
Building a Hybrid Systems Modeler from Synchronous
Language Principles

(Invited Talk)

Marc Pouzet
DI, École normale supérieure,

45 rue d’Ulm, 75230 Paris cedex 05

Marc.Pouzet@ens.fr

ABSTRACT
Hybrid systems modeling languages are widely used in the
development of embedded systems. Two representatives are
Simulink/Stateflow,1 which combines Ordinary Differential
Equations (ODEs), data-flow and difference equations, hi-
erarchical automata à la StateCharts [13], and imperative
features; and the Modelica language [17]2 based on DAEs
with features for modeling discrete components. Ptolemy
II3 is another example in which several models of computa-
tion are combined [14].

While the formal verification of abstract hybrid systems has
been studied extensively [8], many language related issues
remain to be addressed. In this regard, we share the view-
point of Lee and Zheng that hybrid modeling languages are
best viewed as programming languages that happen to have
a hybrid systems semantics [15, 16]. This raises important
questions related to language design, semantics, and imple-
mentation, to producing reliable simulation runs efficiently,
and also to the generation of provably equivalent embed-
ded target code. While sequential code generation in hybrid
modeling tools is routinely used for efficient simulation, it is
used infrequently or not at all to produce target embedded
code in critical applications subject to strong safety require-
ments. This results in a break in the development chain:
parts of applications must be rewritten into sequential code
and properties verified of the source model must essentially
be reverified of the target code.

Sequential code generation from a synchronous language like
Lustre [11] has been studied in detail [12]. It can be for-
malized as a series of source-to-source transformations—that
eliminate high level constructs like hierarchical automata [10]—
into a generic intermediate representation for transition func-

1http://mathworks.org/simulink
2https://www.modelica.org
3http://ptolemy.eecs.berkeley.edu/ptolemyII/

tions, which is in turn transformed into C code [5]. This ap-
proach, initiated in Lucid Synchrone [18], is implemented
in the Scade Suite KCG code generator of Scade 64, which
is used for developing various critical applications.

Yet synchronous languages only manipulate discrete-time
signals. Their expressiveness is limited to ensure important
safety properties like determinacy, execution in bounded
time and space, and simple, traceable code generation. Their
cyclic execution requires minimal run-time support and does
not suffer from the complications that accompany numerical
solvers of ODEs. Conversely, a hybrid modeling language al-
lows discrete and continuous time behaviors to interact. But
this interaction is not constrained enough nor specified with
adequate precision in tools like Simulink/Stateflow which
results in semantic pitfalls and bugs [9, 4, 1]. A precise
description of all the compilation steps, that is, the actual
implemented semantics, is mandatory in safety critical de-
velopment processes where target code must be trustwor-
thy. Our goal, in short, is to increase the expressiveness of
synchronous languages without sacrificing any confidence in
their compilation.

In previous work, we introduced a novel approach for the
design and implementation of a hybrid modeling language
that reuses synchronous language principles and an exist-
ing compiler infrastructure. We introduced an ideal syn-
chronous semantics based on non standard analysis [4] for a
Lustre-like language with ODEs [3], and extended the ker-
nel language with hierarchical automata [2] and a modular
causality analysis [1]. These results form the foundation of
Zélus [7] 5 and were validated inside the industrial Scade
Suite KCG code generator (Release 6.4, 2014) developed at
Esterel-Technologies/ANSYS [6].

In this talk, I summarize the ongoing work on Zélus and
the way it has been applied to the Scade Suite KCG code
generator. In the latter, it was possible to reuse the existing
infrastructure entirely—namely, static typing, causality and
initialization analyses, intermediate languages, and various
compiler optimizations—with minimal modifications. The
proposed language extension is conservative in that regu-
lar synchronous functions are compiled as before—the same
synchronous code is used both for simulation and for ex-

4http://www.esterel-technologies.com/products/
scade-suite/
5zelus.di.ens.fr

http://mathworks.org/simulink
https://www.modelica.org
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/
zelus.di.ens.fr


ecution on target platforms. It also shows the versatility
of the KCG infrastructure based on successive rewritings.
The precise definition of all compilation steps, built on the
proven compiler infrastructure of a synchronous language
avoids the rewriting of control software and may also in-
crease confidence in simulation results.

This work results from a collaboration with Albert Ben-
veniste, Benoit Caillaud (INRIA, Rennes), Timothy Bourke
(INRIA, Paris-Rocquencourt), Jean-Louis Colaço, Bruno Pa-
gano and Cédric Pasteur (Esterel-Technologies/ANSYS).

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; D.3.2 [Language classi-
fications]: Data-flow languages; D.3.4 [Processors]: Code
generation, Compilers; I.6.2 [Simulation and Modeling]:
Simulation Languages

General Terms
Algorithms, Languages, Theory

Keywords
Real-time systems; Hybrid systems; Synchronous languages;
Block diagrams; Compilation; Semantics; Type systems

1. REFERENCES
[1] Albert Benveniste, Timothy Bourke, Benoit Caillaud,

Bruno Pagano, and Marc Pouzet. A Type-based
Analysis of Causality Loops in Hybrid Systems
Modelers. In International Conference on Hybrid
Systems: Computation and Control (HSCC), Berlin,
Germany, April 15–17 2014. ACM.

[2] Albert Benveniste, Timothy Bourke, Benoit Caillaud,
and Marc Pouzet. A Hybrid Synchronous Language
with Hierarchical Automata: Static Typing and
Translation to Synchronous Code. In ACM
SIGPLAN/SIGBED Conference on Embedded
Software (EMSOFT’11), Taipei, Taiwan, October
2011.

[3] Albert Benveniste, Timothy Bourke, Benoit Caillaud,
and Marc Pouzet. Divide and recycle: types and
compilation for a hybrid synchronous language. In
ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, Tools and Theory for Embedded Systems
(LCTES’11), Chicago, USA, April 2011.

[4] Albert Benveniste, Timothy Bourke, Benoit Caillaud,
and Marc Pouzet. Non-Standard Semantics of Hybrid
Systems Modelers. Journal of Computer and System
Sciences (JCSS), 78(3):877–910, May 2012. Special
issue in honor of Amir Pnueli.

[5] Darek Biernacki, Jean-Louis Colaco, Grégoire Hamon,
and Marc Pouzet. Clock-directed Modular Code
Generation of Synchronous Data-flow Languages. In
ACM International Conference on Languages,
Compilers, and Tools for Embedded Systems
(LCTES), Tucson, Arizona, June 2008.

[6] Timothy Bourke, Jean-Louis Colaço, Bruno Pagano,
Cédric Pasteur, and Marc Pouzet. A
Synchronous-based Code Generator For Explicit
Hybrid Systems Languages. In International

Conference on Compiler Construction (CC), LNCS,
London, UK, April 11-18 2015.

[7] Timothy Bourke and Marc Pouzet. Zélus, a
Synchronous Language with ODEs. In International
Conference on Hybrid Systems: Computation and
Control (HSCC 2013), Philadelphia, USA, April 8–11
2013. ACM.

[8] Luca Carloni, Maria D. Di Benedetto, Alessandro
Pinto, and Alberto Sangiovanni-Vincentelli. Modeling
Techniques, Programming Languages, Design Toolsets
and Interchange Formats for Hybrid Systems.
Technical report, IST-2001-38314 WPHS, Columbus
Project, March 19 2004.

[9] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and
S. Tripakis. Translating Discrete-Time Simulink to
Lustre. ACM Transactions on Embedded Computing
Systems, 2005. Special Issue on Embedded Software.

[10] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet.
A Conservative Extension of Synchronous Data-flow
with State Machines. In ACM International
Conference on Embedded Software (EMSOFT’05),
Jersey city, New Jersey, USA, September 2005.

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous dataflow programming language
lustre. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

[12] N. Halbwachs, P. Raymond, and C. Ratel. Generating
efficient code from data-flow programs. In Third
International Symposium on Programming Language
Implementation and Logic Programming, Passau
(Germany), August 1991.

[13] D. Harel. StateCharts: a Visual Approach to Complex
Systems. Science of Computer Programming,
8-3:231–275, 1987.

[14] Edward A. Lee and Alberto Sangiovanni-Vincentelli.
A framework for comparing models of computation.
IEEE Transactions on CAD, 17(12), December 1998.

[15] Edward A. Lee and Haiyang Zheng. Operational
semantics of hybrid systems. In Hybrid Systems:
Computation and Control (HSCC), volume 3414,
Zurich, Switzerland, March, 9-11 2005. LNCS.

[16] Edward A. Lee and Haiyang Zheng. Leveraging
synchronous language principles for heterogeneous
modeling and design of embedded systems. In
EMSOFT, Salzburg, Austria, September 30-October 3
2007.

[17] Modelica. http://www.modelica.org/, 2015.

[18] Marc Pouzet. Lucid Synchrone, version 3. Tutorial
and reference manual. Université Paris-Sud, LRI,
April 2006.


	References

