resulting
sequence inside a Tight Partial group.

let process arpeggio_accomp =

let chords = arpeggio_bass bass 3 in

let g = group Tight Partial chords in

run (link asco 2 [0.0, g])

val arpeggio_accomp: unit process

This accompaniments illustrates the possibility of defining hierar-
chical structures in the score. Indeed, a global Tight group con-
tains a succession of arpeggios also defined as groups.

Finally we can replace the process tight_accomp in the main
process by arpeggio_accomp.

4.3 Live Coding
A benefit of the embedding of Antescofo in ReactiveML is the
ability to use its read–eval–print loop, called toplevel [16]. For
example, if we execute the example of the rising sun in the toplevel,
while it is playing, we can define a percussion part (we assume here
that the environment asco has been properly initialized and that
processes listener and sender are already running):

let process drums_accomp =

let rhythm = [0.0; 0.625; 0.5; 0.5; ...] in

let drums =

List.map (fun d -> d, action_beat) rhythm

in

let accomp = group Tight Partial drums in

run (link asco 2 [0.0, accomp])

val drums_accomp: unit process

First, we define a sequence of delays, rhythm, to represent
the rhythm of the drum part. Then, we turn this rhythm into a
sequence of electronic actions, drums. Here, action_beat is a
value Action message such that whenever the audio environment
receives one of these messages, it plays a drum beat. Finally the
result is a Tight Partial group containing the entire percussion
part bound to the second instrumental event.

Dynamically during the performance, we can ask that this part
be played:8

#run drums_accomp

This new voice will synchronize automatically with the others, even
if the triggering event already passed, thanks to the error-handling
strategy.

The expressiveness of the language and this dynamic aspect
allows us to build more complex interactions with musicians during
a performance.

Let us start with a simple example: a higher order process
killable that allows a process given as argument to be stopped
when a signal k is emitted. This process can be used to control the
execution of an accompaniment.

8 The #run is a toplevel directive which executes the process given as
argument in background.

let process killable k p =

do

run p

until k done

val killable:

(’a, ’b) event -> unit process -> unit process

The construction do/until is not a looping structure. It stops the
execution of its body when the signal is emitted.

Now, we can define a signal kill_drum in the toplevel:

signal kill_drum default () gather (fun x y -> ())

val kill_drum: (unit, unit) event

Instead of simply executing the percussion part, we execute it under
the supervision of the killable combinator.

#run (killable kill_drum drum_accomp)

Then, we can stop the drum part during the performance whenever
we want.

emit kill_drum ()

A more interesting example is to dynamically replace an ac-
companiment. First, let us define a signal replace on which we
can send the processes.

signal replace

default (process ())

gather (fun x y -> process (run x || run y))

val replace: (unit process, unit process) event

Note that if several emissions occur during the same instant, the
result will be the parallel composition of all the emitted processes.

Using the previous signal, we can define another higher order
process replaceable which executes processes emitted on the
signal replace.

let rec process replaceable replace p =

do

run p

until replace (q) ->

run (replaceable replace q)

done

val replaceable:

(unit process, unit process) event ->

unit process ->

unit process

First, the process replaceable launches the process p. Then,
whenever a process q is emitted on signal replace, the execution
of p stops and the process q is launched in turn.

For instance, we can use this feature to dynamically switch
between the different styles of accompaniment: basic, arpeggio or
drums.

#run (replaceable replace tight_accomp)

emit replace arpeggio_accomp

emit replace drums_accomp

The first instruction launches the basic accompaniment (see
Section 4.1). After a while, we can evaluate the second or the
third instruction to stop the electronic part and start the com-
plete accompaniment, arpeggio_accomp or the percussion part,
drums_accomp.

Thus, it is possible to compose, correct and interact with the
score during the performance.

! " " "" " " "" " """ ### ###
Figure 6. The melodic figure of Steve Reich’s Piano Phase

5. Reactive Interactions
The main advantage of embedding the Antescofo language in Re-
activeML is that the reactive accompaniment is now able to interact
with regular ReactiveML processes. Indeed, atomic actions of the
Antescofo language can be ReactiveML signals. This feature can
be used to program musical pieces where the interaction between
the performer and the accompaniment is more subtle than in the
previous examples.

5.1 Piano Phase

Piano Phase is a piece written in 1967 by the minimalist composer
Steve Reich. In this piece, two pianists, Alice and Bob, begin by
playing the melodic figure presented in Figure 6 over and over
again in unison. Then, one of the pianists, let us say Alice, begins
to play her part slightly faster than Bob. When Alice plays the
first note of the melody as Bob is playing the second note, they
resynchronize for a while, i.e., Alice slows down to play at the same
speed as Bob. The process is repeated. Alice accelerates again and
then resynchronizes when she plays her first note as Bob is playing
the third, then the fourth, etc.

If playing a simple melody at constant speed is relatively easy
(Bob’s part), Alice’s part which alternatively desynchronizes and
resynchronizes is much harder to achieve. Fortunately, we can
program this part as an electronic accompaniment of a pianist that
always plays at constant speed, here Bob.

The difficulty comes from the fact that we cannot easily com-
pute a priori when Alice and Bob will resynchronize. Even in the
original score, the composer only specifies bounds on the number
of iterations of the sequence during the desynchronization (between
four and sixteen times). How can we program this behavior?✏

Let us start with a simple process that plays the twelve note
melody at a given speed and sends a signal first_note each time
the first note is played. This code corresponds to Alice’s part.

let process melody evt n delay first_note =

let pattern =

group Tight Partial

[0.0, action_note (delay, (E,4));

0.0, action_signal first_note;

delay, action_note (delay, (Ff,4));

delay, action_note (delay, (B,4));

...]

in

let seq = [0.0, pattern]

let period = 12.0 *. delay in

run (link_and_loop asco evt period n seq)

val melody:

instr_event_label -> int -> delay ->

(unit, unit) event -> unit process

First, we define a simple Tight Partial group that contains
the melodic pattern presented in Figure 6. The second action,
introduced with the function action_signal sends the signal
first_note. Since the delay of this action is set to 0.0, the signal
will be emitted simultaneously with the first note of the sequence.
Then we compute the period of the pattern which is the dura-
tion of the twelve note melody, i.e., 12.0 *. delay. The process
link_and_loop evt n period seq links a sequence of elec-

tronic actions to an instrumental event evt in the environment and
loops n times over the sequence seq where each iteration is sepa-
rated by a delay period. If the period is shorter than the duration
of the pattern, the execution of the loop leads to overlapping exe-
cutions of the pattern.

The electronic part resynchronize when Bob plays the k-th note
of the sequence as the electronic part is playing the first note. Thus,
we need to track the k-th note of Bob’s part.

let process track k kth_note =

let ie = instr_event asco in

loop

await ie (evt) when (evt.index mod 12 = k) in

emit kth_note ()

end

val track:

int -> (unit, unit) event -> unit process

The function instr_event returns the signal carrying the output
of the listening machine. Whenever an instrumental event is de-
tected the index of the event in the score and the estimated tempo
is sent on this signal. The construct await ie (evt) when ...

binds the value received on ie to evt when the signal is emitted.
The execution can then continue only if the condition of the when

is satisfied. Here, if the detected position evt.index corresponds
to the k-th note of the sequence, the signal kth_note is emitted.

The last thing to do is to compare the emissions of the two
signals first_note and kth_note. If two emissions are close
enough it emits a signal sync. We can split this process into three
steps.

The process stamp s r asco associates a date to each emis-
sion of signal s and emits the result on a signal r.

let process stamp s r =

loop

await s;

emit r (date asco)

end

val stamp:

(unit, unit) event -> (delay, delay) event ->

unit process

The function date returns a date relative to the tempo. It corre-
sponds to the elapsed delay since the beginning of the performance.
Therefore the process stamp is responsive to the execution speed.

Then, the following process emits a signal sync each time the
last values emitted on signals r1 and r2 are approximately equal,
i.e., whenever the difference between the two values is less than a
constant eps.

let process spy r1 r2 sync eps =

loop

await (r1 \/ r2);

let t1 = last ?r1

and t2 = last ?r2 in

if abs_float (t1 -. t2) < eps then

emit sync ()

end

val spy:

(float, float) event -> (float, float) event ->

(unit, unit) event -> float -> unit process

The construct await (r1 \/ r2) awaits for one of the two sig-
nals r1 or r2 to be emitted. The expression last ?r1 evaluates to
the last value emitted on signal r1.

http://reactiveml.org/farm13/videos.html#piano_phase

Finally we can combine the previous processes to achieve the
desired behavior.

let process compare s1 s2 sync eps =

signal r1 default -.eps gather (fun x y -> x) in

signal r2 default -.eps gather (fun x y -> x) in

run (stamp s1 r1) ||

run (stamp s2 r2) ||

run (spy r1 r2 sync eps)

val compare:

(unit, unit) event -> (unit, unit) event ->

(unit, unit) event -> float -> unit process

This process, associates a date to each emission of signals s1 and
s2 taken as arguments. Results are emitted on signals r1 and r2,
respectively. Then, in parallel, we launch the process spy on r1

and r2, which emits the signal sync whenever an emission of s1
is close enough to an emission of s2. Since the process stamp is
responsive to the tempo, the tolerance represented by the constant
eps increases when the tempo decelerates and decreases when
it accelerates. It corresponds to the behavior of actual musicians
playing together.

Signals r1 and r2 are initialized in order to avoid initialization
conflicts. Indeed, if a signal has never been emitted, the last value
is the default value. Besides, multiple emissions are in this context
very unlikely since the entire sequence is played between two
emission of first_note or kth_note. Therefore, the combination
function chooses arbitrarily one of the values emitted during the
same instant.

Finally the entire piece is described by the following code.

let piano_phase sync desync first_note kth_note =

let rec process piano_phase k =

let ev = last_event asco in

run (melody ev 4 0.25 first_note);

emit desync ();

do

let ev = last_event asco in

run (melody (ev+1) 16 0.246 first_note) ||

run (track k kth_note) ||

run (compare first_note kth_note sync 0.05)

until sync done;

run (piano_phase ((k + 1) mod 12))

in

piano_phase 1

val piano_phase:

(unit, unit) event -> (unit, unit) event ->

(unit, unit) event -> (unit, unit) event ->

unit process

First, we play the sequence four times with the duration of the notes
set to 0.25 (a sixteenth note) i.e., synchronously with the pianist.
During this phase, the loop is linked to the last detected instrumen-
tal event: last_event asco. Then we emit the signal desync and
start to play the sequence slightly faster with the next instrumental
event (the duration of the notes is set to 0.246). In parallel, we
compare emissions of signals first_note and kth_note. When
they are close enough (here eps is set to 0.05), the signal sync is
emitted. Then we increment k and restart the whole process. The
number of iterations in the desynchronized mode is set to 16. After
that, if the two pianists have not resynchronized, the electronic part
stops.

5.2 Synchronous Observer
In ReactiveML, signals are broadcast communication channels.
Therefore, one can easily write synchronous observers [11], i.e.,
processes that listen to the inputs and outputs of a process without

altering its behavior. For instance, it is relatively easy to program a
graphical interface for the previous example. This section is simply
a proof of concept. We do not claim that this interface is especially
aesthetic.

Let us start with a very simple process that draws a rectangle
at a given position, Left, Right or Full, each time a signal s is
emitted.

let process draw_sig s pos color =

loop

await s;

draw_rect pos color;

run (wait asco 0.2);

Graphics.clear_graph ()

end

val draw_sig:

(unit, unit) event -> position -> color ->

unit process

The process wait waits for a duration specified relative to the
tempo of the environment. Thus, the interface is responsive to the
speed of the performance.

Then, we can write a graphic observer that reacts to the emis-
sion of two signals s1 and s2 by alternating between two modes
triggered by the signals m1 and m2.

let process graphic_observer s1 s2 m1 m2 =

loop

do

Graphics.clear_graph ();

run (draw_sig s1 Full Graphics.green)

until m1 done;

do

Graphics.clear_graph ();

begin

run (draw_sig s1 Left Graphics.blue) ||

run (draw_sig s2 Right Graphics.red)

end

until m2 done

end

val graphic_observer:

(unit, unit) event -> (unit, unit) event ->

(unit, unit) event -> (unit, unit) event ->

unit process

In the first mode, we draw a green rectangle on the entire graphic
window each time the signal s1 is emitted. When an emission of
signal m1 occurs, we switch to the second mode. Then, we draw a
blue rectangle on the left side of the window each time the signal
s1 is emitted, and a red rectangle on the right side if the signal s2
is emitted. Then, we restart the whole process when the signal m2
is emitted.

We can run the process graphic_observer with signals
first_note, kth_note, desync and sync in parallel with the
process piano_phase to obtain a simple graphical visualization of
Piano Phase. During the synchronous phase, green flashes indicate
that Alice, i.e., the electronic part, is playing the first note of the
sequence. During the desynchronization, we can see red flashes on
the right each time Bob, i.e., the actual pianist, is playing the k-th
note, and blue ones on the left each time the accompaniment part
is playing the first note.

6. Related Work
Comparison with the actual Antescofo language We focused
here on a subset of the actual language of Antescofo. However,
constructs that we left aside can be easily encoded using our li-
brary. For instance, an original control structure was added to the

language recently [8]. The construct whenever pred seq triggers
the sequence seq whenever the predicate pred is true. The predi-
cate may depend on variables, in this case, its value is re-evaluated
each time one of the variables is updated. Adding this feature to our
library was relatively easy as we now show.

First, variables become ReactiveML signals. Thus, it is possible
to react when a variable is updated.

let make_var value =

signal x default value gather (fun x y -> x)

The function make_var value creates a variable initialized with
the value value.

Then, we can easily define classic functions to set and access
the value of a variable.

let set x v = emit x v

let get x = last ?x

To set the value of a variable x, one need only to emit the desired
value v on the corresponding signal. We can access the current
value of a variable thanks to the function last ? (see Section 5.1).

Then, the following process waits for one of the variables con-
tained in the list vars to be updated.

let await_vars vars =

signal moved default () gather (fun x y -> ()) in

let rec await_par vars =

match l with

| [] -> ()

| x :: l ->

run (await_par l) ||

(await x; emit moved ())

in

do run (await_par vars) until moved done

The recursive process await_par waits in parallel for an update
of any variable. Whenever, an update occurs, the signal moved

is emitted. Thanks to the preemptive construct do/until, this
emission stops the execution of the process await_par.

Finally the whenever construct can be implemented as follows.

let rec process whenever pred vars p =

run (await_vars vars);

begin

if pred (List.map get vars) then run p ||

run (whenever pred vars p)

end

Whenever a variable contained in vars is updated, we re-evaluate
the predicate pred with the new values of the variables. If the
predicate is true we launch the process p, meanwhile we start
another instance of the process whenever. Thus, if the predicate is
true again while p is still running, we execute another process p in
parallel. Here a predicate is a function applied to a list of variables.

Thus, our approach shows that ReactiveML is well suited for
prototyping new features of the language.

Functional music The idea of composing music in a functional
framework is not new. One can cite the Haskore library [14], for
instance, which allows the expression and combination of musi-
cal structures in Haskell. More recently, Haskore and HasSound (a
library for audio processing in Haskell) merged into a single em-
bedded language: Euterpea [13]. Thus, this language handles both
high-level music representation and low-level audio processing.

We took a similar approach: embedding a domain-specific lan-
guage inside a functional language. Yet, our approach is not the
same as we embed a reactive language in a more expressive reactive
language. The major advantage, with respect to the embedding in a

general purpose functional language is that we can rely on the tem-
poral expressiveness, static analysis and runtime of ReactiveML.

Note that, we focused here on the control of a musical per-
formance. Audio synthesis is left to an audio environment such
as Max/MSP9 [20] or its open source counterpart PureData [21].
An interesting development would be to couple our work with a
functional language dedicated to audio synthesis like the language
Faust [19] or Euterpea.

Live coding There are several languages dedicated to musical
live coding. One can for instance cite Chuck [22] and SuperCol-
lider [18]. These languages allow live interactions with an audio
environment.

Our approach is completely different. Instead of creating an
entire domain specific language, we chose to embed it in a general
purpose one that already offers most of the features we need: higher
order, recursion, inductive data types. . . This choice enabled us to
implement our library in only a few hundred lines of code. Yet we
can already use it to specify relatively complex behavior.

Composing Mixed Music The Iscore project [7] proposes a tool
to compose interactive scores by specifying temporal constraints
between musical objects. Musical structures can be bound to exter-
nal events such as those occurring during a live performance. In this
approach, relations are computed statically before the performance.

Besides, there exist programming languages dedicated to elec-
tronic music. For instance, Max/MSP and PureData are graphical
languages that handle both the control treatment and signal pro-
cessing.

However, in both cases it is relatively difficult to program dy-
namically changing behavior which evolves with parameters in-
stantiated at performance time. For instance, the whenever con-
struct described above would be difficult to simulate. Moreover,
these languages are not functional.

7. Conclusion
In this paper we showed that a reactive functional language like
ReactiveML is well suited to the specification of reactive processes
such as a performance of mixed music. We believe that this em-
bedding is a powerful tool for programming mixed music scores as
well as prototyping new features for the Antescofo language.

Here, the link with a live performance is realized through the
listening machine of the Antescofo system. However, this is not
a real limitation. It could be interesting to adapt our framework
to other sensors like a gesture follower [3], a speech recognition
system or even combine these different input systems. Such an
application with multiple sensors and actuators fits into the kind of
systems for which synchronous languages like ReactiveML have
been designed.

Acknowledgment
The authors would like to thank Antoine Madet, Timothy Bourke,
Robin Morisset and Adrien Guatto for their kind and patient proof-
reading.

References
[1] G. Baudart, F. Jacquemard, L. Mandel, and M. Pouzet. A synchronous

embedding of Antescofo, a domain-specific language for interactive
mixed music. In Thirteen International Conference on Embedded
Software (EMSOFT’13), Montreal, Canada, Sept. 2013.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and
R. De Simone. The synchronous languages 12 years later. Proceedings
of the IEEE, 91(1):64–83, 2003.

9
http://cycling74.com/

http://cycling74.com/

[3] F. Bevilacqua, B. Zamborlin, A. Sypniewski, N. Schnell, F. Guédy,
and N. Rasamimanana. Continuous realtime gesture following and
recognition. In Gesture in embodied communication and human-
computer interaction, pages 73–84. Springer, 2010.

[4] F. Boussinot. Reactive C: An extension of C to program reactive
systems. Software: Practice and Experience, 21(4):401–428, 1991.

[5] A. Cont. Antescofo: Anticipatory synchronization and control of
interactive parameters in computer music. In International Computer
Music Conference, North Irland, Belfast, Aug. 2008.

[6] A. Cont, J. Echeveste, J.-L. Giavitto, and F. Jacquemard. Correct au-
tomatic accompaniment despite machine listening or human errors in
Antescofo. In ICMC 2012 - International Computer Music Confer-
ence, Ljubljana, Slovénie, Sept. 2012.

[7] M. Desainte-Catherine and A. Allombert. Interactive scores: A model
for specifying temporal relations between interactive and static events.
Journal of New Music Research, 34(4):361–374, 2005.

[8] J. Echeveste. The future of the language of Antescofo. Personal
communication, May 2013.

[9] J. Echeveste, A. Cont, J.-L. Giavitto, and F. Jacquemard. Opera-
tional semantics of a domain specific language for real time musician-
computer interaction. Discrete Event Dynamic Systems, 2013.

[10] H. Fastl and E. Zwicker. Psychoacoustics: Facts and models, vol-
ume 22. Springer, 2006.

[11] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers
and the verification of reactive systems. In Algebraic Methodology
and Software Technology (AMAST’93), pages 83–96. Springer, 1994.

[12] P. Hudak. The Haskell school of expression: learning functional
programming through multimedia. Cambridge University Press, 2000.

[13] P. Hudak. The Haskell School of Music – From Signals to Symphonies.
(Version 2.5), January 2013.

[14] P. Hudak, T. Makucevich, S. Gadde, and B. Whong. Haskore music
notation–an algebra of music. Journal of Functional Programming,
6(03):465–484, 1996.

[15] E. Large and M. Jones. The dynamics of attending: How people track
time-varying events. Psychological review, 106(1):119, 1999.

[16] L. Mandel and F. Plateau. Interactive programming of reactive sys-
tems. In Proceedings of Model-driven High-level Programming of
Embedded Systems (SLA++P’08), Budapest, Hungary, Apr. 2008.

[17] L. Mandel and M. Pouzet. ReactiveML: a reactive extension to ML.
In Proceedings of the 7th ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming, pages 82–
93, 2005.

[18] J. McCartney. Rethinking the computer music language: SuperCol-
lider. Computer Music Journal, 26(4):61–68, 2002.

[19] Y. Orlarey, D. Fober, and S. Letz. FAUST: an efficient functional
approach to DSP programming. New Computational Paradigms for
Computer Music, 2009.

[20] M. Puckette. Combining event and signal processing in the MAX
graphical programming environment. Computer music journal,
15:68–77, 1991.

[21] M. Puckette et al. Pure data: another integrated computer music
environment. Proceedings of the Second Intercollege Computer Music
Concerts, pages 37–41, 1996.

[22] G. Wang and P. Cook. Chuck: a programming language for on-the-fly,
real-time audio synthesis and multimedia. In Proceedings of the 12th
annual ACM international conference on Multimedia, MULTIMEDIA
’04, pages 812–815, New York, NY, USA, 2004. ACM.

	Introduction
	Music in ReactiveML
	Music data types
	Time in ReactiveML
	Parallel and Sequential Execution

	Toward Mixed Music
	Relative Time in Music
	The Antescofo language
	Error handling
	Synchronization Strategies

	A First Example: The house of the rising sun
	The basics
	Hierarchical structure
	Live Coding

	Reactive Interactions
	Piano Phase
	Synchronous Observer

	Related Work
	Conclusion

