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Scade is a domain-specific synchronous functional language used to implement safety-critical real-time

software for more than twenty years. Two main approaches have been considered for its semantics: (i) an

indirect collapsing semantics based on a source-to-source translation of high-level constructs into a data-

flow core language whose semantics is precisely specified and is the entry for code generation; a relational
synchronous semantics, akin to Esterel, that applies directly to the source. It defines what is a valid synchronous

reaction but hides, on purpose, if a semantics exists, is unique and can be computed; hence, it is not executable.

This paper presents, for the first time, an executable, state-based semantics for a language that has the key

constructs of Scade all together, in particular the arbitrary combination of data-flow equations and hierarchical

state machines. It can apply directly to the source language before static checks and compilation steps. It is

constructive in the sense that the language in which the semantics is defined is a statically typed functional

language with call-by-value and strong normalization, e.g., it is expressible in a proof-assistant where all

functions terminate. It leads to a reference, purely functional, interpreter. This semantics is modular and

can account for possible errors, allowing to establish what property is ensured by each static verification

performed by the compiler. It also clarifies how causality is treated in Scade compared with Esterel.

This semantics can serve as an oracle for compiler testing and validation; to prototype novel language

constructs before they are implemented, to execute possibly unfinished models or that are correct but rejected

by the compiler; to prove the correctness of compilation steps.

The semantics given in the paper is implemented as an interpreter in a purely functional style, in OCaml.
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1 INTRODUCTION
Scade [27] is a domain-specific, purely functional programming language used for more than twenty

years to implement certified real-time software, in avionics, railways, nuclear plants and cars (e.g.,

fly-by-wire, braking system, electrical engine). The designer writes an ideal deterministic and

synchronous (zero-delay) model [9] where signals are infinite streams and systems are represented

by synchronous (length-preserving) stream functions. At its core, Scade stems from Lustre [31],

inheriting its semantics, programming style and some of its language primitives. On top of this core,

the language provides richer programming constructs, e.g., by-case definitions for streams, reset,

hierarchical state machines. Those constructs preserve the data-flow style of the core language, with

a single statically scoped definition per stream variable and per instant. The compiler generates C

and Ada code and verifies safety properties on the source program: that it is well typed, deterministic,

deadlock free and can be implemented in bounded time and memory. These verifications, expressed

as dedicated type systems, are part of the language specification and are prescriptive, i.e., when

they fail, no code is generated.

The compiler complies with the highest certification standards (e.g., DO178C, level A of avionics)

for critical software so that the generated code can be used without any further verification that the

semantics is preserved. It is a development process-based certification as required by industry safety

standards and it is supported by independent testing, not to be confused with a certified proof of

correctness developed within a proof assistant, e.g., the CompCert [39] compiler for C and the Vélus

compiler [16, 17] for Lustre.
1
While the certification credit is unvaluable, it limits the evolution

of the language and its compiler: any change, even the smallest, has to be done carefully because

it must pass again the certification process. This raises the following questions: can we define a

complete semantics for a language that has Scade’s core programming constructs, considered all at

once, and serving as an oracle for automatic testing and validation during compiler development?

to prototype new language constructs before they are implemented in the compiler; to execute

unfinished programs or programs rejected by the compiler because they are too conservative; to

prove the correctness of compilation steps?

To answers those questions, this paper presents a constructive state-based executable semantics
which leads to a reference, purely functional, interpreter and is independent of a compiler.

1.1 The Landscape of Synchronous Languages Semantics
It may seem odd to introduce an interpreter for a synchronous language like Scade after such a

long time! Indeed, the semantics of synchronous languages [5], and more widely, domain specific

languages for control software, have been studied extensively since their introduction in the mid

eighties [6, 38]. For lack of space, we only describe the main achievements. In brief, two families

of semantics have been defined: relational or functional semantics, the later being either only

denotational (possibly non executable) or denotational and constructive; for each of them, some are

direct — they apply directly to the source — or indirect, that is, high-level operations collapse into
simple ones or are translated into a lower-level language for which a semantics is defined precisely.

A relational or logical semantics was originally introduced for Esterel [12], Lustre [21] and

Signal [7]. It is defined by a collection of predicates that express what is a valid synchronous

reaction. Synchronous parallel composition of two processes is expressed elegantly (and magically)

as the conjunction of two relations. It purposely hides all the scheduling machinery necessary

to compute a reaction, hence when a reaction exists and is unique. A relational semantics was

1
Both aim at building a correct software, the first by imposing an obligation of means going from specification to verification,

the second by imposing an obligation of result. Where both agree is on the need to have a precise specification of the

semantics and code generation.
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defined for a language that has the main features of Scade [24], in particular the mix of data-flow

equations and hierarchical state machines. A relational semantics fits remarkably well in a proof

assistant for proving compiler transformations. It is used extensively in the formally verified Vélus

compiler [16, 17]. Nonetheless, a relational semantics does not define an effective, correct and

complete, algorithm: it is not computational [29] or constructive [11]. For example, it cannot be used

as an oracle for compiler testing. Moreover, some programs are causally correct — they do react at

every instant with a reaction that is unique — but are unreasonable and counter intuitive [10, 11].

Or they are simply impossible to compile into executable code. Existing relational semantics do

not characterize well the set of correct programs w.r.t programs accepted by a compiler, unless

adding side conditions [54], making it more complex. Finally, with a relational semantics, errors are

not explicit: they all transparently correspond to the program does not react, that is, the program’s

behavior is under-determined. Adding auxiliary predicates to model and propagate errors is possible

but the semantics loses the conciseness and simplicity of the initial formulation.

Alternative and complementary approaches define the semantics indirectly as the result of a

compilation process. The compilation of Esterel into Boolean equations [11, 13], the compilation

of Quartz [51] and SCCharts [56] or the compilation of Argos [42] and mode automata [44] into

guarded data-flow equations are examples of indirect semantics. In [25], the authors propose a

collapsing or translation semantics for a language that has the main features of Scade — hierarchical

automata, reset, by-case definition, local blocks and data-flow equations — and a source-to-source

translation into a language core made of clocked data-flow equations. The semantics is also indirect

but stays within the same language, with high-level constructs expressed modularily in term

of simpler ones. The language subset has a precise semantics [17, 21, 26] and is the entry for

sequential code generation [14, 17, 32]. This approach through collapsing was implemented in

Lucid Synchrone [49] and the qualified compiler of Scade [27] for which it was retrospectively a

sound decision, in terms of compiler design, to pass the certification process and generate good

code. It is formally proven with respect to a relational semantics and implemented in the Vélus

compiler [18]. Yet, an indirect semantics does not answer the need of a reference semantics that

applies directly to the source, is constructive and gives an alternative way to run programs.

Several functional and denotational semantics were also defined, initially for Lustre [30] or as

simple interpreters [43]. A Lustre node defines a continuous function on streams in the sense of Kahn

process networks [37] with a restriction to characterize processes that execute synchronously [15,

20, 22, 26]. By encoding streams as lazy data-structures, it is possible to define an executable

semantics as a shallow embedding in Haskell [22], hence an interpreter, an approach exploited

extensively for FRP [34, 46]. Nonetheless, a stream-based semantics does not characterize well

nor ensure important properties like execution in bounded time and space. Moreover, it is not

constructive in the sense that the semantic is not defined as a total function which, given the

sequence of inputs, computes the sequence of outputs or possibly stops with an error. E.g., it may

diverge (that is, the interpreter enters into an infinite loop), when the source program is not causal.

A constructive denotational stream semantics was given in Coq [48] for Kahn process networks and

it can be applied to Lustre. Yet, it does not give an interpreter that can be used in practice because

the computation of the 𝑛-th output of a stream always restarts from the very begining. The idea of a

constructive semantics was introduced first for pure Esterel [10, 29] but with a different idea, and it

was later extended to several languages reminiscent of Esterel, like Quartz [51] and SCCharts [56].

In this semantics, every synchronous reaction is the result of a fix-point computation of a monotone

micro-step transition function on a Complete Partial Order (CPO) which is of bounded height, hence

can be computed in statically known bounded time. This idea of a fix-point computation done at

every reaction was exploited in [23] to define the semantics of a synchronous functional language

on streams, with a shallow embedding in Haskell, so that the fix-point is computed lazily. In [28],
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the authors show how the fix-point semantics can account for cyclic circuits that are constructively

causal in a block-diagram, hence a data-flow, synchronous language. The proposal of the present

paper directly builds on all these works.

Are we done? Not yet. The three language kernels for which a direct constructive semantics was

given — pure Esterel and related languages, synchronous block-diagrams and a functional language

of streams — are very different. Taken separately, none of them address a full language that have

the main constructs of Scade, all together, in particular the free combination of data-flow equations

and hierarchical state machines, the modular reset, nested local blocks and by-case definitions.

1.2 Contribution: A Constructive State-based Functional Semantics
We propose a new semantics for a synchronous data-flow language that deals with the main

constructs of Scade. The main contributions are the following. First, the semantics applies directly
to the source program before any static check and program transformation; it is independent of the

compiler and does not need any hypothesis or properties on programs. This semantics is state-based,
that is, a stream expression 𝑒 running in an environment 𝜌 defines a state machine, that is, a pair

made of a transition function 𝑓 and an initial state 𝑠 [36]:

⟦𝑒⟧𝜌 = (𝑓 , 𝑠) where 𝑓 : 𝑆 → 𝑉⊥ × 𝑆 and 𝑠 : 𝑆

The stream interpretation of 𝑒 is obtained by iterating 𝑓 from 𝑠 . Compared to a relational semantics,

this semantics is constructive because ⟦.⟧. is a total and pure function which can be expressed

in a strongly normalizing typed lambda-calculus, e.g., the programming language of Coq where

all computations terminate. A reaction may produce the value ⊥ (the minimum element of the

CPO) that represents a deadlock or causality error. For every reaction, in presence of mutually

recursive equations on streams, ⟦𝑒⟧𝜌 computes the least fix-point of a monotone function on a CPO

of bounded height, hence always reached in bounded time, with no approximation. This semantics

treats the main language features of Scade all together, that is, stream functions and applications,

mutually recursive stream definitions, local definitions with default and memorized values, by-case

definitions for streams, reset and hierarchical state machines. We go a bit further, with two features

that are not in Scade, a simple pattern matching construct and state machines where states can be

parameterized [24], two language features implemented in Lucid Synchrone and Zélus [19]. This

semantics is able to deal with static and run-time errors (e.g., type error, initialization error, clock

errors) with very small changes. Finally, it leads to a reference functional interpreter, that is, ⟦.⟧. is
implemented in a purely functional subset of OCaml from which an implementation in Coq was

produced automatically
2
.

The software development, including the Ocaml interpreter and examples are available at https:

//zelus.di.ens.fr/zrun/emsoft2023.

Paper Organization. The language kernel and its semantics are defined in Section 2. Then, we

consider an extended language with three important constructs of Scade in Section 3 and adapt the

semantics accordingly. Causality is discussed in Section 4. We conclude in Section 5.

2
https://github.com/formal-land/coq-of-ocaml

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: August 2023.

https://zelus.di.ens.fr/zrun/emsoft2023
https://zelus.di.ens.fr/zrun/emsoft2023
https://github.com/formal-land/coq-of-ocaml


A Constructive State-based Synchronous Semantics 1:5

2 A SYNCHRONOUS DATA-FLOW KERNEL AND ITS SEMANTICS
We consider the following language kernel written in an abstract syntax close to that of [24, 25].

Types do not need to be declared since the semantics applies to untyped programs.

𝑑 ::= let 𝑓 = 𝑒 | let node 𝑓 𝑝 = 𝑒 | 𝑑 𝑑

𝑝 ::= () | 𝑥 | 𝑥, ..., 𝑥
𝑒 ::= 𝑐 | 𝑥 | 𝑓 (𝑒, ..., 𝑒) | (𝑒, ..., 𝑒) | pre 𝑒 | 𝑒 fby 𝑒 | let 𝐸 in 𝑒 | let rec 𝐸 in 𝑒

| if 𝑒 then 𝑒 else 𝑒 | when 𝑒 then 𝑒 else 𝑒 | reset 𝑒 every 𝑒
𝐸 ::= 𝑝 = 𝑒 | 𝐸 and𝐸

A program is a set of declarations (𝑑), each defining the value of a global identifier. A declaration

can define the value of an identifier (let 𝑓 = 𝑒); it can define a stream function with name 𝑓 , a

list of parameters 𝑝 and body 𝑒 (let node 𝑓 𝑝 = 𝑒) 3
. 𝑝 denotes the list, possible empty (()) of

parameters of a function. 𝑒 stands for an expression. An expression can be a constant (𝑐), e.g., an

integer, a Boolean value, the value (), etc; a variable identifier (𝑥), the application of a function

𝑓 to a (possibly empty) list of arguments (𝑓 (𝑒1, ..., 𝑒𝑛) with 𝑛 ≥ 0), a tuple ((𝑒1, ..., 𝑒𝑛) with 𝑛 ≥ 2).

Other operators are the un-initialized unit delay (pre 𝑒), the initialized unit delay (𝑒1 fby 𝑒2).

The expression (let 𝐸 in 𝑒) uses variables defined by the equation (𝐸) that are local to 𝑒 . The

equations can be defined recursively, that is, variables on the left-hand side of 𝐸 bind those on the

right-hand side (let rec 𝐸 in 𝑒). The language provides three other constructs: the conditional
or selector if 𝑒1 then 𝑒2 else 𝑒3; at every instant, the three branches are evaluated and it

selects the value of 𝑒2 if the current of 𝑒1 is true; that of 𝑒3 if the current value of 𝑒1 is false. The

activation when 𝑒1 then 𝑒2 else 𝑒3 executes 𝑒2 only when 𝑒1 is true and 𝑒3 only when 𝑒1 is false.

It is possible to reset an expression 𝑒1 when a Boolean condition 𝑒2 is true (reset 𝑒1 every 𝑒2).

Finally, an equation either defines the current values of some variables (𝑝 = 𝑒) or is the parallel
composition of two equations (𝐸 and𝐸). As we shall see in Section 2.3, the equations (𝑥,𝑦) = (𝑒1, 𝑒2)
and 𝑥 = 𝑒1 and𝑦 = 𝑒2 define the same streams. Some operators like the initialization 𝑒1 -> 𝑒2 are

omitted because they can be defined from the kernel:

𝑒1 -> 𝑒2 = if (true fby false) then 𝑒1 else 𝑒2
This kernel does not provide operations that involve clocks, like the when and merge. Instead,
it provides a built-in activation structure (when 𝑒1 then 𝑒2 else 𝑒3). Below are simple examples

(forward and backward Euler, a PI controller and two mutually recursive stream equations).
4

1 let node forward_euler(h, x0, xprime) returns (x) x = x0 fby (x +. h *. xprime)

2 let node backward_euler(h, x0, xprime) returns (x) x = x0 -> pre(x) +. h *. xprime

3 let node pi(p, i, u) = p *. u +. backward_euler(h, 0.0, i *. u)

4 let node sin_cos(h) returns (sin, cos)

5 sin = forward_euler(h, 0.0, cos) and cos = backward_euler(h, 1.0, -. sin)

2.1 Stream Functions as Sequential Mealy Machines
Lustre and Scade are data-flow languages, i.e., a signal is an infinite stream and a system is a

stream function. Streams can be represented as values of type stream(𝑇 ) =df N→ 𝑇 where N stand

for natural numbers. A stream can also be interpreted operationally as a co-iterative [36] stream
process [47] or a concrete stream [23] CoF (𝑓 , 𝑠) made of a transition function 𝑓 : 𝑆 → 𝑇 × 𝑆 and an

initial state 𝑠 : 𝑆 .

CoF : ∀𝑆,𝑇 .(𝑆 → 𝑇 × 𝑆) × 𝑆 → coStr (𝑇, 𝑆)
3
We only give an excerpt of what is treated in the companion implementation. For simplicity, we do not consider here the

definition of combinational functions.

4
The declaration let node 𝑓 (𝑝 ) returns (𝑞) 𝐸 is equivalent to let node 𝑓 (𝑝 ) = let rec 𝐸 in 𝑞. Operations +. and *.
stand for the addition and multiplication on Floatting point numbers, written in infix form.
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𝑠const (𝑐) = 𝜆𝑛.𝑐
𝑠extend (𝑓 ) (𝑒) = 𝜆𝑛.(𝑓 𝑛) (𝑒 𝑛)
𝑠pre 𝑒 = if 𝑛 = 0 then nil

else 𝑒 (𝑛 − 1)
𝑠fby 𝑓 𝑒 = if 𝑛 = 0 then 𝑓 (0)

else 𝑒 (𝑛 − 1)

𝑐const (𝑐) = CoF (𝜆𝑠.(𝑐, 𝑠), ())
𝑐extend (CoF (𝑓 , 𝑠)) (CoF (𝑒, 𝑠𝑒)) =

CoF (((𝜆𝑠.let 𝑣 𝑓 , 𝑠′ = 𝑓 𝑠 in let 𝑣𝑒 , 𝑠𝑒′ = 𝑒 𝑠𝑒 in
(𝑣 𝑓 𝑣𝑒 ), (𝑠′, 𝑠𝑒′))

, (𝑠, 𝑠𝑒)))
𝑐(pre CoF (𝑓 , 𝑠)) = CoF ((𝜆(𝑚, 𝑠).(𝑚, 𝑓 𝑠)), (nil, 𝑠))

Fig. 1. Lustre primitives with their stream and sequential representations

coStr (𝑇, 𝑆) is the type of concrete streams. Given a state 𝑠 , 𝑓 𝑠 returns the current output and a

new state. The infinite iteration produces the infinite sequence of values. Hence, a value CoF (𝑓 , 𝑠)
of type coStr (𝑇, 𝑆) defines a stream 𝑣 such that 𝑣 = nth(CoF (𝑓 , 𝑠)) with 𝑣 (𝑛) the 𝑛-th element.

Conversely, concrete(.) builds a concrete stream:

nth(CoF (𝑓 , 𝑠)) (0) =df let 𝑣, 𝑠′ = 𝑓 𝑠 in 𝑣
nth(CoF (𝐹, 𝑠)) (𝑛) =df let _, 𝑠′ = 𝑓 𝑠 in nth(CoF (𝑓 , 𝑠′)) (𝑛 − 1)
concrete(𝑣) =df CoF (𝜆𝑛.(𝑣 (𝑛), (𝑛 + 1)), 0)

with: nth(.) (.) : ∀𝑇, 𝑆 .coStr (𝑇, 𝑆) → stream(𝑇 ) and concrete(.) : ∀𝑇 .stream(𝑇 ) → coStr (𝑇,N).

Definition 1 (Eqivalence). Two concrete streams CoF (𝑓 , 𝑠) and CoF (𝑓 ′, 𝑠′) are equivalent iff
they produce the same stream:

nth(CoF (𝑓 , 𝑠)) = nth(CoF (𝑓 ′, 𝑠′))
We write CoF (𝑓 , 𝑠) � CoF (𝑓 ′, 𝑠′) for equivalence of concrete streams.

Taking stream(𝑥) (𝑛) =df nth(𝑥) (𝑛), concrete(stream(𝑥)) � 𝑥 and stream(concrete(𝑥)) = 𝑥 .

Proving that two concrete streams are equivalent amounts at finding an inductive relation 𝑅

between states that is verified on initial states and preserved by the application of the two transition

functions, that is, if 𝑅(𝑠, 𝑠′) then (fst 𝑜 𝑓 ) (𝑠) = (fst 𝑜 𝑓 ′) (𝑠′) and 𝑅((snd 𝑜 𝑓 ) (𝑠), (snd 𝑜 𝑓 ′) (𝑠′)).
Appendix available at https://zelus.di.ens.fr/zrun/emsoft2023 illustrates its use for proving the

correctness of source-to-source transformations like the normalization and static scheduling.

2.1.1 Core Data-flow Primitives. A minimal subset of Lustre primitives can be defined with three

operations: const (.) builds a constant stream; extend (.) (.) applies a stream of functions to a stream

of inputs point-wise; pre . is the un-initialized unit delay. At the initial instant, it returns the value

nil which stands for an “undefined (non initialized) value” [21]. fby . . is the initialized delay such

that fby 𝑒1 𝑒2 is a short-cut for 𝑒1 → pre 𝑒2. Stream definitions are given on the left of Figure 1 (the

tag
𝑠
is for the “stream” semantics; the tag

𝑐
for the “concrete” semantics). Any function with arity

𝑛 can be lifted into a stream function using const (.) and extend (.) (.). E.g., if 𝑓 is a binary function,

we can simply write 𝑓 𝑥 𝑦 as a short-cut for:

lift2 𝑓 𝑥 𝑦 = extend (extend (const (𝑓 )) (𝑥)) (𝑦)
The conditional if . then . else . of 𝐿𝑢𝑠𝑡𝑟𝑒 (that we write below ifstrict . . .) is:

ifstrict 𝑐 𝑥 𝑦 = extend (extend (extend (const (𝜆𝑐,𝑦, 𝑧.if 𝑐 then𝑦 else 𝑧)) (𝑐)) (𝑥)) (𝑦)
For example, the semantics of the edge front detector defined below is 𝜆𝑥.𝑥 → (not (pre 𝑥)) &𝑥 . If

𝑥 : stream(𝑇 ) is a stream, it returns 𝑥 (0) at instant 0; at instant 𝑛, it returns true if 𝑥 (𝑛) is true and
𝑥 (𝑛 − 1) is false.
1 let node edge(x) = x -> not (pre x) & x

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: August 2023.

https://zelus.di.ens.fr/zrun/emsoft2023


A Constructive State-based Synchronous Semantics 1:7

Remark 1 (Why having two interpretations for streams?). It is easy to check that the two
interpretations for primitives — the stream-based interpretation versus the state-based interpretation
— given on the left and right in Figure 1 are equivalent. In particular that nth(𝑐pre 𝑥) (0) = nil and
nth(𝑐pre 𝑥) (𝑛) = nth(𝑥) (𝑛 − 1). Both interpretations are useful. The fact that one can go modularily
from an interpretation to the other (using concrete(.) and stream(.)) highlights the data-flow nature
of a language like Lustre. The stream interpretation is useful for reasonning because it abstracts how
a stream is implemented. The coiterative interpretation is useful to establish resource properties like
execution in bounded time and verify equivalence properties when an inductive relation is given.

2.1.2 Length Preserving Stream Functions. A stream function, say 𝑓 , maps streams to streams,

hence, it should be a value of type:

𝑓 : stream(𝑇 ) → stream(𝑇 ′)
or, on concrete streams:

𝑓 : coStr (𝑇, 𝑆) → coStr (𝑇 ′, 𝑆 ′)
In the general case, a stream function 𝑓 may need the entire recipe of its input stream and use it in

an arbitrary manner, zero, one or several times. Quoting Caspi and Pouzet [23], “In many cases, this

is unnecessarily complex and counter intuitive if 𝑓 is intended to model a reactive system where

data are computed progressively. Most functions of interest like pre and + are synchronous in the

sense that their evaluation at a given step does not require knowing their argument’s transition

function but only the value yielded by the argument at that step.” Such a function can be represented

concretely as CoP (ft, fs) made of a step function ft : 𝑆 → 𝑇 → 𝑇 ′ × 𝑆 and an initial state fs : 𝑆 .

CoP : ∀𝑆,𝑇 ,𝑇 ′ .(𝑆 → 𝑇 → 𝑇 ′ × 𝑆) × 𝑆 → snode(𝑇,𝑇 ′, 𝑆)
snode(𝑇,𝑇 ′, 𝑆) is the type of a one-input/one-output sequential sequential machine [45] from 𝑇 to

𝑇 ′
and with state in 𝑆 . If 𝑠𝑚 = CoP (ft, fs), it defines the stream function 𝜆𝑥.apply(𝑠𝑚) (𝑥) with:

apply(CoP (ft, fs)) (CoF (𝑥, xs)) =
CoF ((𝜆(𝑚, 𝑠).let 𝑣, xs′ = 𝑥 xs in let 𝑣 ′,𝑚′ = ft𝑚 𝑣 in (𝑣 ′, (𝑚′, xs′))), (fs, xs))

with

apply(.) (.) : ∀𝑇,𝑇 ′, 𝑆, 𝑆 ′ .snode(𝑇,𝑇 ′, 𝑆 ′) → (coStr (𝑇, 𝑆) → coStr (𝑇 ′, 𝑆 ′ × 𝑆))
The type signature highlights that if 𝑠𝑚 has a state 𝑠𝑓 : 𝑆 ′ and 𝑥 has a state 𝑠𝑥 : 𝑆 , the application,

apply(𝑠𝑚) (𝑥) has a state which is a pair (𝑠𝑓 , 𝑠𝑥 ) : 𝑆 ′ × 𝑆 . The application apply(.) (.) converts a
Mealy machine into a stream function. In order to produce the current value 𝑣 ′ of the output, it
only reads the current value 𝑣 of the input. 𝑓 is said to be length preserving or synchronous [23]
when it is the image of a sequential machine.

Remark 2 (Non length preserving functions). Of course, many stream functions of interest
are not length preserving, that is, they use their argument recipe several times. E.g., a function half
that returns the subsequence of even index, that is, given (𝑥𝑛)𝑛∈N, half (x) returns (𝑥2𝑛)𝑛∈N or, on
concrete streams:

half (CoF (𝑓 , 𝑠)) = CoF ((𝜆𝑠.let _, 𝑠′ = 𝑓 𝑠 in let 𝑣, 𝑠 = 𝑓 𝑠′ in (𝑣, 𝑠)), 𝑠)
In order to produce one output, half makes two steps on its input argument CoF (𝑓 , 𝑠). An other example
is next (.), with next (𝑥) (𝑛) = 𝑥 (𝑛 + 1) (operator 𝑅. of [37] or the so-called “tail” function on lists)
whereas the unit delay pre . is length preserving (see Figure 1).
Other classical non length preserving functions are the sampling and combination operators when

and merge of Lucid Synchrone and Scade, the operators when and current of Lustre, the when and
default of Signal [7]. Non length-preserving functions like half and next can be expressed using those
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functions. If 0(1) stands for the boolean sequence which is false at the first instant and then always
true, next (𝑥) = 𝑥 when 0(1). If (10) is the alternating boolean sequence, half (𝑥) = 𝑥 when (10).

In a language like Lustre and Scade, sampling operators are treated as if they were length preserving
functions. Instantaneous values are complemented with an explicit absent value [21, 23]. Expecting a
present value which is actually absent (or the converse) produces an error that is statically detected by
the clock checking [21, 26].

In the sequel, we shall consider that all stream functions are length preserving. We have now all

the elements to define the functional semantics for the synchronous data-flow kernel, including

function application (𝑓 (𝑒1, ..., 𝑒𝑛)) and definition (let node 𝑓 𝑝 = 𝑒). What remains is the treatment

of fix-points to define the solution of mutually recursive stream equations.

2.2 The Difficulty with Mutually Recursive Stream Equations or Feedback loops
Consider a stream function:

𝑓 : stream(𝑇 ) → stream(𝑇 )
or, on concrete streams:

𝑓 : coStr (𝑇, 𝑆) → coStr (𝑇, 𝑆)
and the following feedback loop written in the kernel language:

let rec 𝑦 = 𝑓 (𝑦) in 𝑦.
We would like to define a fix-point operation fix (.) where fix (.) : (stream(𝑇 ) → stream(𝑇 )) →
stream(𝑇 ) such that fix (𝑓 ) is a fix-point of 𝑓 , that is, fix (𝑓 ) = 𝑓 (fix (𝑓 )). Its existence and unique-

ness depends on 𝑓 . E.g., consider the three following definitions for 𝑓 :

1 let node f(x) = x let node f(x) = x + 1 let node f(x) = 0 fby (x + 1)

The definition on the left stands for the function 𝜆𝑥.𝑥 on streams; hence, there is an infinite

number of solutions for the equation 𝑦 = 𝑓 (𝑦). If 𝑓 = 𝜆𝑥.(𝜆𝑛.𝑥 (𝑛) + 1), then no solution exist. If

𝑓 = 𝜆𝑥.𝜆𝑛.if 𝑛 = 0 then 0 else 𝑥 (𝑛 − 1) + 1, which denotes the stream interpretation for the function

defined on the right, the solution for 𝑦 is the stream 𝜆𝑛.𝑛 which is unique.

Wewould like to define fix (.) as a total function and constructively, that is, with an algorithm that

given 𝑓 always terminate and returns fix (𝑓 ). To study its existence and define fix (.) constructively,
we explicitly complete a set of values𝑇 with a special value⊥ that denotes a deadlock (a computation

that is stuck). Given a set 𝑇 , let 𝐷 = 𝑇⊥ = ⊥ +𝑇 , with ⊥ a minimal element and ≤ the flat order,

i.e., ∀𝑥 ∈ 𝐷.⊥ ≤ 𝑥 . 𝑇 is a pre-domain (all elements are incomparable) and (𝐷,⊥, ≤) is the trivial
“flat” CPO. Let stream(𝑇⊥) be the set of streams completed with ⊥. The bottom element for streams

⊥𝑠𝑡 = 𝜆𝑛.⊥ (written ⊥ whenever possible). The prefix order on streams ≤𝑝 is 𝑥 ≤𝑝 𝑦 =df ∀𝑛 ∈
N. (𝑥 (𝑛) ≠ 𝑦 (𝑛)) ⇒ ∀𝑚 ≥ 𝑛.(𝑥 (𝑚) = ⊥) [6]. (stream(𝑇⊥), ≤𝑝 ,⊥𝑠𝑡 ) is also a CPO. By the Kleene

theorem, if 𝑓 : 𝐷 → 𝐷 is continuous on a CPO (that is, 𝑓 (sup𝑖 (𝑥𝑖 )) = sup𝑖 (𝑓 (𝑥𝑖 )) for any chain

{𝑥𝑖 | 𝑥𝑖 ≤ 𝑥𝑖+1, 𝑖 ∈ N}), fix (𝑓 ) = lim𝑛→∞ 𝑓 𝑛 (⊥) is the minimal fix-point of 𝑓 . The stream operations

pre, fby, extend (.) (.) and const(.) are indeed continuous; abstraction and application preserve

continuity.

Are we done? Not yet. The difficulty is that the function fix (.) is not an effective algorithm which

computes the fix-point in bounded time for any function 𝑓 . In finite time, only a prefix 𝑓 𝑛 (⊥) of the
solution 𝑣 of 𝑣 = 𝑓 (𝑣) can be computed. Without special hypothesis on 𝑓 , the number of iterations

to obtain the 𝑘-th element of 𝑣 is undecidable. Moreover, the computation is not incremental. Either

it uses more and more memory to store the successive elements or it takes more and more time. If

𝑓 𝑛 (⊥) gives the first 𝑘 elements that are stored in memory, the computation of 𝑓 𝑛+𝑚 (⊥) only makes

𝑚 new steps. If no value is stored, computing the 𝑘 + 1 element recomputes the first 𝑘 elements.
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Instead of considering the general class of stream functions, consider instead the particular case

of a length preserving function 𝑓 that is, it exists 𝑠𝑚 = CoP (ft, 𝑠0) such that 𝑓 𝑥 = apply(𝑠𝑚) (𝑥).
The concrete stream 𝑦 such that 𝑣𝑛 = nth(𝑦) (𝑛) for all 𝑛 ∈ N and 𝑣 = 𝑓 (𝑣) should verify:

𝑣𝑛, 𝑠𝑛+1 = ft 𝑠𝑛 𝑣𝑛

Given an initial state 𝑠 : 𝑆 , we look for a value feedback (ft) that is a solution of:

𝑋 (𝑠) = let 𝑣, 𝑠′ = 𝑋 (𝑠) in ft 𝑠 𝑣

A lazy functional language like Haskell
5
allows for writing such a recursively defined value. One

can program in Haskell a function feedback (.) : ∀𝑆,𝑉 .(𝑆 → 𝑉⊥ → 𝑉⊥ × 𝑆) → (𝑆 → 𝑉⊥ × 𝑆):
feedback (ft) = 𝜆𝑠.let rec 𝑣, 𝑠′ = ft 𝑠 𝑣 in (𝑣, 𝑠′)

where 𝑣 is defined recursively. nth(CoF (feedback (ft), 𝑠)) (.) is the stream solution of the equation

𝑣 = 𝑓 (𝑣) and is minimal. Quoting Caspi and Pouzet [23], “We have replaced a recursion on time,

that is, a stream recursion, by a recursion on the instant.” While a shallow embedding of the above

primitives in a Haskell (lifting, application, abstraction, fix-point) gives an interpreter (and this is

already a useful result), it not entirely satisfactory. By considering only length preserving functions,

we have removed the problem of unbounded buffers, but the problem of causality remains. The

function feedback (.) may not terminate for some argument ft, and we do not know and for what

reason it does not terminate. For example, feedback (ft) is not defined (diverges) when ft 𝑠 𝑥 = (𝑥, 𝑠),
ft 𝑠 𝑥 = (𝑥 + 1, 𝑠) or ft 𝑠 (𝑥,𝑦) = ((𝑦, 𝑥), 𝑠) which correspond respectively to:

let rec 𝑥 = 𝑥 in 𝑥 let rec 𝑥 = 𝑥 + 1 in 𝑥 let rec 𝑥 = 𝑦 and𝑦 = 𝑥 in 𝑥,𝑦

On the contrary, feedback (ft) is defined whenft 𝑠 𝑥 = (1+𝑠, (𝑥+2)) orft 𝑠 (𝑥,𝑦) = (1+𝑠, (𝑦+2, 𝑥+3))
which correspond to the following recursive equations:

6

let rec 𝑥 = 1 + (0 fby (𝑥 + 2)) in 𝑥 let rec 𝑥 = 1 + (0 fby 𝑦 + 2) and𝑦 = 𝑥 + 3 in 𝑥,𝑦

Because the function feedback (.) may not terminate, it cannot be defined as a function in the

language of a proof assistant like Coq
7
where all functions must terminate, unless using a trick,

like a fuel argument. By restricting ouselves to length preserving functions and their composition,

the problem is simpler. The CPO of streams, which is of unbounded height, is replaced by a flat

CPO of bounded height; and continuity is replaced by monotony.

Bounded Fix-point. If 𝐷 is a CPO whose height is bounded by 𝑛 ∈ N (chains shorter than 𝑛), and

𝑓 is monotone (∀𝑥,𝑦 ∈ 𝐷. 𝑥 ≤ 𝑦 ⇒ 𝑓 (𝑥) ≤ 𝑓 (𝑦)), the fix-point can be replaced by a bounded one.

feedback (0) (𝑓 ) (𝑠) = ⊥, 𝑠
feedback (𝑛) (𝑓 ) (𝑠) = let 𝑣, 𝑠′ = feedback (𝑛 − 1) (𝑓 ) (𝑠) in 𝑓 𝑠 𝑣

with: feedback (.) : ∀𝑆, 𝐷.N → (𝑆 → 𝐷 → 𝐷 × 𝑆) → 𝑆 → 𝐷 × 𝑆 or a tail-recursive form

feedback (𝑛) (𝑓 ) (=) (𝑠) (⊥) that stops as soon as the fix-point is reached:

feedback (0) (𝑓 ) (=) (𝑣) (𝑠) = 𝑣, 𝑠

feedback (𝑛) (𝑓 ) (=) (𝑣) (𝑠) = let 𝑣 ′, 𝑠′ = 𝑓 𝑠 𝑣 in if 𝑣 = 𝑣 ′ then 𝑣, 𝑠′ else feedback (𝑛 − 1) (𝑓 ) (=) (𝑣 ′) (𝑠)
with: feedback (.) : ∀𝑆, 𝐷. N → (𝑆 → 𝐷 → 𝐷 × 𝑆) → (𝐷 → 𝐷 → bool) → 𝐷 → 𝑆 → 𝐷 × 𝑆

Hence, if the concrete semantics of 𝑓 is CoP (ft, fs), the concrete semantics of let rec 𝑦 = 𝑓 (𝑦) in 𝑦
is CoF ((𝜆𝑠.feedback (𝑛) (ft) (=) (⊥)(𝑠)), fs). How many iterations are sufficient to get a fix-point? If

𝐷 = 𝑇⊥ with 𝑇 a pre-domain (all elements are incomparable):

5
https://www.haskell.org

6
The latter defines the sequences (𝑥𝑛 )𝑛∈N and (𝑦𝑛 )𝑛∈N with 𝑦𝑛 = 𝑥𝑛 + 3 and 𝑥𝑛 = 1 + (if 𝑛 = 0 then 0 else 𝑦𝑛−1 + 2) .

7
https://coq.inria.fr
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(1) Either the first element 𝑣 ′ of the pair ft 𝑣 𝑠 depends on 𝑣 , that is, 𝑣 ′ = ⊥ whenever 𝑣 =

⊥. The program contains a causality loop. In a lazy functional language like Haskell, this

would correspond to an unbounded recursion when evaluating the recursive definition

let rec 𝑣, 𝑠′ = ft 𝑠 𝑣 in (𝑣, 𝑠′).
(2) or it does not, that is, ⊥ < 𝑣 ′.

At most 1 iteration is necessary to get the fix-point. If 𝐷 is a richer domain, e.g., a Cartesian or

smashed product, a function with a bounded domain, the number of iterations 𝑛 is bounded by 𝐷 .

𝑇⊥ = 1 𝐷1 × ... × 𝐷𝑘 = 𝐷1 + ... + 𝐷𝑘 𝐷1 → 𝐷2 = 𝐷2

|𝐷1 |

where |𝐷 | is the cardinality of𝐷 . In the case of a smashed product, the height is only𝐷1+ ...+𝐷𝑘 −𝑘 .
When the domain of a function is finite (e.g., Boolean), the fix-point is reached in bounded time.

8

The above definition of feedback (.) can be used to compute the least fix-point of a set of

mutually recursive equations 𝐸 defining 𝑘 variables. Intuitively, the current output defined by a set

of mutually recursive stream definitions, e.g.,: let rec 𝑥1 = 𝑒1 and ... and𝑥𝑛 = 𝑒𝑛 in 𝑒 is a function
which associates the current value of 𝑒𝑖 to 𝑥𝑖 . Let Def (𝐸) = {𝑥1, ..., 𝑥𝑘 } be the finite set of names

defined by an equation 𝐸 from the kernel language. Let [𝑣1/𝑥1, ..., 𝑣𝑘/𝑥𝑘 ] : env (𝐷) be a valuation
(a function from names to values in 𝐷).

env (𝐷) = names → 𝐷

The semantics for 𝐸 is a function 𝑓 : 𝑆 → env (𝐷) → env (𝐷) × 𝑆 which, given a state 𝑠 : 𝑆 and

environment 𝜌 : env (𝐷), returns a new environment 𝜌 ′ : env (𝐷) and new state 𝑠′ : 𝑆 . If the
minimal elements for environments [⊥/𝑥1, ...,⊥/𝑥𝑘 ] (that we simply write ⊥) and the equality (=)
is lifted to environments pairwise, and 𝐷 = ℎ, then feedback (𝑘 × ℎ) (𝑓 ) (=) (𝑠) (⊥) computes the

least solution of 𝐸 in at most 𝑘 × ℎ steps. In the particular case were 𝐷 = 𝑇⊥, that is, the value
of a variable is either ⊥ or known entirely, ℎ = 1, that is, at most 𝑘 iterations are necessary. This

gives a simple, correct and complete, purely syntactic argument, to bound the number of iterations.

Otherwise, the number of steps would need the type information, hence be done after static typing.

Remark 3. The signature of feedback (.) is not of the form (𝐷 → 𝐷) → 𝐷 as one would expect for
a fix-point. An alternative and equivalent definition can be obtained by splitting ft : 𝑆 → 𝐷 → 𝐷 × 𝑆

into an output function fo : 𝑆 → 𝐷 → 𝐷 and update function fu : 𝑆 → 𝐷 → 𝑆 such that:

𝑣𝑛 = fo 𝑠𝑛 𝑣𝑛 𝑠𝑛+1 = fu 𝑠𝑛 𝑣𝑛

that is fo = fst 𝑜 ft, fu = snd 𝑜 ft and 𝑣𝑛 = fix (fo 𝑠𝑛) where fix (.) : (𝐷 → 𝐷) → 𝐷 , fst and snd
are the left and right projections of a pair. What is presented in the sequel could easily be adapted
accordingly. We keep the initial one because it is closer to the actual code produced by a synchronous
compiler: the step function returns the current output and a new state. In the generated code, this state
is modified in-place.

2.3 Semantics
We are ready to define the semantics of the language kernel.

9
The semantics is untyped; values are

defined inductively:

𝑣★ ::= 𝑎 | nil | ⊥ | (𝑣★, 𝑣★) 𝑎 ::= () | 𝑏 | 𝑖 | (𝑎, 𝑎) | op𝑛
8
Having 𝐷 = 𝐷1 → 𝐷2 a functional domain would mean that equations define streams of functions; this is forbidden by

static typing in Scade. Nonetheless, this could be allowed for finite maps (with finite domain) like arrays.

9
In the sequel, to make the notation lighter, we will confuse sets and types and abusively write𝑇 (𝐴, 𝐵) =df 𝐴 + 𝐵 both as a

set and the definition of a type with two injective functions inl : 𝐴 → 𝑇 (𝐴, 𝐵) and inr : 𝐵 → 𝑇 (𝐴, 𝐵) .
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An extended value 𝑣★ can be a regular (atomic) value, nil or ⊥ or a pair (𝑣★
1
, 𝑣★

2
). A value 𝑎 can be

void (()), a Boolean (𝑏), an integer number (𝑖), a pair (𝑎1, 𝑎2) or an operator op𝑛 with arity 𝑛 ∈ N.
op𝑛 denotes an element in 𝑉 𝑛 → 𝑉 (𝑉 0 = unit and 𝑉 𝑛 = 𝑉 × 𝑉 𝑛−1

). We write 𝑉★
for the set of

extended values and 𝑉 for the set of values. The order between extended values is the flat order

with ⊥ the least element, all others being incomparable. For pairs, it is the pair-wise order. We write

(𝑥1, ..., 𝑥𝑛) as a short-cut for 𝑥1, (𝑥2, ..., 𝑥𝑛) and𝑉★
1
× · · · ×𝑉★

𝑛 as a short-cut for𝑉★
1
× (𝑉★

2
× · · · ×𝑉★

𝑛 ).
A value 𝑣★ is atomic if it does not contain any bottom or nil value, i.e., it is an element (𝑎 ∈ 𝑉 ).

States are also defined inductively. We write 𝑆 for the set of states.

𝑠 ::= () | 𝑣★ | (𝑠, 𝑠) | None | Some(𝑣★) | ⊥ | nil

A global environment 𝛾 associates a value to a name.

genv (𝑉 , 𝑆) =df names → Global(𝑉 , 𝑆)

A global value 𝑔𝑣 can be either a value 𝑣 , a combinational function or a process CoP (𝑝, 𝑠).

Global(𝑉 , 𝑆) =df 𝑉 + (𝑉★ → 𝑉★) + snode(𝑉★,𝑉★, 𝑆)

and a local environment for streams env (𝑉 ) =df names → 𝑉★
. We use the following notation for

environments. [] denotes the empty environment, hence, [] (𝑥) = ⊥. If 𝜌 = 𝜌 ′ + [𝑣/𝑥], 𝜌 (𝑥) = 𝑣

and 𝜌 (𝑦) = 𝜌 ′ (𝑦) if 𝑥 ≠ 𝑦. Finally, 𝜌\𝑥 = 𝜌 ′.

Lifting ⊥ and nil to environments and functions. We overload the notation ⊥ and nil for environ-
ments. If 𝑁 = {𝑥1, ..., 𝑥𝑛} is a set of names:

⊥𝑁 = [⊥/𝑥1, ...,⊥/𝑥𝑛] nil𝑁 = [nil/𝑥1, ..., nil/𝑥𝑛]

If 𝑠 is a state, ⊥𝑠 (resp. nil𝑠 ) distributes ⊥ (resp. nil) according to 𝑠 . The same applies to values:

⊥(()) = ⊥ ⊥((𝑠1, ..., 𝑠𝑛)) = ⊥(𝑠1), ...,⊥(𝑠𝑛) ⊥(𝑎) = ⊥

Lifting: If 𝑎 : 𝑉 is a constant,
★𝑎 : 𝑉★

. If op𝑛 : 𝑉 𝑛 → 𝑉 ,
★𝑜𝑝𝑛 lifts it. Definitions below are taken

in order (left then right).
★𝑜𝑝𝑛 is strict w.r.t ⊥ and nil. ⊥ takes precedence over nil.

★𝑎 = 𝑎
★𝑜𝑝𝑛 (...,⊥, ...) = ⊥

★𝑜𝑝𝑛 (..., nil, ...) = nil
★𝑜𝑝𝑛 (𝑣1, ..., 𝑣𝑛) = op𝑛 (𝑣1, ..., 𝑣𝑛)

We also lift the conditional such that (definition taken in order, left then right):

★if ⊥ then _ else _ = ⊥
★if nil then _ else _ = nil

★if true then𝑥 else _ = 𝑥
★if false then _ else 𝑥 = 𝑥
★if _ then _ else _ = ⊥ otherwise

The Semantics of Expressions. The semantics of an expression 𝑒 is defined in Figure 2. It is defined

using two auxiliary functions. If 𝜌 : env (𝑉 ) and 𝛾 : genv (𝑉 , 𝑆) are local and global environments

respectively, ⟦𝑒⟧Init𝜌,𝛾 : 𝑆 denotes the initial state and ⟦𝑒⟧Step𝜌,𝛾 : 𝑆 → 𝑉★ × 𝑆 the transition function.

⟦𝑒⟧𝜌,𝛾 = CoF (𝑓 , 𝑠) where 𝑓 = ⟦𝑒⟧Step𝜌,𝛾 and 𝑠 = ⟦𝑒⟧Init𝜌,𝛾

To make the notation lighter, 𝛾 is left implicit whenever possible.

Consider first the semantics of a unit delay 𝑐 fby 𝑒 initialized with a constant 𝑐 given in Figure 2.

The initial state is of the form (𝑐, 𝑠) if 𝑠 is the initial state for 𝑒 . The transition function takes a state

which is a pair (𝑚, 𝑠); it returns𝑚 and a new state ⟦𝑒⟧Step𝜌 (𝑠). The uninitialized delay pre 𝑒 follows
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⟦𝑐 fby 𝑒⟧Init𝜌 = (𝑐, ⟦𝑒⟧Init𝜌 )
⟦𝑐 fby 𝑒⟧Step𝜌 = 𝜆(𝑚, 𝑠).(𝑚, ⟦𝑒⟧Step𝜌 (𝑠))
⟦pre 𝑒⟧Init𝜌 = (nil, ⟦𝑒⟧Init𝜌 )
⟦pre 𝑒⟧Step𝜌 = 𝜆(𝑚, 𝑠).(𝑚, ⟦𝑒⟧Step𝜌 (𝑠))
⟦𝑥⟧Init𝜌 = ()

⟦𝑥⟧Step𝜌 = 𝜆𝑠.(𝜌 (𝑥), 𝑠)
⟦𝑐⟧Init𝜌 = ()

⟦𝑐⟧Step𝜌 = 𝜆𝑠.(𝑐, 𝑠)
⟦(𝑒1, 𝑒2)⟧Init𝜌 = (⟦𝑒1⟧Init𝜌 , ⟦𝑒2⟧Init𝜌 )

⟦(𝑒1, 𝑒2)⟧Step𝜌 = 𝜆(𝑠1, 𝑠2) .let 𝑣1, 𝑠′
1
= ⟦𝑒1⟧Step𝜌 (𝑠1) in

let 𝑣2, 𝑠′
2
= ⟦𝑒2⟧Step𝜌 (𝑠2) in

((𝑣1, 𝑣2), (𝑠′
1
, 𝑠′
2
))

⟦𝑓 (𝑒)⟧Init𝜌 = ⟦𝑒⟧Init𝜌

⟦𝑓 (𝑒)⟧Step𝜌,𝛾 = 𝜆𝑠.let 𝑣, 𝑠′ = ⟦𝑒⟧Step𝜌 (𝑠) in
((★𝛾 (𝑓 ) 𝑣), 𝑠′)

⟦𝑓 (𝑒)⟧Init𝜌 = (fs, ⟦𝑒⟧Init𝜌 )
where 𝛾 (𝑓 ) = CoP (ft, fs)

⟦𝑓 (𝑒)⟧Step𝜌,𝛾 = 𝜆(𝑚, 𝑠) .let 𝑣, 𝑠′ = ⟦𝑒⟧Step𝜌 (𝑠) in
let 𝑟,𝑚′ = ft𝑚 𝑣 in
(𝑟, (𝑚′, 𝑠′))

where 𝛾 (𝑓 ) = CoP (ft, fs)

⟦let node 𝑓 𝑥 = 𝑒⟧𝜌 = 𝜌 + [CoP (ft, fs)/𝑓 ]
where fs = ⟦𝑒⟧Init

𝜌+[⊥/𝑥 ]
and ft = 𝜆𝑠, 𝑣 .⟦𝑒⟧Step

𝜌+[𝑣/𝑥 ] (𝑠)

⟦let 𝑓 = 𝑒⟧𝜌 = 𝜌 + [𝑣/𝑓 ] where 𝑣 = ⟦𝑒⟧𝜌
Fig. 2. The Semantics of Expressions

the same principle but for the initial value of the state, it is set to nil. When the two arguments of a

delay are streams, that is, 𝑒1 fby 𝑒2, the encoding can be:

⟦𝑒1 fby 𝑒2⟧Init𝜌 = (None, ⟦𝑒1⟧Init𝜌 , ⟦𝑒2⟧Init𝜌 )
⟦𝑒1 fby 𝑒2⟧Step𝜌 = 𝜆(𝑚, 𝑠1, 𝑠2).let 𝑣1, 𝑠′1 = ⟦𝑒1⟧Step𝜌 (𝑠1) in

let 𝑣2, 𝑠′2 = ⟦𝑒2⟧Step𝜌 (𝑠2) in (𝑚 init 𝑣1, (Some(𝑣2), 𝑠′1, 𝑠′2))

with: 𝑚 init 𝑣 = match𝑚 with None → 𝑣 | Some(𝑣) → 𝑣

Note that in the definition above, let 𝑣1, 𝑠′1 = ⟦𝑒1⟧Step𝜌 𝑠1 in . . . is a notation at the meta (semantics)

level. It defines a value for the pair (𝑣1, 𝑠′1) which equals, by definition, that of ⟦𝑒1⟧Step𝜌 𝑠1.

The initial state ⟦𝑥⟧Init𝜌 for a variable 𝑥 is () while the step function is 𝜆𝑠.(𝜌 (𝑥), 𝑠). The initial
state for a constant 𝑐 is also () and the step function is simply 𝜆𝑠.(𝑐, 𝑠). For a pair (𝑒1, 𝑒2), the initial
state is the pair of initial states for 𝑒1 and 𝑒2; the step function steps into 𝑒1 and 𝑒2. The semantics

for an application 𝑓 (𝑒) has two cases. When 𝑓 is a combinational function, we simply apply the

value of 𝑓 to the current input. When 𝑓 is a sequential machine CoP (ft, fs), we follow the definition

of the synchronous application apply(.) (.): the initial state is made of the initial state of 𝑓 and the

initial state of the argument. The step function applies the step function ft to its current state and

input. Finally, the semantics of a node definition is a value CoP (ft, fs).

Activation Conditions and Reset. The semantics of the two forms of conditionals of the ker-

nel language are given in Figure 3. The if . then . else . executes both branches whereas

when . then . else . executes one branch according to the value of the condition. The later one is

called the “activation condition” in Scade [27]. The two constructs differ when their body contain

stateful computations. E.g.:

1 let node from () returns (nat)

2 nat = 0 fby (nat + 1)

4 let node f() =

5 let rec half = true fby not half in

6 if half then (from 0) else 0

1 let node g() =

2 let rec half = true fby not half in

3 when half then (from 0) else 0
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While 𝑓 produces the sequence 0 0 2 0 4 0 6..., 𝑔 produces the sequence 0 0 1 0 2 0 3 0 4....

The reset operator reset 𝑒1 every 𝑒2 executes the body 𝑒1 at every step but restarts from the

initial state whenever 𝑒2 is true [23].

⟦if 𝑒 then 𝑒1 else 𝑒2⟧Init𝜌 = (⟦𝑒⟧Init𝜌 , ⟦𝑒1⟧Init𝜌 , ⟦𝑒2⟧Init𝜌 )
⟦if 𝑒 then 𝑒1 else 𝑒2⟧Step𝜌 = 𝜆(𝑠, 𝑠1, 𝑠2).let 𝑣, 𝑠 = ⟦𝑒⟧Step𝜌 (𝑠) in let 𝑣1, 𝑠′

1
= ⟦𝑒1⟧Step𝜌 (𝑠1) in

let 𝑣2, 𝑠′
2
= ⟦𝑒2⟧Step𝜌 (𝑠2) in

((★if 𝑣 then 𝑣1 else 𝑣2), (𝑠, 𝑠′
1
, 𝑠′
2
))

⟦when 𝑒 then 𝑒1 else 𝑒2⟧Init𝜌 = (⟦𝑒⟧Init𝜌 , ⟦𝑒1⟧Init𝜌 , ⟦𝑒2⟧Init𝜌 )
⟦when 𝑒 then 𝑒1 else 𝑒2⟧Step𝜌 = 𝜆(𝑠, 𝑠1, 𝑠2).let 𝑣, 𝑠 = ⟦𝑒⟧Step𝜌 (𝑠) in

★if 𝑣 then let 𝑣1, 𝑠′
1
= ⟦𝑒1⟧Step𝜌 (𝑠1) in (𝑣1, (𝑠, 𝑠′

1
, 𝑠2))

else let 𝑣2, 𝑠′
2
= ⟦𝑒2⟧Step𝜌 (𝑠2) in (𝑣2, (𝑠, 𝑠1, 𝑠′

2
))

⟦reset 𝑒1 every 𝑒2⟧Init𝜌 = (⟦𝑒1⟧Init𝜌 , ⟦𝑒2⟧Init𝜌 )
⟦reset 𝑒1 every 𝑒2⟧Step𝜌 = 𝜆(𝑠1, 𝑠2).let 𝑣2, 𝑠′

2
= ⟦𝑒2⟧Step𝜌 (𝑠2) in

let 𝑠′
1
=★if 𝑣2 then ⟦𝑒1⟧Init𝜌 else 𝑠1 in

let 𝑣1, 𝑠1 = ⟦𝑒1⟧Step𝜌 (𝑠′
1
) in (𝑣1, (𝑠1, 𝑠′

2
))

Fig. 3. Activation Conditions and the Reset

Equations and Local Definitions. The final two constructs to consider are the local definitions

let 𝐸 in 𝑒 and let rec 𝐸 in 𝑒 where 𝐸 is a set of equations. For that, we need auxiliary definitions.

If 𝐸 is an equation, 𝜌 is an environment, ⟦𝐸⟧Init𝜌 is the initial state and ⟦𝐸⟧Step𝜌 is the step function.

The semantics of an equation 𝑒𝑞 is:

⟦𝐸⟧𝜌 = ⟦𝐸⟧Init𝜌 , ⟦𝐸⟧Step𝜌

If 𝑝 is a pattern and 𝑣 is a value, [𝑣 |𝑝] builds the environment by matching 𝑣 by 𝑝 such that:

[𝑣 |𝑥] = [𝑣/𝑥]
[(𝑣1, 𝑣2) | (𝑝1, 𝑝2)] = [𝑣1 |𝑝1] + [𝑣2 |𝑝2]
[𝑣 |𝑝] = ⊥ otherwise

+ is the union of two environments provided their domains do not intersect (otherwise, it returns

⊥). 10 We also need two auxiliary functions. Def (𝐸) returns the set of names defined by 𝑒𝑞. ∥𝐸∥ is
the number of elements of Def (𝐸).

Def (𝑝 = 𝑒) = Vars(𝑝)
Def (𝐸1 and𝐸2) = Def (𝐸1) ∪ Def (𝐸2)

Vars(()) = ∅
Vars((𝑥1, ..., 𝑥𝑛)) = {𝑥1, ..., 𝑥𝑛}

The semantics of equations and local definitions is given in Figure 4. The initial state of an

equation 𝑝 = 𝑒 is that of 𝑒 . The step function returns an environment which associates a value to

every variable from pattern 𝑝 . The initial state of a parallel composition 𝐸1 and𝐸2 is the pair of
initial states of 𝐸1 and 𝐸2. The step function returns an environment which compose that of 𝐸1 and

that of 𝑒𝑞2. For a recursive definition let rec 𝐸 in 𝑒 , a bounded fix-point is computed. The number

of iteration is at most 𝑛 + 1 if 𝑛 is the number of variables defined by 𝐸. The semantics for local

(possibly recursive) declarations consists in computing at every step, the current values defined by

𝑒𝑞 then the expression 𝑒 .

As an example, count(z, r) counts the number of instants z is true between two occurrences of

r. periodic() returns a periodic Boolean signal with period 42.

10
In the actual implementation, it is encoded as an error.
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⟦𝑝 = 𝑒⟧Init𝜌 = ⟦𝑒⟧Init𝜌

⟦𝑝 = 𝑒⟧Step𝜌 = 𝜆𝑠.let 𝑣, 𝑠′ = ⟦𝑒⟧Step𝜌 (𝑠) in ( [𝑣 |𝑝], 𝑠′)
⟦𝐸1 and𝐸2⟧Init𝜌 = (⟦𝐸1⟧Init𝜌 , ⟦𝐸2⟧Init𝜌 )
⟦𝐸1 and𝐸2⟧Step𝜌 = 𝜆(𝑠1, 𝑠2) .let 𝜌1, 𝑠′

1
= ⟦𝐸1⟧Step𝜌 (𝑠1) in let 𝜌2, 𝑠′

2
= ⟦𝐸2⟧Step𝜌 (𝑠2) in (𝜌1 + 𝜌2, (𝑠′

1
, 𝑠′
2
))

⟦𝐸⟧rec𝜌 = 𝜆𝑠.feedback (∥𝐸∥ + 1) (𝜆𝑠, 𝜌′ .⟦𝐸⟧Step
𝜌+𝜌 ′ (𝑠)) (𝑠)

⟦let 𝐸 in 𝑒⟧Init𝜌 = (⟦𝐸⟧Init𝜌 , ⟦𝑒⟧Init
𝜌+[⊥𝑁 /𝑁 ] ) with 𝑁 = Def (𝐸)

⟦let 𝐸 in 𝑒⟧Step𝜌 = 𝜆(𝑠1, 𝑠2) .let 𝜌′, 𝑠′
1
= ⟦𝐸⟧Step𝜌 (𝑠1) in let 𝑣 ′, 𝑠′

2
= ⟦𝑒′⟧Step

𝜌+𝜌 ′ (𝑠2) in (𝑣 ′, (𝑠′
1
, 𝑠′
2
))

⟦let rec 𝐸 in 𝑒⟧Init𝜌 = (⟦𝐸⟧Init𝜌 , ⟦𝑒⟧Init
𝜌+[⊥𝑁 /𝑁 ] ) with 𝑁 = Def (𝐸)

⟦let rec 𝐸 in 𝑒⟧Step𝜌 = 𝜆(𝑠1, 𝑠2) .let 𝜌′, 𝑠′
1
= ⟦𝐸⟧rec𝜌 (𝑠1) in let 𝑣 ′, 𝑠2 = ⟦𝑒⟧Step

𝜌+𝜌 ′ (𝑠2) in (𝑣 ′, (𝑠′
1
, 𝑠′
2
))

Fig. 4. Equations and Local Definitions

1 let node count(z, r) =

2 reset

3 let rec o = if z then 1 else 0

4 and cpt = o -> pre cpt + o in o

5 every r

1 let node periodic() returns (ok)

2 v = count(true, false fby (v = 41))

3 and ok = (v = 1)

4 let node deadlock() returns ok

5 v = count(true, v = 41) and ok = (v = 1)

If the initialized delay . fby . in the definition of periodic is removed, we get a deadlock, that

is, the value for v and ok is bottom. Indeed, starting with the initial environment [⊥/𝑣,⊥/𝑜𝑘], the
fix-point is reached in one iteration because the step function of count(z, r) returns ⊥.

2.4 Dealing with Errors
The type of concrete streams coStr (𝑉★, 𝑆) is sufficient to define the semantics of an expression.

All errors, type or run-time errors are all represented by the value ⊥ (cf. [50], page 235). Yet, this

solution is not satisfactory because ⊥ is intended to model an expression that deadlocks. A better

one is to distinguish the different errors with different values. Several solutions are possible. The

set of extended values 𝑉★
can be complemented with two values, tyerr and err [50]; the first being

returned when the actual entry of a function is not in its domain; the second is any kind of run-time

error (e.g., division by zero). Taking 𝑣+ instead of 𝑣★ forces all errors to propagate to the top.

𝑣★ ::= . . . | tyerr | err 𝑣+ ::= 𝑣★ | tyerr | err

The set of values 𝑉★
is extended withTyErr and Err with tyerr ∈ TyErr and err ∈ Err . Errors and

values are incomparable with each others and ⊥ stay the minimal element. The lifting function
★

is extended to propagate those errors (cf. [50], page 235). The definition for concrete streams and

length preserving function stay the same. With this representation, it is possible to have a stream

process that produces a value containing an error at some instant 𝑛 ∈ N but this error is discarded

because it is not used to compute the result. E.g., let 𝑥 = 1/true in 0.
An alternative that is followed in the implementation associated to the present material is to

force the execution to stop whenever an error occurs. If Result (𝑉 , 𝐸) = 𝑉 + 𝐸 and 𝐸 = TyErr + Err ,
a concrete stream becomes:

CoF : ∀𝑆,𝑉 , 𝐸.(𝑆 → Result (𝑉★ × 𝑆, 𝐸)) × 𝑆 → coStrEr (𝑉★, 𝑆, 𝐸)

and a sequential machine:

CoP : ∀𝑆,𝑉 , 𝐸.(𝑆 → 𝑉★ → Result (𝑉★ × 𝑆, 𝐸)) × 𝑆 → sNodeError (𝑉★,𝑉★, 𝑆, 𝐸)
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When an error 𝑒 occurs, the transition function does not returns a value and a new state but stops

with an error value. In order to propagate errors, we use a simple result monad (https://v2.ocaml.

org/api/Result.html) with a data-type defined with the two constructors Ok(.) : 𝑉 → Result (𝑉 , 𝐸)
and Error (.) : 𝐸 → Result (𝑉 , 𝐸):

let bind 𝑒 𝑓 = match 𝑒 with Ok(𝑣) → 𝑓 𝑣 | Error (_) → 𝑒 let return 𝑣 = Ok(𝑣)
let error 𝑣 = Error (v)

Defining let★ 𝑥 = 𝑒1 in 𝑒2 as a shortcut for bind (𝑒1) (𝜆𝑥 .𝑒2), the definitions of the semantics function

⟦.⟧.. needs only small changes. Returning a result (𝑣, 𝑠) is now written return(𝑣, 𝑠). A local definition

let 𝑣, 𝑠′ = ⟦𝑒⟧Step𝜌 (𝑠) in . . . is now written let★ 𝑣, 𝑠′ = ⟦𝑒⟧Step𝜌 (𝑠) in . . . 11

3 LANGUAGE EXTENSIONS
We now consider two main extensions of the language kernel. The first extends the set of equations

with local declarations and a by-case definition for streams with an implicit rule for missing

equations; the second extends them with hierarchical automata, a major increase in expressiveness

based on [24, 25].

3.1 Local Blocks with Last/Default Values and By-case Definitions of Streams
Equations are extended with two constructs. Local declarations of a variable and a pattern-matching

construction which allows for defining streams by case.

𝐸 ::= . . . | () | local loc in𝐸 | match 𝑒 with 𝑝𝑎𝑡 → 𝐸 | ... | 𝑝𝑎𝑡 → 𝐸 end
𝑝𝑎𝑡 ::= 𝐶𝑛 (𝑥, ..., 𝑥) | 𝐶0

loc ::= 𝑥 | 𝑥 init 𝑒 | 𝑥 default 𝑒

Expressions are extended with a construct to access the last value of a stream:

𝑒 ::= ... | last𝑥

() is the empty equation; it defines no variable. The construct local loc in𝐸 declares a variable to

be local in 𝐸. loc can be a simple variable (𝑥 ); it can have a default value (𝑥 default 𝑒); its previous
value last𝑥 can be initialized (𝑥 init 𝑒). 𝑝𝑎𝑡 define a pattern. It is either a constructor 𝐶0

(arity

is zero) or of the form 𝐶𝑛 (𝑥1, ..., 𝑥𝑛) (arity is 𝑛). An equation can be a pattern matching construct

match 𝑒 with 𝑝𝑎𝑡1 → 𝐸1 ... 𝑝𝑎𝑡𝑛 → 𝐸𝑛 end. The active set of equations is 𝐸𝑖 if 𝑒𝑖 evaluates to a

value 𝑣 and 𝑝𝑎𝑡𝑖 is the first pattern that matches 𝑣 .

The set of values 𝑣 is extended with constructors. The definition of environments is adapted to

associate a default or initial value to a variable.

𝑎 ::= . . . | 𝐶0 | 𝐶𝑛 (𝑎, ..., 𝑎) 𝜌 ::= 𝜌 + [𝑣★/𝑥] | 𝜌 + [𝑣★/default 𝑥] | [𝑣★/last 𝑥] | []

To deal with incomplete definitions of a stream, 𝜌 by 𝜌 ′ is the completion of 𝜌 with default or initial

values from 𝜌 ′. The function will be used such that defined names in 𝜌 are not defined in 𝜌 ′.

𝜌 by [] = 𝜌

𝜌 by (𝜌 ′ + [𝑣/default 𝑥]) = (𝜌 + [𝑣/𝑥]) by 𝜌 ′
𝜌 by (𝜌 ′ + [𝑣/last 𝑥]) = (𝜌 + [𝑣/𝑥]) by 𝜌 ′
𝜌 by (𝜌 ′ + [𝑣/𝑥]) = 𝜌 by 𝜌 ′

11
The let★ notation is borrowed from OCaml (https://v2.ocaml.org/manual/bindingops.html). It corresponds to the “do”

notation of Haskell and Coq.
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The Last Computed Value. The language of expressions is extended with the construction last𝑥 .
If 𝑥 is a local variable, last𝑥 contains the previous defined value of 𝑥 in its scope:

⟦last𝑥⟧Init𝜌 = () ⟦last𝑥⟧Step𝜌 = 𝜆𝑠.(𝜌 (last 𝑥), 𝑠)

The initial state associated to last𝑥 is empty (that is, ()). The step function returns the current

value of last𝑥 in 𝜌 at every instant. To illustrate the by-case definition of streams, consider the

following example on the left:

1 let node count(u) returns (i, d)

2 li = 0 fby i and ld = 0 fby d

3 and match x with

4 | Incr -> do i = li + 1 and d = ld done

5 | Zero -> do i = 0 and d = ld done

6 | Decr -> do d = ld + 1 and i = li done

7 end

1 let node count(u)

2 returns (i init 0, d init 0)

3 match x with

4 | Incr -> do i = last i + 1 done

5 | Zero -> do i = 0 done

6 | Decr -> do d = last d + 1 done

7 end

Given input u, count(u) produces two output streams i and d. In the version on the left, a

definition for all stream is given in each branch. This makes the code overly verbose. It is equiv-

alent to the program on the right: when a definition is missing in a branch of a conditional

for a variables that is declared as a state variable (e.g., i in branch Incr), its value is implicitly

kept (that is, i = last i). The declaration i init 0 states that last i is initialized with value

0. Blocks with last and default values allow for writting less verbose code. For example, they

allow to define pure signals of Esterel: a pure signal is a Boolean stream whose default value

is false. Taking the convention that the conditional over equations if 𝑒 then 𝐸1 else 𝐸2 is

a shortcut for match 𝑒 with true → 𝐸1 | false → 𝐸2 end and if 𝑒 then 𝐸, a shortcut for

match 𝑒 with true → 𝐸 | false → () end, the P13 example of Esterel is written on the right.

1 (* Esterel primer v5.91, Berry *)

2 module P13:

3 input I;

4 output O1, O2;

5 present I then

6 present O2 then emit O1 end

7 else

8 present O1 then emit O2 end

9 end present

10 end module

1 let node p13(i) returns

2 (o1 default false, o2 default false)

3 if i then

4 if o2 then o1 = true

5 else

6 if o1 then o2 = true

8 let node p13_verbose(i) returns (o1, o2)

9 if i then

10 do if o2 then o1 = true else o1 = false

11 and o2 = false done

12 else

13 do if o1 then o2 = true else o2 = false

14 and o1 = false done

The data-flow version for p13 (and its verbose version p13_verbose) is a perfectly valid Scade def-

inition. In particular, it passes all the static checks, including the type-based causality implemented

by the compiler.

The semantics for equations with local variables and control structures is given in Figure 5. For

the declaration local𝑥 in𝐸 of a local variable 𝑥 in an equation 𝐸, the semantics is that of 𝐸 but

removing the entry 𝑥 from the resulting environment 𝜌 . For the declaration local𝑥 default 𝑒 in𝐸
of a local variable with a default value, the semantics is that of a local declaration except that

the environment is extended with a default value for 𝑥 . For the declaration local𝑥 init 𝑒 in𝐸
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⟦()⟧Init𝜌 = ()

⟦()⟧Step𝜌 = 𝜆𝑠.( [], 𝑠)
⟦local𝑥 in𝐸⟧Init𝜌 = ⟦𝐸⟧Init𝜌

⟦local𝑥 in𝐸⟧Step𝜌 = 𝜆𝑠.let 𝜌′, 𝑠′ = ⟦𝐸⟧rec𝜌 (𝑠) in (𝜌′\𝑥, 𝑠′)

⟦local𝑥 default 𝑒 in𝐸⟧Init𝜌 = (⟦𝑒⟧Init𝜌 , ⟦𝐸⟧Init𝜌 )
⟦local𝑥 default 𝑒 in𝐸⟧Step𝜌 = 𝜆(𝑠1, 𝑠2) .let 𝑣, 𝑠′

1
= ⟦𝑒⟧Step𝜌 (𝑠1) in

let 𝜌′, 𝑠′
2
= ⟦𝐸⟧rec

𝜌+[𝑣/default 𝑥 ] (𝑠2) in (𝜌
′\𝑥, (𝑠′

1
, 𝑠′
2
))

⟦local𝑥 init 𝑒 in𝐸⟧Init𝜌 = (None, ⟦𝑒⟧Init𝜌 , ⟦𝐸⟧Init𝜌 )
⟦local𝑥 init 𝑒 in𝐸⟧Step𝜌 = 𝜆(𝑚, 𝑠1, 𝑠2).let 𝑣, 𝑠′

1
= ⟦𝑒⟧Step𝜌 (𝑠1) in

let 𝜌′, 𝑠′
2
= ⟦𝐸⟧rec

𝜌+[𝑚 init 𝑣/last 𝑥 ] (𝑠2) in
(𝜌′\𝑥, (𝜌′ (𝑥), 𝑠′

1
, 𝑠′
2
))

⟦match 𝑒 with (𝑝𝑎𝑡𝑖 → 𝐸𝑖 )𝑖∈[1..𝑛] end⟧Init𝜌 = (⟦𝑒⟧Init𝜌 , ⟦𝐸1⟧Init𝜌 , ..., ⟦𝐸𝑛⟧Init𝜌 )
⟦match 𝑒 with (𝑝𝑎𝑡𝑖 → 𝐸𝑖 )𝑖∈[1..𝑛] end⟧

Step
𝜌 =

𝜆(𝑠, 𝑠1, ..., 𝑠𝑛) .let 𝑣, 𝑠′ = ⟦𝑒⟧Step𝜌 (𝑠) in★match 𝑣 with(
𝑝𝑎𝑡𝑖 → let 𝜌𝑖 , 𝑠′𝑖 = ⟦𝐸𝑖⟧Step𝜌+[𝑣 |𝑝𝑎𝑡𝑖 ] (𝑠𝑖 ) in

𝜌𝑖 by (𝜌 [𝑁 \𝑁𝑖 ]), (𝑠′, (𝑠1, ..., 𝑠′𝑖 , ..., 𝑠𝑛))

)
𝑖∈[1..𝑛]

where 𝑁 = ∪𝑖∈[1..𝑛] (𝑁𝑖 ) and 𝑁𝑖 = Def (𝐸𝑖 )
Fig. 5. Semantics of Equations, Blocks and By-case Definitions

of a state variable 𝑥 initialized with some value 𝑒 , it is necessary to store the current value of

𝑥 . The value of last 𝑥 is the value stored in the state. When 𝑒 has never been computed, the

state is initialized with None, the same way it is done for the construction . fby .. Indeed, a

block declaration local𝑥 init 𝑒 in𝐸 has the meaning of local𝑥 in𝐸 [lx/last𝑥] and lx = 𝑒 fby 𝑥
where lx is a fresh name, a feature introduced in [25].

The semantics for a conditional match . with . end must consider the case where a branch

defines a value for a variable x in one branch but not in the other branch (e.g., example P13). We

take the following convention. When a definition for 𝑥 is missing in a branch, 𝑥 takes the default

value defined in the current environment in case 𝑥 have a definition in one other branch. Hence,

the environment produced by the branch is in fact 𝜌𝑖 completed with default values that are defined

in 𝜌 . Only the names in 𝑁 , that is, the union of names defined in the conditional minus those of

the current branch are taken, that is, 𝜌𝑖 by (𝜌 [𝑁 \𝑁𝑖 ]). When the variable is defined with a default

value (𝑥 default 𝑒), 𝑥 takes the value of default𝑥 in the environment. Otherwise, 𝑥 = last𝑥 . In
case 𝑥 is declared with a last value (𝑥 init 𝑒), it 2 takes the value of last𝑥 . In case, no initial value

is given, the default value is initialized with nil.
In the count example given previously, when x = Zero, d implicitly keep its previous value, i.e.,

d = last d. Here, [0/𝑖] by [𝑣1/last 𝑖, 𝑣2/last 𝑑] = [0/𝑖, 𝑣2/𝑑].

3.2 Hierarchical State Machines with Parameters
The language of equations is now extended with hierarchical state machines. The ones we consider

(both the notation, semantics and compilation) were introduced in [24, 25]. A simple example given

in Figure 6 is the relay controller (the first state Low is the initial state). The second is a controller with

two modes nominal and failsafe that compute an output o. When observe(i, o) is true, the second

mode is entered with an initial value. Appendix available at https://zelus.di.ens.fr/zrun/emsoft2023
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1 let node relay(low, high, u)

2 returns (o)

3 automaton

4 | Low -> do o = false

5 unless (u <= low) then High

6 | High -> do o = true

7 unless (u >= high) then Low

8 end

1 let node controller(i, u) returns (o)

2 automaton

3 | Nominal -> local err in

4 do o = nominal(i, u)

5 and err = observe(i, o)

6 until err then Failsafe(i, o)

7 | Failsafe(i, v) -> do o = fail(i, v, u) done

8 end

Fig. 6. Automata with Parameters

show the Esterel clock watch. Scade automata build on a synchronous interpretation [3] of the

Statecharts [33]. An automaton is defined by a finite set of states, a sequence of transitions between

states that can be by “reset” or by “history”; “weak” or “strong”. Compared to [25], we consider

a small generalisation of automata where states can be parameterized [24], a language feature

implemented in Lucid Synchrone [49] and Zélus [19]. It is a useful feature to transmit informations

between states of an automaton which, otherwise, would need shared variables, a less elegant

solution. We consider it because it semantics is not longer nor more complex than the simpler

situation where all states are non parameterized. The syntax is extended in the following way.

𝐸 ::= . . . | automaton (𝐴(𝑝) → 𝑢 tr)+ init 𝑠𝑒
𝑢 ::= local loc in𝑢 | do 𝐸

tr ::= until 𝑡∗ | unless 𝑡∗
𝑡 ::= 𝑒 then 𝐴(𝑒, ..., 𝑒) | 𝑒 continue 𝐴(𝑒, ..., 𝑒)
𝑠𝑒 ::= 𝐴(𝑒, . . . , 𝑒) | if 𝑒 then 𝑠𝑒 else 𝑠𝑒

𝑡∗ stands for the repetition of a transition 𝑡 (𝜖 denotes the empty repetition). Transitions can be

weak (until 𝑡∗) or strong (unless 𝑡∗). Each transition can reset the target state (𝑒 then 𝐴(𝑒, ..., 𝑒) )
or enter by history (𝑒 continue 𝐴(𝑒, ..., 𝑒) ). When the list of parameters (or arguments) of a state

𝐴 is empty, we write 𝐴 instead of 𝐴(). The initialization state expression 𝑠𝑒 does not need to be

given (the notation is simply automaton (𝐴𝑖 (𝑝𝑖 ) → 𝑢𝑖 tr𝑖 )𝑖∈[0..𝑛] ). In that case, 𝑠𝑒 = 𝐴0 () where
𝐴0 is the first state name in the list.

The semantics of hierarchical automata is defined in Figures 7, 8 and 9. Figure 7 defines the initial

state for all the elements of an automaton and the step function. The step function of an automaton

takes a memory state (𝑠, 𝑣, 𝑟, 𝑠𝑢, 𝑠𝑤) and returns a new one. The intuition is that the initial state for

the transition function of an automaton is of the form (𝑠,None, false, (𝑠𝑢1, . . . , 𝑠𝑢𝑛), (𝑠𝑤1, . . . , 𝑠𝑤𝑛))
where 𝑠 is the state used to compute the current value of 𝑠𝑒 . None means that the initial state of

the automaton is unknown (exactly as for a fby). false means that the current active state of the

automaton does not need to be reset. (𝑠𝑢1, ..., 𝑠𝑢𝑛) is the initial state associated to the bodies 𝑢𝑖 ;

(𝑠𝑤1, ..., 𝑠𝑤𝑛) is the initial memory for the transitions 𝑡𝑖 (𝑠𝑤 stands for the state of weak transitions;

𝑠𝑠 will stands for the state of strong transitions).

The step function of an automaton takes a state (𝑠, 𝑣, 𝑟, 𝑠𝑢, 𝑠𝑤) and returns a new one. It uses an

auxiliary function:

⟦(𝐴𝑖 (𝑝𝑖 ) → 𝑢𝑖 tr𝑖 )𝑖∈[1..𝑛]⟧𝑣,𝑟𝜌 (𝑠𝑢, 𝑠𝑤)

Given 𝑣 the current active state of the automaton (of the form 𝐴𝑖 (𝑝𝑖 )), the reset bit 𝑟 , the memory

state 𝑠𝑢 for the body of the automaton (𝑢𝑖 )𝑖∈[1..𝑛] and 𝑠𝑤 for transitions (tr𝑖 )𝑖∈[1..𝑛] , it returns an
environment 𝜌 , a new state name 𝑣 ′, a new reset name 𝑟 ′, and a new memory state (𝑠𝑢′, 𝑠𝑤 ′).
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⟦automaton (𝐴𝑖 (𝑝𝑖 ) → 𝑢𝑖 tr𝑖 )𝑖∈[1..𝑛] init 𝑠𝑒⟧Init𝜌 =

let 𝑠′ = ⟦𝑠𝑒⟧Init𝜌 in
let (𝑠𝑢′

𝑖
= ⟦𝑢𝑖⟧Init𝜌 )𝑖∈[1..𝑛] in let (𝑠𝑤 ′

𝑖
= ⟦tr𝑖⟧Init𝜌 )𝑖∈[1..𝑛] in (𝑠′,None, false, (𝑠𝑢′1, . . . , 𝑠𝑢

′
𝑛), (𝑠𝑤 ′

1
, . . . , 𝑠𝑤 ′

𝑛))

⟦automaton (𝐴𝑖 (𝑝𝑖 ) → 𝑢𝑖 tr𝑖 )𝑖∈[1..𝑛] init 𝑠𝑒⟧
Step
𝜌 (𝑠, 𝑣, 𝑟, 𝑠𝑢, 𝑠𝑤) =

let𝑤, 𝑠′ = ⟦𝑠𝑒⟧Step𝜌 (𝑠) in
let 𝑣 ′ = 𝑣 init 𝑤 in let (𝜌, 𝑣, 𝑟 ′), (𝑠𝑢′, 𝑠𝑤 ′) = ⟦(𝐴𝑖 (𝑝𝑖 ) → 𝑢𝑖 tr𝑖 )𝑖∈[1..𝑛]⟧𝑣

′,𝑟
𝜌 (𝑠𝑢, 𝑠𝑤) in

(𝜌, (𝑠′, Some(𝑣), 𝑟 ′, 𝑠𝑢′, 𝑠𝑤 ′))

Fig. 7. The Semantics of Hierarchical Automata (I) — the initial state

⟦(𝐴𝑖 (𝑝𝑖 ) → 𝑢𝑖 until 𝑡
∗
𝑖
)𝑖∈[1..𝑛]⟧𝑣,𝑟𝜌 ((𝑠𝑢1, . . . , 𝑠𝑢𝑛), (𝑠𝑤1, . . . , 𝑠𝑤𝑛)) =

★match 𝑣 with©­­«
𝐴𝑖 (𝑝𝑖 ) → let 𝜌′, 𝑠𝑢′

𝑖
= ⟦𝑢𝑖⟧𝑟𝜌+[𝐴𝑖 (𝑝𝑖 ) |𝑣 ] (𝑠𝑢𝑖 ) in

let (𝑣 ′, 𝑟 ′), 𝑠𝑤 ′
𝑖
= ⟦𝑡∗

𝑖
⟧𝑣,𝑟
𝜌+[𝐴𝑖 (𝑝𝑖 ) |𝑣 ]+𝜌 ′ (𝑠𝑤𝑖 ) in

(𝜌, (𝑣 ′, 𝑟 ′, (𝑠𝑢1, . . . , 𝑠𝑢′𝑖 , . . . , 𝑠𝑢𝑛), (𝑠𝑤1, . . . , 𝑠𝑤
′
𝑖
, . . . , 𝑠𝑤𝑛)))

ª®®¬𝑖∈[1..𝑛]
⟦(𝐴𝑖 (𝑝𝑖 ) → 𝑢𝑖 unless 𝑡

∗
𝑖
)𝑖∈[1..𝑛]⟧𝑣,𝑟𝜌 ((𝑠𝑢1, . . . , 𝑠𝑢𝑛), (𝑠𝑠1, . . . , 𝑠𝑠𝑛)) =

let (𝑣 ′, 𝑟 ′, (𝑠𝑠′
1
, . . . , 𝑠𝑠′𝑛)) =

★match 𝑣 with
(
𝐴𝑖 (𝑝𝑖 ) → let (𝑣 ′, 𝑟 ′), 𝑠𝑠′

𝑖
= ⟦𝑡∗

𝑖
⟧𝑣,𝑟
𝜌+[𝐴𝑖 (𝑝𝑖 ) |𝑣 ] (𝑠𝑠𝑖 ) in (𝑣

′, 𝑟 ′, (𝑠𝑠1, . . . , 𝑠𝑠′𝑖 , . . . , 𝑠𝑠𝑛))
)
𝑖∈[1..𝑛]

in★match 𝑣 ′ with(
𝐴𝑖 (𝑝𝑖 ) → let 𝜌′, 𝑠𝑢′

𝑖
= ⟦𝑢𝑖⟧𝑟

′

𝜌+[𝐴𝑖 (𝑝𝑖 ) |𝑣′ ] (𝑠𝑢𝑖 ) in
(𝜌′, (𝑣 ′, 𝑟 ′, (𝑠𝑢1, . . . , 𝑠𝑢′𝑖 , . . . , 𝑠𝑢𝑛), (𝑠𝑠

′
1
, . . . , 𝑠𝑠′𝑛)))

)
𝑖∈[1..𝑛]

Fig. 8. The Semantics of Hierarchical Automata (II) — the step function

To define this function, we need an auxiliary function. Given a body 𝑢, a reset condition 𝑟 , an

environment 𝜌 and state 𝑠 , ⟦𝑢⟧𝑟𝜌 (𝑠) resets 𝑢 when 𝑟 is true, that is:

⟦𝑢⟧𝑟𝜌 (𝑠) = ⟦𝑢⟧Step𝜌 (if 𝑟 then ⟦𝑢⟧Init𝜌 else 𝑠)
Given a transition 𝑡 , a state value 𝑣 of an automaton, a reset condition 𝑟 :

⟦𝑡⟧𝑣,𝑟𝜌 (𝑠) = 𝑣 ′, 𝑟 ′, 𝑠′

returns a new state automaton 𝑣 ′, a new reset 𝑟 ′ and new state 𝑠′. We shall instantiate if for the two

cases: 𝑡 can be a weak transition (𝑤𝑡) or a strong transition (𝑠𝑡 ). The semantics of those functions

is defined in Figure 8 and 9. We explain them below.

For an automaton with weak transitions (that is, where they are all of the form until .), if the

current active state when entering the automaton is 𝑣 = 𝐴𝑘 (𝑣𝑘 ), the first state 𝐴𝑘 in order that

matches 𝑣 is selected. The body 𝑢𝑖 is executed in the current state 𝑠𝑢𝑖 . The execution defines an

environment 𝜌 and a new state 𝑠𝑢′
𝑖 . Then weak transitions 𝑤𝑡𝑖 are executed under the current

memory state 𝑠𝑤𝑖 . This execution returns a new value for 𝑣 (next state of the automaton), a reset

condition 𝑟 and a new memory state 𝑠𝑤 ′
𝑖 . This is the first definition in Figure 8. For an automaton

with strong transition (that is, where they are all of the form unless .), the execution is done in two

steps: (1) strong transitions are first evaluated. They determine the actual current state 𝑣 ′ = 𝐴𝑘 (𝑣 ′𝑘 )
of the automaton and the reset condition 𝑟 ′; (2) according to the value 𝑣 ′, the corresponding body

of equations is executed.
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⟦until 𝑡∗⟧Init𝜌 = ⟦𝑡∗⟧Init𝜌

⟦unless 𝑡∗⟧Init𝜌 = ⟦𝑡∗⟧Init𝜌

⟦until 𝑡∗⟧𝑣,𝑟𝜌 (𝑠) = ⟦𝑡∗⟧𝑣,𝑟𝜌 (𝑠)
⟦unless 𝑡∗⟧𝑣,𝑟𝜌 (𝑠) = ⟦𝑡∗⟧𝑣,𝑟𝜌 (𝑠)

⟦𝜖⟧Init𝜌 = ()

⟦𝑒 then se 𝑡∗⟧Init𝜌 = ((⟦𝑒⟧Init𝜌 , ⟦se⟧Init𝜌 ), ⟦𝑡∗⟧Init𝜌 )
⟦𝑒 continue se 𝑡∗⟧Init𝜌 = ((⟦𝑒⟧Init𝜌 , ⟦se⟧Init𝜌 ), ⟦𝑡∗⟧Init𝜌 )
⟦𝜖⟧𝑣,𝑟𝜌 (𝑠) = ((𝑣, 𝑟 ), 𝑠)

⟦𝑒1 then se2 𝑡∗⟧𝑣,𝑟𝜌 ((𝑠1, 𝑠2), 𝑠3) = let (𝑠1, 𝑠2, 𝑠3) = if 𝑟 then (⟦𝑒1⟧Init𝜌 , ⟦se2⟧Init𝜌 , ⟦𝑡∗⟧Init𝜌 ) else (𝑠1, 𝑠2, 𝑠3) in
let (𝑣1, 𝑠1 = ⟦𝑒1⟧Step𝜌 (𝑠1)) and (𝑣2, 𝑠2 = ⟦se2⟧Step𝜌 (𝑠2)) in
let (𝑣3, 𝑟3), 𝑠3 = ⟦𝑡∗⟧𝑣,𝑟𝜌 (𝑠3) in
★if 𝑣1 then ((𝑣2, true), ((𝑠1, 𝑠2), 𝑠3)) else ((𝑣3, 𝑟3), ((𝑠1, 𝑠2), 𝑠3))

⟦𝑒1 continue se2 𝑡∗⟧𝑣,𝑟𝜌 ((𝑠1, 𝑠2), 𝑠3) = let (𝑠1, 𝑠2, 𝑠3) = if 𝑟 then (⟦𝑒⟧Init𝜌 , ⟦se⟧Init𝜌 , ⟦𝑡∗⟧Init𝜌 ) else (𝑠1, 𝑠2, 𝑠3) in
let (𝑣1, 𝑠1 = ⟦𝑒1⟧Step𝜌 (𝑠1)) and (𝑣2, 𝑠2 = ⟦se2⟧Step𝜌 (𝑠2)) in
let (𝑣3, 𝑟3), 𝑠3 = ⟦𝑡∗⟧𝑣,𝑟𝜌 (𝑠3) in
★if 𝑣1 then ((𝑣2, false), ((𝑠1, 𝑠2), 𝑠3)) else ((𝑣3, 𝑟3), ((𝑠1, 𝑠2), 𝑠3))

⟦𝐴(𝑒1, ..., 𝑒𝑛)⟧Init𝜌 = ⟦𝑒1⟧Init𝜌 , ..., ⟦𝑒𝑛⟧Init𝜌

⟦𝐴(𝑒1, ..., 𝑒𝑛)⟧Step𝜌 = let (𝑣𝑖 , 𝑠′𝑖 = ⟦𝑒𝑖⟧Step𝜌 (𝑠𝑖 ))𝑖∈[1..𝑛] in𝐴(𝑣1, ..., 𝑣𝑛), (𝑠′1, ..., 𝑠
′
𝑛)

Fig. 9. The Semantics of Hierarchical Automata (III) — transitions

For the semantics of a transitions given in Figure 9, they are evaluated in order. When a reset

condition 𝑟 is true, this means that the whole memory of the target automaton state must be reset.

Moreover, in the state of an automaton, all the conditions are evaluated.

The state-based semantics extends naturally to hierarchical automata and is only one page long.

It was a surprise that a computational semantics would not be longer nor more complex than a

relational synchronous semantics like the one in [24].

Remark 4. Mix of weak and Strong Transitions Contrary to [25], we have considered a small variant
where weak and strong transitions cannot be mixed in the very same automaton. Transitions in an
automaton are all weak or all strong. Automata also come with a way to compute the initial state of
the automaton. The general case would be easily obtained by composing functions given in Figure 8.

This simplification was introduced in Zélus [19] because programs are simpler to understand as well
as the semantics, and the generated code is more efficient. In practice, we never found real examples
with mixed (weak/strong) transitions that cannot be expressed in this simpler form.

4 CAUSALITY
With a relational semantics, some programs are non deterministic because several valuations

for variables are possible; some have no solution, i.e, they deadlock. For example, the node

non_deterministic below can output true or false whereas it outputs ⊥ with a functional se-

mantics. The node deadlock has a deadlock because there is no value such that 𝑎 = 𝑎 + 1. It outputs

⊥with a functional semantics. The equation for tobe in node hamlet12 has a unique boolean solution

tobe = true whereas the least fix-point is ⊥ with a functional semantics.

1 let node non_deterministic() returns (o)

2 local a, b in a = b or b and b = a and o = a

3 let node deadlock() returns a = a + 1

4 let node hamlet() = tobe where rec tobe = tobe or not(tobe)

5 let node hamlet() = tobe where rec tobe = if tobe then true else not(tobe)

12
The example and name is by G. Berry.
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The functional constructive semantics is modular, by construction: no information is lost by

node abstraction. E.g., the two functions main1() and main2() below produce the same streams. If

the function call delay is inlined, the semantics is unchanged:

1 let node delay(x) = 0 fby x

2 let node main1() = o where rec o = 0 fby (o + 1)

3 let node main2() = o where rec o = delay(o + 1)

Adapting the definition of [11] to a declarative language, an expression is said to be causally
correct if, provided all of its free variables do not produce bottom, its value does not produce bottom.

This property is dynamic. In the accompanying implementation, it is implemented as a dynamic

test that may return a specific error.

The causality analysis performed by a synchronous language compiler computes an over-

approximation, e.g., based on data-dependences: all static dependency cycles must be broken by a
unit delay. This is called “syntactic causality” in Lustre [21] or “ASC-criterion” in SCCharts [56].

The analysis can be done after the static inlining of function calls (as the Lustre and SCCharts

compiler are doing) or made modularly by building a type signature for every function definition

that represent input/output dependences. This is what the Scade [27] and Zélus [4] compilers do.

Still, the constructive semantics is useful as a reference to characterize the set of programs that

are causally correct no matter what a compile-time static analysis is able to accept. For instance,

the following program cyclic(c,x) encodes a cyclic combinational circuit [41] for which the Scade

compiler complains by returning: Causality error: the definition of flow x2 depends on flow

y1; the definition of flow y1 depends on flow x1; the definition of flow x1 depends on

flow y2; the definition of flow y2 depends on flow x2; No code is generated.

1 let node mux(c, x, y) = o where rec o = if c then x else y

2 let node cyclic(c, x) = y where

3 rec x1 = mux(c, x, y2) and x2 = mux(c, y1, x)

4 and y1 = f(x1) and y2 = g(x2) and y = mux(c, y2, y1)

5 let node acyclic(c, x) = mux(c, g(f(x)), f(g(x)))

6 let node check(c, x) = (cyclic(c, x) = acyclic(c, x))

While this program is statically rejected by the compiler, it is nonetheless causally correct at run-

time: when c is true, y equals g(f(x)); when c is false, y equals f(g(x)). It is (dynamically) causal

because the conditional if . then . else . in the mux nodes is interpreted by
★if . then . else . which

is only strict in its first argument. Expressed with such a (“lazy”) conditional, boolean operators are

strict in their first arguments:

or (𝑥,𝑦) = if 𝑥 then true else 𝑦 and (𝑥,𝑦) = if 𝑥 then 𝑦 else false

In particular, or (⊥, true) = ⊥ and or (true,⊥) = true. In the theory of causality analysis [52], these

definitions are different ternary extensions of the boolean operators or and and. They are “smaller”

(tighter, more strict) than the extensions used by constructive Esterel, but “larger” (looser, more

lazy) than the strict operators of Lustre and Scade. Indeed, if we now interpret the conditional as

being strict in all of its arguments, that is:

★if ⊥ then _ else _ =df
★if _ then⊥ else _ =df

★if _ then _ else⊥ =df ⊥
★if true then𝑥 else _ =df

★if false then _ else 𝑥 =df 𝑥

the function cyclic(c, x) is not causally correct. Variables x1, x2, y1, y2 and y all evaluate to ⊥. The
maximal ternary extension of a boolean function in the sense of [52] will be causal in a maximal

number of contexts, but requires more compilation effort and run-time overhead. The strict lifting

is most simply implemented, but may deadlock. The compiler needs to find the right trade-off.
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1 let node sequential_or_gate(x,y) returns (z) if x then z = true else z = y

3 let node arbiter(i, request, pass_in, tok_in) returns (grant, pass_out, tok_out)

4 local o in

5 do grant = and_gate(request, o) and pass_out = and_gate(not request, o)

6 and o = sequential_or_gate (tok_in, pass_in) and tok_out = i fby tok_in done

8 let node arbiter_three(req1, req2, req3) returns (grant1, grant2, grant3)

9 local pass_out1, pass_out2, pass_out3, tok_out1, tok_out2, tok_out3 in

10 do grant1, pass_out1, tok_out1 = arbiter(true, req1, pass_out3, tok_out3)

11 and grant2, pass_out2, tok_out2 = arbiter(false, req2, pass_out1, tok_out1)

12 and grant3, pass_out3, tok_out3 = arbiter(false, req3, pass_out2, tok_out2) done

Fig. 10. The Bus Arbiter

The bus arbiter of R. de Simone described in [28] and given in Figure 10 is an evenmore interesting

example because causality depends on values and on a finer interpretation of boolean operations. If

boolean operators are interpreted strictly, that is, their output is bottom as soon as one of their input

is bottom (as any other operators lifted with
★.), the node arbiter_three is not causally correct:

the variables output grant1, grand2 and grant3 take the value ⊥. If, instead of interpreting or and
and strictly, the operators are interpreted as maximal ternary extensions in three-value logic, the

program is causal:

♯or (true, _) =df
♯or (_, true) =df true

♯or (false, 𝑥) =df
♯or (𝑥, false) =df 𝑥

♯and (false, _) =df
♯and (_, false) =df false

♯and (true, 𝑥) =df
♯and (𝑥, true) =df 𝑥

In particular,
♯or (true,⊥) = ♯or (⊥, true) = true. An even simpler way is to keep the boolean

operators strict but use a ternary extension of the conditional

♯if ⊥ then 𝑣1 else 𝑣2 =df
★if ★=(𝑣1, 𝑣2) then 𝑣1 else⊥ ♯if 𝑥 then 𝑣1 else 𝑣2 =df

★if 𝑥 then 𝑣1 else 𝑣2
with the following definition for equality:

★=(⊥, _) =df ⊥
★=(_,⊥) =df ⊥

★=(𝑣1, 𝑣2) =df (𝑣1 = 𝑣2) if atomic(𝑣1) ∧ atomic(𝑣2)
★=(𝑣1, 𝑣2) =df ⊥ otherwise

It the two branches of a conditional produce the same value 𝑣 , the conditional can output 𝑣 , whatever

be the value of the condition. This definition is possible because all imported operations are total

(they terminate at every instant), that is, equality is decidable. Hence, it is possible to obtain an

Esterel-like interpretation for Scade programs simply by changing the definition of the conditional.

This experiment is implemented in the companion implementation.

While testing the semantics on the example given in [28], we observed that the bus arbiter does

not need three-valued logic. Indeed, it is causally correct when the two and gates (line 5) are strict

and the or gate on line 6 is simply sequential, that is, encoded with a lazy conditional. This is

because token_in is an output of a unit delay, hence its value is known. If we flip the order of

arguments and write o = sequential_or_gate (pass_in, token_in) instead, the program is not

causal anymore (that is, o = ⊥): we do need the full expressiveness of Esterel. As noted by R. de

Simone, if none of the three unit delays is initialized with the value true, the program is not causal

anymore, even under Esterel’s dynamic ternary semantics.

Synchronous compilers have to deal with causality, to decide whether equations have a solution

or not and if the compiler is able to produce code. This question is not limited to synchronous

languages but exists in any language able to express systems with feedback loops. Yet, causality is
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1 let node comp(c1, c2, y) = (x, z, t, r)

2 where rec

3 if c1 then do x = y + 1 and z = t + 1 done

4 else do x = 1 and z = 2 done and

5 if c2 then do t = x + 1 and r = z + 2 done

6 else do t = 1 and r = 2 done

1 let node comp(c1, c2, y) =

2 (x, z, t, r) where rec

3 if c1 then x = y + 1 else x = 1

4 and if c2 then t = x + 1 else t = 1

5 and if c1 then z = t + 1 else z = 2

6 and if c2 then r = z + 2 else r = 2

Fig. 11. An example where control duplication is necessary

not an absolute notion. It depends on the expressiveness that is expected for the language, the target

of the compiler (e.g., hardware or software, concurrent or sequential), the possible effect on the

generated code (size, efficiency, etc.). On one side, Lustre took the most restrictive approach, forcing

that all equations be statically schedulable. All operations except the unit delay are considered strict

in all their arguments. Languages like Scade and Zélus are also based on a static over-approximation

of data-dependences, rejecting programs with cyclic dependences. Their analysis is a bit more

expressive nonetheless, treating specially variables defined by-case in two different branches of a

conditional that are, by syntax, exclusive. This covers many useful situations like the program P13

(Section 3.1). The P13 example is correct because in each mode, it is never the case that o1 depends

on o2 and conversely. Another common example is a system which defines two variables, a position

and a speed, with the position that is computed from the speed in one mode, and the speed computed

from the position in the other. This approach to static causality works well and is reasonable when

the target is software. On the other side, Esterel does a more powerful static causality analysis

which allow data-dependent cycles provided they can be computed constructively using the three

valued interpretation of boolean operations. It mimics statically what the compilation into circuits

does. This solution is reasonable when generating hardware, if cyclic circuits are allowed. It is more

debatable when targeting software because of unavoidable code duplication, a more expensive

static analysis that is difficult to do modularily (function per function with signatures stored in

interfaces) and a more complex code generation scheme.

The constructive semantics we have defined can illustrate those possibilities on a very same

program, by changing solely the interpretation of the conditionals and leaving boolean operations

unchanged.

The impact of causality on static code generation. The choice of causality may have an impact

on the efficiency of the code, even for a strict causality which only accepts equations with acyclic

dependences like Scade. Consider the program on the left of Figure 11.

This program is causal: if inputs c1, c2 and y are non bottom, all outputs are non bottom. E.g.,

taking true for c1 and c2, starting with 𝑥0 = ⊥, 𝑧0 = ⊥, 𝑡0 = ⊥ and 𝑟0 = ⊥, the fixpoint is the limit

of the sequence: 𝑥𝑛 = 𝑦 + 1 ∧ 𝑧𝑛 = 𝑡𝑛−1 + 1 ∧ 𝑡𝑛 = 𝑥𝑛−1 + 1 ∧ 𝑟𝑛 = 𝑧𝑛−1 + 2 and is obtained after 4

iterations. Nonetheless, if we want to generate statically scheduled sequential code, the control

structure must be duplicated, that is, a test c1 to compute x; a test c2 to compute t; a test c1 (again)

to compute z; a test c2 (again) to compute r. Accepting programs with inter-wined dependencies

impacts code size and efficiency. It would be possible to over-constrain the causality analysis so that

control structures are considered to be atomic, that is, in every branch, all outputs are supposed to

depend on all inputs but this would reduce expressiveness and modularity. A compromise is to

add extra annotations, like atomic 𝐸, so that all outputs in 𝐸 are considered to depend on all inputs.

Semantically, atomic 𝐸 returns a bottom environment as soon as one free variable is bottom. This

construct was introduced in Zélus. Its semantics is given in the companion implementation.
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5 CONCLUSION
This work has presented a constructive semantics for a language that has the main programming

constructs of Scade and leads to a reference interpreter that is independent of a compiler. By

interpreting streams as state transformers and stream functions to be length preserving, a fixpoint

on streams is replaced by a fixpoint on values which can be computed exactly and in bounded time.

This old idea, introduced first by Gonthier for the semantics of Esterel, works surprisingly well for

treating the programming constructs of an expressive language like Scade, in particular the mix of

data-flow equations and control structures like hierarchical state machines. The formalization is

short and results in an effective interpreter; this is a key contribution. The semantics is defined by

a function that is total and constructive in the sense that it can be expressed in a typed functional

language where all computations terminate, e.g., the language of a proof assistant. The semantics

also accounts for errors by adopting the classical monadic solution. We are not aware of a similarly

encompassing approach for a synchronous language.

The presented material is supported by an implementation in OCaml, in purely functional style

and a version in Coq, produced automatically that we used to prove some of the source-to-source

transformations done by the compiler. The OCaml implementation has been instrumental to define,

test and validate the semantics. It could be developed incrementally by enriching the language

gradually. With few changes, we were able to prototype new programming constructs, in particular

static arguments and array operations. In the future, we would like to make the semantics even

more generic so as to define a set-based or symbolic interpreter or to cover other language features

like the mix of discrete and continuous-time that exist in languages such as Zélus [19], the reaction

to absence as in Esterel, for which a fixpoint semantics exist [2], or adding imperative features for

shared memory as introduced in [1, 56].

Finally, we hope that this work can also clarify important, and sometimes misunderstood,

differences between Esterel and Scade in terms of expressiveness, particularly regarding how they

deal with causality. We explain them by different interpretations of the conditional that are justified

by different application domain: synchronous circuits for Esterel; software code for Scade.
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6 APPENDIX
6.1 Example: the Esterel stopwatch
The stopwatch [8] is an old example of a synchronous program written in Esterel. We give below

a data-flow version in the syntax of the core language used in this paper. It is available with the

source code distribution and can be tested with the interpreter.

1 (* -------------------------- Watch Interface-------------------------

2 -- stst : start/stop button

3 -- rst : reset button

4 -- set : set time button

5 -- md : mode selection button

6 -- a1, a2, a3 : time data display

7 -- l_ : is displaying lap time

8 -- s_ : is in setting time mode

9 -- sh_ : is in setting hour mode

10 -- s_ and not sh_ : is in setting minutes mode

11 ------------------------------------------------------------------- *)

13 let node root (stst,rst,set,md) returns (a1, a2, a3, l_, s_, sh_ )

14 local

15 isStart default false, (* -- is the chrono started? *)

16 is_w default false, (* -- is watch in clock mode? *)

17 sigS default false,

18 sigSh default false,

19 sigL default false,

20 m init 0, s init 0, d init 0, (* -- chrono timers *)

21 last wh, last wm, last ws, w (* -- clock timers *) in

22 do l_ = sigL

23 and s_ = sigS

24 and sh_ = sigSh

25 and automaton (* -- Chrono ----------------------*)

26 | Stop ->

27 do m, s, d = (0, 0, 0) -> (last m, last s, last d)

28 unless (stst && not is_w) continue Start

29 unless (rst && not (false -> pre l_) && not is_w) then Stop
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30 | Start ->

31 do d = (last d + 1) mod 100

32 and s = (if (d < last d) then last s + 1 else last s) mod 60

33 and m = if (s < last s) then last m + 1 else last m

34 and isStart = true

35 unless (stst && not is_w) continue Stop

36 end

37 and automaton (* -- Watch ------------------*)

38 | Count ->

39 do wm = 0 -> (if (ws < last ws)

40 then last wm + 1 else last wm) mod 60

41 and wh = 0 -> (if (wm < last wm)

42 then last wh + 1 else last wh) mod 24

43 until (set && is_w) then Set

44 | Set -> (* -- Set time *)

45 local synchro default false in

46 do sigS = true

47 and automaton (* -- set Watch -----------*)

48 | Set_hr -> (* -- set hour first *)

49 do sigSh = true

50 and wh = (if stst then last wh + 1

51 else if rst then last wh +23

52 else last wh) mod 24

53 until set then Set_mn

54 | Set_mn -> (* -- then set minutes *)

55 do wm = (if stst then last wm + 1

56 else if rst then last wm +59

57 else last wm) mod 60

58 until set then Set_end

59 | Set_end -> do synchro = true done

60 end

61 until synchro continue Count

62 end

63 and w = 0 -> (pre w + 1) mod 100

64 and ws = 0 -> (if (w < pre w) then pre ws + 1 else pre ws) mod 60

65 and automaton (* -- Display ----------------*)

66 | DispClk -> (* -- display watch *)

67 do is_w = true

68 and a1, a2, a3 = (wh, wm, ws)

69 unless (md && not s_) continue DispChr

70 | DispChr ->(* -- display chrono *)

71 local

72 lm init 0, ls init 0, ld init 0 in

73 (* -- chrono display (to deal with lap time) *)

74 do a1, a2, a3 = (lm, ls, ld)

75 and automaton (* -- deal with lap time and current time ---*)

76 | DispTime ->

77 do lm, ls, ld = (m, s, d)
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𝑦0.𝑠𝑡𝑒𝑝 = 𝜆𝑠.(⊥, 𝑠)
𝑦0.𝑖𝑛𝑖𝑡 = ⊥
𝑦1.𝑠𝑡𝑒𝑝 = 𝜆𝑠.let 𝑣, 𝑠′ = 𝑦0.𝑠𝑡𝑒𝑝 𝑠 in ft 𝑠 𝑣

= 𝜆𝑠.ft 𝑠 ⊥
= 𝜆𝑠.𝑠,⊥

𝑦1.𝑖𝑛𝑖𝑡 = 0

𝑦2.𝑠𝑡𝑒𝑝 = 𝜆𝑠.let 𝑣, 𝑠′ = 𝑦1.𝑠𝑡𝑒𝑝 𝑠 in ft 𝑠 𝑣

= 𝜆𝑠.let 𝑣 = 𝑠 in ft 𝑠 𝑣

= 𝜆𝑠.let 𝑣 = 𝑠 in 𝑠, 𝑣 + 1

= 𝜆𝑠.𝑠, 𝑠 + 1

𝑦2.𝑖𝑛𝑖𝑡 = 0

𝑦3.𝑠𝑡𝑒𝑝 = 𝜆𝑠.let 𝑣, 𝑠′ = 𝑦2.𝑠𝑡𝑒𝑝 𝑠 in 𝑓𝑠 𝑠 𝑣
= 𝜆𝑠.let 𝑣 = 𝑠 in ft 𝑠 𝑣

= 𝜆𝑠.let 𝑣 = 𝑠 in 𝑠, 𝑣 + 1

= 𝜆𝑠.𝑠, 𝑠 + 1

𝑦3.𝑖𝑛𝑖𝑡 = 0

Fig. 12. Unfolding the semantics

78 unless (rst && isStart) then DispLap

79 | DispLap ->

80 do sigL = true

81 unless (rst) then DispTime

82 end

83 unless md continue DispClk

84 end

85 done

6.2 Program Transformations and Static Scheduling
We shall see now conditions under which recursions can be removed inside the step function.

Consider the stream equation:

1 let rec nat = 0 fby (nat + 1) in nat

Can we get rid of the recursion in this definition? Surely we can, since it can be compiled into

the non recursive step function 𝑛𝑎𝑡 = Co(𝜆𝑠.(𝑠, 𝑠 + 1), 0). This code can be obtained by a simple

unfolding of the semantics. nat is the solution of the fix-point equation y = f(y) where:

1 let node f x = 0 fby (x+1)

Let us write CoP (ft, 𝑠0) = CoP (𝜆𝑠, 𝑥 .𝑠, (𝑥 + 1), 0), the Mealy machine that implements 𝑓 . ft and 𝑠0
can be obtained by unfolding the definitions of ⟦.⟧Init. and ⟦.⟧Step. on the definition of 𝑓 . Indeed,

⟦0 fby 𝑥 + 1⟧Init[⊥/𝑥 ] = (0, (((), ())). The transition function is 𝜆(𝑚, 𝑠), 𝑣 .⟦0 fby 𝑥 + 1⟧Step[𝑣/𝑥 ] (𝑚, 𝑠),
that is, 𝜆(𝑚, 𝑠), 𝑣 .𝑚, ⟦𝑥 + 1⟧Step[𝑣/𝑥 ] (𝑠), that is, 𝜆(𝑚, 𝑠), 𝑣 .𝑚, (𝑥 + 1, 𝑠). That is:

ft = 𝜆(𝑚, 𝑠), 𝑣 .𝑚, (𝑥 + 1, 𝑠) and 𝑠0 = (0, (((), ()))

This could further be simplified into:

ft = 𝜆𝑚, 𝑣 .𝑚, (𝑥 + 1, 𝑠) and 𝑠0 = 0

Now, solving 𝑦 = 𝑓 (𝑦) amount at finding a transition function 𝑌 such that:

𝑌 (𝑠) = let 𝑣, 𝑠′ = 𝑌 (𝑠) in ft 𝑠 𝑣
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Let 𝑦 = CoF (𝑔𝑦, 𝑠𝑦). We write 𝑦.𝑠𝑡𝑒𝑝 for 𝑔𝑦 and 𝑦.𝑖𝑛𝑖𝑡 for 𝑠𝑦 . The code for equation 𝑦 = 𝑓 (𝑦) can be

obtained iteratively, by a simple unfolding of semantics definitions. As the recursion is on a single

variable, two iterations are enough.

If we execute the semantics symbolically and propagate ⊥, as shown in Figure 12, we obtain:

CoF (𝜆𝑠.(𝑠 + 1, 𝑠 + 1), 0)
This example gives an insight of a different use of the semantics. Instead of interpreting operations

as functions from concrete values to concrete values, operations can be interpreted symbolically as

functions from terms to terms like compilation operators. Terms can be from the same language,

e.g., a subset language or an other one. The resulting language can be a simply typed functional

language with call-by-value and a bounded recursion operation or one with a recursion operation

(e.g., Haskell or OCaml with a combination of lazy and force with call-by-need so that the fix-

point is computed lazilly at every reaction. The later is how the very first interpreter of Lucid

Synchrone was done, following [23].

Recursion on a Single Variable. Suppose that 𝑓 is a length preserving function with value value

CoP (ft, 𝑠) where ft is the transition function and 𝑠 is its initial state. The semantics of an expression

let rec 𝑦 = 𝑓 (𝑦) in 𝑦 is:

⟦let rec 𝑦 = 𝑓 (𝑦) in 𝑦⟧Init𝜌 = 𝑠

⟦let rec 𝑦 = 𝑓 (𝑦) in 𝑦⟧Step𝜌 = 𝜆𝑠.let rec 𝑣, 𝑠′ = ft 𝑠 𝑣 in 𝑣, 𝑠′

We purposely keep the notation of a recursion on value for 𝑣 to highlight the fact that 𝑣 should

verify the equation 𝑣, 𝑠′ = ft 𝑠 𝑣 (even if we know that it is actually a bounded iteration). Two cases

can happen:

• Either the first element of the pair ft 𝑠 𝑣 , that is 𝑣, 𝑠′ depends on 𝑣 and we will get bottom

values;

• or it does not and the evaluation succeeds.

When the program does not contain any causality loop, it means that indeed the recursive evaluation

of the pair 𝑣, 𝑠′ can be split into two non recursive ones. This case appears, for example, when every

stream recursion appears on the right of a unit delay pre or fby. A synchronous compiler takes

advantage of this in order to produce non recursive code like the co-iterative 𝑛𝑎𝑡 expression given

above. Consider a variant of the above equation but where 𝑦 appears on the right of a unit delay:

⟦let rec 𝑦 = 𝑓 (𝑣 fby 𝑦) in 𝑦⟧Init𝜌 = (𝑣, 𝑠𝑡 )

⟦let rec 𝑦 = 𝑓 (𝑣 fby 𝑦) in 𝑦⟧Step𝜌 = 𝜆(𝑚, 𝑠).let rec 𝑣, 𝑠′ = ft 𝑠 𝑚 in 𝑣, (𝑣, 𝑠′)
This time, the recursion is no more necessary, that is:

⟦let rec 𝑦 = 𝑓 (𝑣 fby 𝑦) in 𝑦⟧Step𝜌 = 𝜆(𝑚, 𝑠).let 𝑣, 𝑠′ = ft 𝑠 𝑚 in 𝑣, (𝑣, 𝑠′)
So, when a variable 𝑦 in an equation 𝑦 = 𝑒 appears on the right of a unit delay, the step function is

a simple non recursive computation that first computes the value of 𝑦 and then update some state

variables which may depend on 𝑦.

Mutually Recursive Equations. Consider the following mutually recursive equation (see the

examples given in the beginning of Section 2).

1 let rec sin = 0.0 fby (sin +. h *. cos)

2 and cos = 1.0 -> (pre cos) -. h *. sin in

3 sin, cos

These two equations can be rewriting into:
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1 let rec sin = 0.0 fby sin_next and pre_cos = pre cos

2 and sin_next = sin +. h *. cos

3 and cos = if i then 1.0 else pre_cos +. h *. sin and i = true fby false

4 in sin, cos

All the delays, that is,-> , pre and fby have been un-nested and their result given a name. This is

the so-called “normalization” step of a synchronous compiler [14]). Then, equations are statically

scheduled so that an equation that reads 𝑥 is scheduled after the equation that computes 𝑥 . This

steps corresponds to the following step of static scheduling [14]. If we compute the transition

function corresponding to the set of equations, we obtain:

𝜆(𝑚1,𝑚2,𝑚3).let 𝑠𝑖𝑛 =𝑚1 in
let 𝑖 =𝑚3 in
let 𝑝𝑟𝑒_𝑐𝑜𝑠 =𝑚2 in
let 𝑠𝑖𝑛_𝑛𝑒𝑥𝑡 = 𝑠𝑖𝑛 + .ℎ ∗ .𝑐𝑜𝑠 in
let 𝑐𝑜𝑠 = if 𝑖 then 1.0 else 𝑝𝑟𝑒_𝑐𝑜𝑠 + .ℎ ∗ .𝑠𝑖𝑛 in
(𝑠𝑖𝑛, 𝑐𝑜𝑠), (𝑠𝑖𝑛_𝑛𝑒𝑥𝑡, 𝑐𝑜𝑠, 𝑓 𝑎𝑙𝑠𝑒)

and the initial state is:

(0.0, 0.0, 𝑡𝑟𝑢𝑒)
No recursion is needed. That is, in case a set of mutually recursive equations can be put in the

normal form:

let rec 𝑥1 = 𝑣1 fby 𝑛𝑥1
and ...

𝑥𝑛 = 𝑣𝑛 fby 𝑛𝑥𝑛
and 𝑝1 = 𝑒1
and ...

and 𝑝𝑘 = 𝑒𝑘
in 𝑒

where

∀𝑖, 𝑗 .(𝑖 < 𝑗) ⇒ Var (𝑒𝑖 ) ∩ Var (𝑝 𝑗 ) = ∅
where Var (𝑝) and Var (𝑒) are the set of variable names appearing in 𝑝 and 𝑒 . Then the semantics is

CoF (ft, 𝑠𝑡 ) where ft is:

𝜆(𝑥1, ..., 𝑥𝑛, 𝑠1, ..., 𝑠𝑘 , 𝑠).let 𝑝1, 𝑠1 = ⟦𝑒1⟧Step𝜌 (𝑠1) in
let ... in
let 𝑝𝑘 , 𝑠𝑘 = ⟦𝑒𝑘⟧Step𝜌 (𝑠𝑘 ) in
let 𝑟, 𝑠 = ⟦𝑒⟧Step𝜌 (𝑠) in
𝑟, (𝑛𝑥1, ..., 𝑛𝑥𝑛, 𝑠1, ..., 𝑠𝑘 , 𝑠)

and its initial state 𝑠𝑡 is:

(𝑣1, ..., 𝑣𝑛, 𝑠1, ..., 𝑠𝑘 , 𝑠)
if ⟦𝑒𝑖⟧Init𝜌 = 𝑠𝑖 and ⟦𝑒⟧Init𝜌 = 𝑠 . There is no more fixpoint computation. The proof that the semantics

is preserved is immediate and obtained by a simple unfolding of the semantics.

The sequence of source-to-source transformations illustrated here results in an expression where

there is no more recursion. This is the basic principle of the generation of statically scheduled code

done by a synchronous language compiler. Equations are first normalized with all delays unested

and the set of equations is scheduled. This static scheduling is possible, that is, the recursion is

removed, only when the dependence graph between variables is acyclic. This may call for inlining

some function calls and applying distribution rules.
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The proof that those transformations preserve the semantics can be done by unfolding semantics

definitions. This is where we can illustrate the equivalence relation � given in Definition 1. Let

𝑒 � 𝑒′ when 𝑒 and 𝑒′ produce equivalent concrete streams. Let 𝐸 �𝑁 𝐸′
when both equations

produce equivalent environments of concrete streams for all names in 𝑁 . Equivalence proofs can

be done by exhibiting an inductive relation between states associated to every expression and

equations by executing the semantics. The equivalence relations below are proven by exhibiting an

inductive relation 𝑅 that we give for every case:

(1) 𝐸1 and𝐸2 �𝑁 𝐸2 and𝐸1. Take the relation between states𝑅 such that∀𝑠1, 𝑠2.𝑅((𝑠1, 𝑠2), (𝑠2, 𝑠1)).
(2) 𝑝 = let 𝐸 in 𝑒 �𝑁 𝐸 and𝑝 = 𝑒 if Def (𝐸) ∩ Def (𝑝) = ∅. Take 𝑅((𝑠1, 𝑠2), (𝑠1, 𝑠2)).
(3) 𝑝 = let rec 𝐸 in 𝑒 �𝑁 𝐸 and𝑝 = 𝑒 if Def (𝐸) ∩ Def (𝑝) = ∅. Take 𝑅((𝑠1, 𝑠2), (𝑠1, 𝑠2)).
(4) 𝑓 (𝑒1, ..., let 𝐸 in 𝑒, ..., 𝑒𝑛) � let 𝐸 in 𝑓 (𝑒1, ..., 𝑒, ..., 𝑒𝑛) if Def (𝐸) ∩ Def (𝑒1, ..., 𝑒𝑛) = ∅. Take

𝑅((𝑠1, ..., (𝑠𝐸, 𝑠𝑒 ), ..., 𝑠𝑛), (𝑠𝐸, ..., 𝑠𝑒 , ..., 𝑠𝑛)).
(5) 𝑓 (𝑒1, ..., let rec 𝐸 in 𝑒, ..., 𝑒𝑛) � let rec 𝐸 in 𝑓 (𝑒1, ..., 𝑒, ..., 𝑒𝑛) ifDef (𝐸)∩Def (𝑒1, ..., 𝑒𝑛) = ∅.

Take 𝑅((𝑠1, ..., (𝑠𝐸, 𝑠𝑒 ), ..., 𝑠𝑛), (𝑠𝐸, ..., 𝑠𝑒 , ..., 𝑠𝑛)).
(6) pre 𝑒 � let 𝑥 = pre 𝑒 in 𝑥 if 𝑥 ∉ FV (𝑒). Take 𝑅((𝑚, 𝑠), ((𝑚, 𝑠), ())).
(7) 𝑒1 fby 𝑒2 � let 𝑥 = 𝑒1 fby 𝑒2 in 𝑥 if 𝑥 ∉ FV (𝑒1) ∪ FV (𝑒2). Take 𝑅((𝑚, 𝑠1, 𝑠2), ((𝑚, 𝑠1, 𝑠2), ())).
(8) (𝑥1, ..., 𝑥𝑛) = (𝑒1, ..., 𝑒𝑛) �𝑁 𝑥1 = 𝑒1 and ... and𝑥𝑛 = 𝑒𝑛 . Take 𝑅((𝑠1, ..., 𝑠𝑛), (𝑠1, ..., 𝑠𝑛)).

6.3 Implementation
The semantics is implemented in OCaml. The implementation takes the form of an interpreter

which, given a node and a sequence of inputs, produces a sequence of outputs or stops with an

error. It is implemented in the purely functional subset of OCaml; imperative features are only used

for parsing, the printing of values, error messages, and automatic random testing.

This reference specification and implementation directly builds on the presented material. It

provides important extensions that we discuss below.

Dealing with Errors. The presented material considers a formulation where all errors (e.g., static

and dynamic errors) collapse to ⊥. This simplification made possible the definition of the semantics

that is rather short. Nonetheless, error must be added for two reasons: if the interpreter is used

for testing the compiler, e.g., the front-end before all the static checks are done (typing, causality

analysis, initialization analysis), it is important to signal what error is raised. The second is to

formulate the correctness of compile-type verifications (e.g., “when the program type-checks, it

cannot produce a type error” [27]).

One purpose of the semantics is to be used for testing during compiler development. E.g., let Tr
be a source-to-source transformation such that Tr (e) returns an expression 𝑒′. Let 𝑣𝑒 = CoF (𝑓 , 𝑠)
where 𝑓 = ⟦𝑒⟧Step[ ] and 𝑠 = ⟦𝑒⟧Init[ ] ; and 𝑣

′
𝑒 = CoF (𝑓 ′, 𝑠′) where 𝑓 ′ = ⟦𝑒′⟧Step[ ] and 𝑠′ = ⟦𝑒⟧Init[ ] . 𝑒 and

𝑒′ agree for 𝑛 steps if ∀𝑖 ≤ 𝑛, nth(𝑣𝑒 ) (𝑖) = nth(𝑣 ′𝑒 ) (𝑖). When 𝑒 and 𝑒′ have an input (free) variable 𝑥 ,

we can check that 𝑒 and 𝑒′ return two identical finite sequences for identical values for 𝑥 . Different

values for 𝑥 can be generated randomly (or replaced by an expression which itself depend on a

variable whose sequence of values is choosen randomly). This testing technique does not prove

that Tr is correct but is independent of it.
Compiler testing justifies a semantics that applies directly to the source before compilation

starts, and that distinguishes all the possible errors, e.g., type mismatch, unbounded identifier,

causality errors, initialisation errors, clock errors, etc. We developed and tested the semantics

incrementally, adding more and more constructs to the language. We started a very first version

using ⊥ to represent all errors. Then, as explained in 2.4, we used the simplest error monad (also
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called maybe or option monad).
13
This solution distinguihes errors from ⊥ but not different errors.

The number of lines were almost unchanged. When the semantics was done entirely, we switched

to the result monad to distinguish all errors
14
.

It has been a surprise that all the semantics definitions were kept almost unchanged, adding in

total only fifty lines of extra code. The constructive semantics is not way longer than a relational

semantics. The common belief (that we though and that was also noted by Tardieu [54]) is that a

constructive synchronous semantics is not the most suited for compiler proofs w.r.t a relational

(logical) semantics. The constructive semantics of hierarchical automata, for example, is not longer

than the relational one, e.g. [24]. It is too early to say whether proofs using the constructive

semantics are shorter or better (in any kind) w.r.t proofs based on a relational semantics. For the

moment, all the compiler correctness proofs of the Vélus compiler, for example, use a relational

semantics.

Prototyping new language constructs. The implemented semantics treats an input language with

programming constructs that are not in the paper. Our objective was to deal with the features of a

real language all together, in particular those of Scade and to be able to prototype new programming

constructs independently from a compiler. Two features were experimented: (1) static parameters

(function arguments that are constant and can be computed during instantiation time, i.e., the

computation of ⟦.⟧Init. ). (2) several forms of for loops and arrays. The state-based semantics and its

OCaml implementation appeared to be well adapted to an incremental and modular development.

It was also a surprise for us.

An automatically generated implementation in Coq. Several papers have addressed the formal

verification of a compiler downto C code for a synchronous language reminiscent of Lustre [16, 17].

They are based on a relational semantics, not a functional one.

An implementation in Coq of the semantics presented in this paper have been developed. Instead

of reprogramming it, with the risk of a mismatch w.r.t the OCaml implementation), we used

coq_of_ocaml 15
which produces valid Coq definitions automatically. We are currently using it to

prove the correctness of source-to-source transformations, e.g., in particular the ones in 6.2, and a

few meta properties of the semantics, in particular monotony. It is too early to conclude.

6.4 Other Related Works
A relational semantics for a synchronous language can be described in the following manner. Given

an environment 𝑅 for free variables in an expression 𝑒 , the predicate 𝑅 ⊢ 𝑒 𝑣→ 𝑒′ states that 𝑒 reacts
by producing the value 𝑣 and rewrites to 𝑒′. A stream-based semantics is obtained by iterating the

state-based relation: if 𝑠 is a sequence of values and 𝑣 a value, 𝑣 .𝑠 is a sequence whose head is 𝑣 and

tail is 𝑠 , with 𝜖 the empty sequence. An history 𝑅.𝐻 is a sequence whose head is 𝑅 and tail is 𝐻

such that:

𝑅 ⊢ 𝑒 𝑣→ 𝑒′
𝑅 ⊢ 𝑒 𝑣→ 𝑒′ 𝐻 ⊢ 𝑒′ : 𝑠

𝑅.𝐻 ⊢ 𝑒 : 𝑣 .𝑠
𝜖 ⊢ 𝑒 : 𝜖

The strength of a relational synchronous semantics is the elegant (and a bit magical) way synchro-

nous composition is expressed: if 𝐸1 and 𝐸2 are two equations that run in parallel synchronously,

13
That is, a concrete stream is a pair: 𝑆 × (𝑆 → 1 + (𝑉 × 𝑆 ) ) meaning that, given a state 𝑠 : 𝑆 , the transition function either

stops (when an error occurs) or returns a value 𝑣 : 𝑉 and a new state 𝑠′ : 𝑆 ′ .
14
The type option (https://v2.ocaml.org/api/Option.html) is replaced by the type result (https://v2.ocaml.org/api/Result.html).

15
https://github.com/formal-land/coq-of-ocaml
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the reaction and execution predicate are simply:

𝑅(𝑥) = 𝑣 𝑅 ⊢ 𝑒 𝑣→ 𝑒′

𝑅 ⊢ 𝑥 = 𝑒
[𝑣/𝑥 ]
→ 𝑥 = 𝑒′

𝑅 ⊢ 𝐸1
𝑅1→ 𝐸′

1
𝑅 ⊢ 𝐸2

𝑅2→ 𝐸′
2

𝑅 ⊢ 𝐸1 and𝐸2
𝑅1+𝑅2→ 𝐸′

1
and𝐸′

2

𝑅 ⊢ 𝐸 𝑅′
→ 𝐸′ 𝐻 ⊢ 𝐸 : 𝐻 ′

𝑅.𝐻 ⊢ 𝐸 : 𝑅′ .𝐻 ′

𝜖 ⊢ 𝐸 : 𝜖

with the invariant that 𝑅 ⊢ 𝐸
𝑅′
→ 𝐸′

with 𝑅′ ⊆ 𝑅, meaning that 𝐸 instantaneously sees what is

emitted with no added delay. Hence, if 𝐸1 and 𝐸2 react by producing 𝑅1 and 𝑅2 respectively, their

parallel composition reacts by producing the composition 𝑅1 + 𝑅2. The implicit side condition is

that the domains 𝑅1 and 𝑅2 do not overlap and thus 𝑅1 ⊆ 𝑅 and 𝑅2 ⊆ 𝑅 implies 𝑅1 + 𝑅2 ⊆ 𝑅. Thus,

𝐸1 instantaneously sees what is defined by 𝐸2. A relational semantics is not an effective (correct

and complete) algorithm that is constructive. Nothing says when a reaction exists, if it is unique

and how to construct it. Moreover, some programs do have a semantics that is unique but they are

unreasonable and counter intuitive. For example, the node non_deterministic, if given a relational

semantics, can either returns true or false (whereas its output is ⊥ with a constructive semantics).

The node deadlock has a deadlock because there is no value such that 𝑎 = 𝑎 + 1. The hamlet node

that uses an or gate has a unique solution (tobe = true). With the constructive fix-point semantics,

it deadlocks, that is, tobe = ⊥, if or is interpreted strictly. It also deadlocks if or is interpreted

in three valued logic, like in Esterel. Finally, if or is encoded with a conditional and we take the

interpretation
♯if . then . else ., it also deadlocks: starting with tobe = ⊥, not (𝑡𝑜𝑏𝑒) = ⊥ hence

♯if ⊥ then★=(⊥,⊥) else⊥ = ⊥. On the contrary, the cyclic circuit presented by Malik in [41] has

no deadlock; it is causally correct.

1 let node non_deterministic() returns (o)

2 local a, b do a = b or b and b = a and o = a done

4 let node hamlet() returns (tobe)

5 do tobe = tobe or not (tobe) done

7 let node hamlet() returns (tobe)

8 do tobe = if tobe then true else not (tobe)

10 (* The constructive cyclic synchronous circuit of Malik *)

11 (* computes [y = if c then g(f(x)) else f(g(x))] *)

12 let node malik(c, x) returns (y)

13 local x1, x2, y1, y2 in

14 do x1 = if c then x else y2

15 and x2 = if c then y1 else x

16 and y1 = f(x1) and y2 = g(x2)

17 and y = if c then y2 else y1 done

6.4.1 Relations to Arrows and FRP. The algebraic properties of synchronous (length-preserving)
stream functions have been studied by [35] who identifies them as an instance of so-called arrows.
The latter form a categorical structure, more general than monads, with operations for stream

composition >>>, pairing &&&, product ***, bypass first and second, extensible by multiplexing

|||, choice +++ and feedback loop. This combinatory (i.e., variable-free) syntax is not meant for

practical programming. Like for monads, there is an equivalent syntax for arrows introduced
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by [46] which comes closer to the equational definitions used here. The arrow abstraction is used in

the functional reactive language Yampa [34] implemented as a domain-specific library in Haskell.

However, Yampa’s combinator syntax is more restrictive compared to the syntax available in

a synchronous language. Moreover, it cannot guarantee the same safety properties — bounded

memory and absence of deadlock — because it gives the programmer unlimited access to the

ambient higher-order lazy language Haskell.

In [40], authors observe that the composition of length preserving functions can be simplified

into a normal form where all delays gathered. The resulting body can then be expressed in a

state-space representation:

𝑜 = 𝑓 (𝑠, 𝑖, 𝑜) 𝑠 = 𝑠0 fby 𝑔(𝑠, 𝑖, 𝑜)
where 𝑖 is the current input, 𝑜 the current output and 𝑠 the internal state initialized with value 𝑠0.

The transformation made by a synchronous compiler [14] does the same transformation but with

the supplementary constraint that 𝑜 must not depend on 𝑜 and so 𝑜 = 𝑓 (𝑠, 𝑖) only. In the target

code is Haskell, this extra constraint can be removed. The output of the transition function 𝑓 can

be computed lazilly, as noted in [23].

feedback (ft) = 𝜆𝑠.let rec 𝑣, 𝑠′ = ft 𝑠 𝑣 in (𝑣, 𝑠′)
No static scheduling is necessary nor an interative computation for 𝑣 . This approach is useful for

defining an interpreter.
16
Without a static analysis done a priori, the interpreter may deadlock.

Because a synchronous language targets real-time applications, a compiler generates statically

scheduled code, hence that does not need lazy evaluation.

fix f s = let rec vs’ = lazy (f s Some work explain the essence of data-flow languages and in

particular synchronous languages via Co-Kleisli functions for co-monads [55] rather than as Kleisli

functions for monads. A monadic model of synchronous imperative streams inside Haskell is

proposed in [53]. However, these monadic “streams” represent behavior on finite time episodes

and permit arbitrary side effects in the IO monad. This makes imperative streams even less useful

for safety-critical applications than Yampa. Our executable semantics hedges the risk and safely

resides within the limits of simply-typed lambda-calulus.

16
In the definition above, we consider a meta language with call-by-need evaluation.
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