
A Synchronous Embedding of Antescofo,
a Domain-Specific Language for Interactive Mixed Music

Guillaume Baudart
∗

Florent Jacquemard
†

Louis Mandel
‡

Marc Pouzet
§

ABSTRACT
Antescofo is recently developed software for musical score
following and mixed music: it automatically, and in real-
time, synchronizes electronic instruments with a musician
playing on a classical instrument. Therefore, it faces some
of the same major challenges as embedded systems.

The system provides a programming language used by
composers to specify musical pieces that mix interacting
electronic and classical instruments. This language is de-
veloped with and for musicians and it continues to evolve
according to their needs. Yet its semantics has only recently
been formally defined. This paper presents a synchronous
semantics for the core language of Antescofo and an al-
ternative implementation based on an embedding inside an
existing synchronous language, namely ReactiveML. The
semantics reduces to a few rules, is mathematically precise
and leads to an interpretor of only a few hundred lines. The
efficiency of this interpretor compares well with that of the
actual implementation: on all musical pieces we have tested,
response times have been less than the reaction time of the
human ear. Moreover, this embedding permitted the pro-
totyping of several new programming constructs, some of
which are described in this paper.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Concurrent, dis-
tributed, parallel languages; D.3.1 [Formal Definitions
and Theory]: Semantics; H.5.5 [Information Interfaces
and Presentation]: Sound and Music Computing.

∗ENS de Cachan, Antenne de Bretagne, DI École normale
supérieure. Email: Guillaume.Baudart@ens.fr
†IRCAM Paris, INRIA Paris-Rocquencourt.
Email: Florent.Jacquemard@inria.fr
‡Univ. Paris-Sud 11, DI École normale supérieure, INRIA
Paris-Rocquencourt. Email: Louis.Mandel@lri.fr
§Univ. Pierre et Marie Curie, DI École normale supérieure,
INRIA Paris-Rocquencourt. Email: Marc.Pouzet@ens.fr

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’13 September 29 – October 04, 2013, Montreal, Canada.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Listening
Machine

Sequencer

Max/MSP

Antescofo score

tempo

position

control
messages

signal

Figure 1: Architecture of the Antescofo system.
Continuous arrows represent pre-treatment, and
dotted ones real-time communications

Keywords
Synchronous Programming; Language Embedding; Error
Handling and Synchronization Strategies; Mixed Music.

1. INTRODUCTION
Since the 1950s, composers have shown a growing interest

in new kinds of music mixing electronic parts and live mu-
sicians. Thus, computer music research and industry have
focused on real-time interaction between musicians and com-
puters. These considerations have led to the development
of programming languages dedicated to musical interaction.
Examples include Max/MSP, which resulted from the col-
laboration of Miller Puckette and the composer Philippe
Manoury [13], and James McCartney’s SuperCollider [12].

In the same vein, Antescofo1 is a system and dedicated
programming language developed for the synchronization
and control of interactive parameters in computer music.
It allows a composer to manage a computer interacting with
other musicians at performance time. Using this system,
composers can jointly specify both instrumental and elec-
tronic parts on the same score.

Since 2008, Antescofo has been used in the creation
of more than 40 original mixed electronic pieces by world
renowned artists and ensembles, including Pierre Boulez,
Philippe Manoury, Marco Stroppa, New-York Philharmon-
ics, Berlin Philharmonics and the Radio France Orchestra.

Figure 1 illustrates the global behavior of the system. It
is composed of two distinct subsystems: a listening machine
and a sequencer. During a performance, the listening ma-

1http://repmus.ircam.fr/antescofo

chine estimates the tempo (i.e., execution speed) and the
position of the live performers in the score. The role of the
sequencer is to use this information to trigger electronic ac-
tions by sending control messages to a music programming
environment: Max/MSP.2 Max/MSP use these messages to
handle complex sound synthesis, manage lights, etc. More
details can be found in [3].

Antescofo faces some of the major challenges of embed-
ded system design and implementation: the synchronization
of all the electronic instruments that play in parallel with
the score follower itself; the mix of logical and physical time
with slow and fast time scales; the design and implementa-
tion of an expressive language where programs are compiled
to target code guaranteed to run in real-time. Yet the re-
lationships between Antescofo and existing models and
languages for embedded systems have been little studied.

In this article we focus on the sequencer, a typical example
of a reactive system that continuously receives inputs from
the listening machine. When the listening machine detects
an event, the sequencer reacts to produce the corresponding
accompaniment. Moreover, the dedicated language includes
constructs typical of languages for embedded systems—like
a logical global time scale, synchronous parallelism and in-
stantaneous broadcast—but also some original ones for syn-
chronization and error handling strategies.

Among programming languages for embedded systems,
synchronous languages [1] are used in the most critical appli-
cations including airplanes, trains, and automotive subsys-
tems. They incorporate a mathematically precise model of
concurrency and advanced features for communication and
code generation. The language of Antescofo can benefit
from this research and, more fundamentally, links with this
trend of research be investigated.

Contributions of the paper.
This paper presents a new semantics and implementation

for the core language of Antescofo. An originality of our
approach is to implement the semantics as an interpreter
inside an existing synchronous language. In this way, the
precise semantics leads directly to an implementation.

For the implementation platform, we chose Reac-
tiveML [11] which appeared to be the best candidate,
though we also experimented in the Lustre-like language
defined in [9]. Indeed, the ability to define inductive data-
types, higher order processes and recursion in ReactiveML
greatly simplify programming. The implementation in Re-
activeML is only a few hundred lines of code (see Ap-
pendix C) and it competes with the current implementation.
In all of our experiments, response time were less than the
reaction time of the human ear.

By embedding Antescofo inside ReactiveML, we were
able to add and experiment with novel programming con-
structs and synchronization strategies with little effort. We
illustrate this with several examples. Our framework is thus
a powerful tool for prototyping new constructs before possi-
bly integrating them into the core language.

The paper is organized as follows. Section 2 defines the
core language of Antescofo. Its semantics is defined in
Section 3. Section 4 presents the ReactiveML implementa-
tion. In Section 5, we presents several applications. Related
work is discussed in Section 6 and we conclude in Section 7.

2http://cycling74.com/

!44" # $#Voice

a0 group

a1 a2

0.5

1.0

e1 e2 e3
event 1 1.0 :

0.0 a0

event 2 1.0 :

0.5 group tight local

0.0 a1

1.0 a2

event 3 2.0 :

Figure 2: Representation of an Antescofo score; on
the right its textual representation. �

Throughout the paper, we present several examples; they
are available to the reader together with the ReactiveML
source code at http://reactiveml.org/emsoft13.

2. A LANGUAGE FOR MIXED MUSIC
We now describe the kernel of the Antescofo language, a

language dedicated to the writing of mixed music scores [5].
This language was developed as a language for coordinat-
ing events performed by humans and electronic actions con-
trolled by a computer. It allows a composer to specify both
electronic and instrumental parts in the same score. Figure 2
shows a simple example of one such score (the symbol � in-
dicates a link to a demonstration video available online).

The language permits expressing delays relative to a
tempo expressed in beats per minute (bpm). For instance, a
duration of 1.0 means 1.0 beat . During a performance, the
listening machine estimates both the position in the score
and the tempo of the performer. This allows the sequencer
to follow the speed of the performer as a trained musician
would. Indeed, the tempo is not estimated from the last du-
ration alone but rather from all durations detected since the
beginning of the performance. In this way, the listening ma-
chine adds some inertia to tempo changes which corresponds
to the real behavior of musicians playing together [3]. This
feature explains some of the success of Antescofo with
composers, as synchronizing different parts using a common
tempo is standard practice when writing polyphonic mu-
sic (in many other environments for mixed music, delays
can only be expressed in milliseconds).

2.1 The Core Language
The main idea is to bind electronic actions to instrumental

events. During a performance, actions related to an instru-
mental event are executed when the event is detected. Thus,
a score is a sequence of instrumental events and for each such
event an associated sequence of electronic actions. It is de-
scribed by the following grammar (the empty sequence is
denoted ε).

score ::= ε | (event : seq) score
event ::= event i t

seq ::= ε | (δ ae) seq
ae ::= action | group

group ::= group synchro error seq
synchro ::= tight | loose

error ::= local | global | partial | causal

An instrumental event (e.g., a note, chord, trill, etc.) is de-
noted by event i t, where i ∈ N is the index of an event
in the score and t ∈ Q its duration relative to the tempo.

Indeed, for the sequencer, instrumental events are only trig-
gers for electronic actions. Therefore, the only useful infor-
mation is the position and the duration of an event. An
electronic action (ae) is either an atomic action taken from
a finite set (action ∈ A) or a group of electronic actions. A
group is a sequence of electronic actions characterized by a
synchronization strategy (described in Section 2.2) and an
error handling strategy (described in Section 2.3). A se-
quence (seq) is a list of pairs, each associating an electronic
action (ae) with a delay (δ) relative to the tempo (δ ∈ Q).

The most basic actions in a score, called atomic actions,
are simple control messages destined for the audio environ-
ment (e.g., UDP messages for Max/MSP). Each is bound
to an instrumental event, the triggering event, and charac-
terized by a delay. When the listening machine detects the
triggering event, the sequencer waits for the specified delay
and then sends the corresponding control message. In the
example of Figure 2, action a0 is bound to the first note e1
with a delay of 0.0. Thus, when the first note is detected,
the message a0 is sent immediately.

Atomic actions can be grouped into control structures
called groups. Like an atomic action, a group is triggered by
an instrumental event and characterized by a delay. When
the triggering event is detected, the sequencer waits for the
corresponding delay and then launches the actions contained
in the body of the group. In the example, a group is bound
to the second instrumental event with a delay of 0.5 beat .
When this event is detected, the sequencer waits 0.5 beat
and then launches action a1, after another delay of 1.0 beat ,
the message a2 is sent. Groups can be nested arbitrarily.
Actions contained in a nested group are executed in paral-
lel with the actions following them in the embedding group,
not in sequence. An electronic voice can be split into two
parallel voices which can in turn be split and so on. Thus,
a score can faithfully capture the complexity of a musical
piece.

There are two kinds of parallelism in the language. First,
two sequences bound to different instrumental events are ex-
ecuted in parallel. Second, a nested group inside a sequence
is executed in parallel with the rest of the sequence. Note
that when two sequences are executed in parallel, it is im-
portant that they share the same global time: the time of
the performance. That is, they must be synchronous. Oth-
erwise the performance would not reflect the musical score.
To this similarity with synchronous languages, Antescofo
adds two original features: synchronization and error han-
dling strategies.

2.2 Synchronization Strategies
Groups are characterized by two attributes (see [5]). The

first one defines a synchronization strategy. A composer
is allowed to specify how actions contained in a group will
synchronize with instrumental events that occur during the
execution of the group. There are several ways to achieve
this synchronization depending on the musical context. Cur-
rently, the language proposes two distinct modes of synchro-
nization: loose and tight.

Once a loose group is launched, delays are computed ac-
cording to the current value of the tempo, regardless of in-
strumental events that may occur during its execution. Due
to the inertia of the tempo inference, an electronic action
contained in such a group and an instrumental event that
seems to be simultaneous in the score may be desynchronized

group
a0 a1

e1 e2

group local

group causal
a1a0

group global
a0 a1

group partial

e1X

e1X

e1X

e1X

δ0

δ1

δ2

δ2

δ1 + δ2 − δ0

δ1 + δ2 − δ0

a1

Figure 3: Illustration of the four error handling at-
tributes on a simple score (at top). e1 and e2 repre-
sent instrumental events. Suppose that e1 is missed
and e2 is detected.

during the performance. Indeed, a performer may accelerate
or decelerate between two events. Typically, this strategy is
used in those parts of a score where a performer follows the
electronic voices.

In a tight group, every action is triggered by the most
recent corresponding instrumental event. In the example
of Figure 2, the group has a synchronization attribute set
to tight. Thus, although the entire group is bound to the
second instrumental event, action a2 will be triggered by e3.
Here, the nearest event is computed with respect to the ideal
timing of the score regardless of tempo changes. This strat-
egy is ideal when the electronic voice must accompany the
interpreter’s voice.

2.3 Error Handling Strategies
Antescofo is designed to accompany real musicians and,

thus, errors may sometimes occur. By error we mean an in-
strumental event which is expected and missing, either be-
cause it was not played by the musician or not detected by
the listening machine. The second attribute of a group de-
fines the error handling strategy which should be taken when
an expected triggering event is absent. There are several
ways to deal with errors depending on the musical context.
Here, we present four exclusive error handling strategies:
local, global, partial and causal. Figure 3 illustrates
the four different behaviors.

The local and global strategies preserve the integrity
of a group. Indeed, if the triggering event is missed, the
group is either completely ignored (local) or launched with
zero delay (global) as soon as a later event is detected.
In both cases, delays between actions within the group are
unchanged. The group can thus be seen as a single block
with a certain duration.

The other two strategies aim to preserve a simple prop-
erty: The future of a performance does not depend on past
errors, i.e., the show must go on! When an error occurs,

the corresponding group is split into two parts: actions that
should already have been launched when the error was de-
tected, termed the past, and actions that should occur after
the detection, termed the future. The attributes partial

and causal differ only in their treatment of past actions.
For causal groups, past atomic actions are launched imme-
diately. For partial groups, past atomic actions are simply
discarded. In both cases, future actions are launched as if
they were bound to the next detected event. They are per-
formed as if an error never occurred.

3. BEHAVIORAL SEMANTICS
In this section we describe the semantics of the core of

Antescofo. The remaining features, like loops and con-
tinuous groups, are easily expressed in our kernel (see Sec-
tion 6). The score given in Figure 4 will serve as a running
example. In the following, sync and err stand, respectively,
for any of the synchronization and error handling attributes
already presented. The semantics rules are given in Figure 5
and explained below.

3.1 Execution Rules
The semantics specifies, given a set of detected events and

a score, the intended performance, that is, the desired out-
put of the sequencer relative to the tempo. It is defined by
the predicate:

D
exec

sc⇒ p

It relates a set of detected events D ⊆ N, a score sc, and a
performance p, which is a set of triplets (i, δ, a) where i ∈ N is
a detected instrumental event (e.g., the index of the position
in the score), δ ∈ Q is the delay to wait after the detection
of i and a ∈ A is an atomic action.

A score is a sequence of score events of the
form (event i t : seq) where i ∈ N denotes an instru-
mental event of duration t ∈ Q and seq the associated se-
quence of electronic actions (see Section 2.1). If the score is
empty (rule (Empty Score)), the associated performance
is empty. Otherwise (rule (Exec Score)), we collect in par-
allel the performances generated by every score event con-
tained in the score. This is done by iterating the predicate:

D
exec

(event i t : seq)→ p

which relates a score event with a performance.
Now, to obtain the performance associated to such score

events (event i t : seq), the first thing to do is to check
whether the corresponding instrumental event i is detected
or missed:

• Rule (Detect): i is detected, that is, i ∈ D. We apply
a predicate detected to the sequence seq . Thus:

D, i, δ
detected

seq ⇒ p

means that sequence seq , bound to the detected in-
strumental event i with a delay δ, leads to the perfor-
mance p.

• Rule (Miss): i is missing, i.e., i 6∈ D. We apply a
predicate missed to the sequence seq . Thus:

D, i, δ
missed

seq ⇒ p

means that sequence seq related to the missing event i
with a delay δ leads to the performance p.

In order to deal with sequences of actions, we introduce
two administrative rules (Empty Sequence) and (Exec
Sequence). These rules allow us to apply a predicate, de-
tected or missed on a sequence of electronic actions while
computing the correct delay for each action. Here, generic
can be instantiated by detected or missed.

For example, let us consider a simple sequence of elec-
tronic actions [(δ0 a0) (δ1 a1)] related to an event i with a
delay δ. For both actions, the triggering event is i, and the
associated delays are δ+δ0 for a0, and δ+δ0+δ1 for a1. More
generally, the delay associated to an action in a sequence is
the sum of previous delays.

In the following, we will detail the behaviors of the elec-
tronic actions. But first, we need to define some auxiliary
functions.

3.2 Notations
Let E be the function that returns the delay between an

instrumental event i and the beginning of the score, i.e.,
the date of i relative to the tempo. This is just the sum
of the durations tk of all instrumental events k between the
beginning of the score and i:

E(i) =
∑i−1

k=1 tk

Besides, by definition in Section 2.3, it is impossible to de-
tect a missing event before the next detected instrumen-
tal event. Indeed, if the next event is not yet detected, it
could simply be a deceleration of the tempo. For a missing
event i 6∈ D, M(i) denotes the next detected event. For-
mally: M(i) = min{j ∈ D | E(j) > E(i)}.

3.3 Atomic Actions
Now we define the predicates of the form:

D, i, δ
generic

ae→ p

They explain the behavior of an electronic action ae bound
to an event i with a delay δ.

First, let us consider the case of an atomic action a. If the
event i associated to a is detected, we apply the rule (De-
tected Action) which leads to the performance (i, δ, a).
Indeed, after the detection of i we just have to wait out the
delay δ and then send the message a.

Now, if i is missing, the error will be detected with the
detection of j =M(i). The behavior of an atomic action
when the triggering event is missed is described by the
rule (Missed Action). If a should have been launched be-
fore the event j, the message is immediately sent. Otherwise
we wait the remaining delay: (E(i) + δ)− E(j) before send-
ing the message.

Example. In our example, there is only one atomic ac-
tion related to e4. Thus, if e4 is detected, the corresponding
performance is the triplet: (4, 0.5, a41).

3.4 Synchronization Strategies
Now, recall that actions can also be structured into groups

whose synchronization with the instrumental events can be
specified with the attributes presented in Section 2.2.

To interpret a group declared as loose, we just apply
the detected version of the rule (Exec Sequence) to the
body of the group (rule (Detected Loose Group)). The
triggering event i remains the same for all these actions.

e1 2

g11

a12

1 1

g12

a11 a13

1.5

e2 2

a21 g2

a22 a23

1 0.5

1

e3 1 e4

a41

0.5

1

event 1 2.0 :

0.0 group sync partial

1.0 group sync partial

0.0 a11

1.5 a13

1.0 a12

event 2 2.0 :

1.0 a21

0.5 group sync err

0.0 a22

1.0 a23

event 3 1.0 :

event 4 1.0 :

0.5 a41

Figure 4: A simple score and its graphical representation where the ei’s denote instrumental events (note,
trill, chord etc.).

(Empty Score)

D
exec

ε⇒ ∅

D
exec

(event i t : seq)→ p1 D
exec

sc⇒ p2
(Exec Score)

D
exec

(event i t : seq) sc⇒ p1 ∪ p2

i ∈ D D, i, 0.0
detected

seq ⇒ p
(Detect)

D
exec

(event i t : seq)→ p

i 6∈ D D, i, 0.0
missed

seq ⇒ p
(Miss)

D
exec

(event i t : seq) sc→ p

(Empty Sequence)

D, i, δ
generic

ε⇒ ∅

D, i, δ + δ′
generic

ae→ p1 D, i, δ + δ′
generic

seq ⇒ p2
(Exec Sequence)

D, i, δ
generic

(δ′ ae) seq ⇒ p1 ∪ p2

(Detected Action)

D, i, δ
detected

a→ (i, δ, a)

M(i) = j
(Missed Action)

D, i, δ
missed

a→ (j,max(0.0, E(i) + δ − E(j)), a)

D, i, δ
detected

seq ⇒ p
(Detected Loose Group)

D, i, δ
detected

group loose err seq → p

D
exec

Slice(i, δ, (group tight err seq))→ p
(Detected Tight Group)

D, i, δ
detected

group tight err seq → p

(Missed Local Group)

D, i, δ
missed

group sync local seq → ∅

M(i) = j

D, j, 0.0
detected

group sync global seq → p
(Missed Global Group)

D, i, δ
missed

group sync global seq → p

M(i) = j (past, future) = Split(i, j, δ, seq)

D, i, δ
missed

past ⇒ p1 D, j, 0.0
detected

group sync causal future → p2
(Missed Causal Group)

D, i, δ
missed

group sync causal seq → p1 ∪ p2

M(i) = j (past, future) = Split(i, j, δ, seq)

D, i, δ
missed

Extract(past)⇒ p1 D, j, 0.0
detected

group sync partial future → p2
(Missed Partial Group)

D, i, δ
missed

group sync partial seq → p1 ∪ p2

Figure 5: Behavioral Semantics

tight

e1 e2 e3 e4

loose loose loose loose

(score 1)

(score 2)

Figure 6: Slicing of a tight group.

Example. Imagine that g2 is a group loose and e2 a
detected event. Then, the execution of g2 leads to the per-
formance: {(2, 1.5, a22), (2, 2.5, a23)}.

For a group declared as tight a bit more treatment is
needed. Intuitively, the body of the group must be sliced
according to an instrumental event that should occur dur-
ing the execution of the group. Each action in the body is
associated to the nearest instrumental event in the past. Fig-
ure 6 illustrates this transformation: the result of the slicing
of the group in (score 1) is a fresh score (score 2), con-
taining one loose group bound to each instrumental event
that should occur during the execution of (score 1).

Formally, let g be a tight group bound to event i with a
delay δ and body seq = [(δ1 x1) (δ2 x2) ... (δn xn)]. Here x
denotes any kind of electronic action, group or atomic action.
First we associate a date dk, relative to the tempo, to each
element xk.

dk = E(i) + δ +
∑k

p=1 δp

Then, for each instrumental event j ≥ i, we compute the
subsequence sj of seq such that the date of electronic actions
is between the date of j and the date of j + 1:

sj = [(δj0 xj0) ... (δj1 xj1)]

where dj0−1 < E(j) ≤ dj0 ≤ dj1 < E(j + 1) ≤ dj1+1

Each subsequence sj is associated to the corresponding
event j instead of i. Therefore, we need to update de-
lays such that the dates of the electronic actions remain
the same: δ′jl = djl − E(j). Finally, the resulting sequence:
s′j = [(δ′j0 xj0) (δ′j0+1 xj0+1) ... (δ′j1 xj1)] becomes the body
of a fresh loose group with the same error handling strat-
egy as g. Thereby we preserve the error handling strategy
for the future: gj = group loose err s′j . The result of the
slicing is a fresh score containing one score event for each
group gj : sej = (event j tj : (0.0 gj)).

Slice(i, δ, g) = [sei . . . sei+k] where E(i+ k + 1) ≥ dn
The last thing to do is to execute the resulting score. This be-
havior is described by the rule (Detected Tight Group).

Example. Suppose that g2 is declared as tight and e2 is
detected. The result of the slicing is (see Figure 4):

Slice(2, 1.5, g2) = [(event 2 2.0 : (0.0 g12))

(event 3 1.0 : (0.0 g22))]

where g12 = group loose err (1.5 a22)

and g22 = group loose err (0.5 a23)

Assuming that e3 is detected, the corresponding performance
will be: {(2, 1.5, a22), (3, 0.5, a23)}.

3.5 Error Handling Strategies
Groups are also characterized by an error handling strat-

egy: local, global, partial or causal. These attributes
allow a composer to specify how the group will behave if
the triggering event is missed (see Section 2.3). When the
triggering event is missing, a local group is completely ig-
nored (rule (Missed Local Group). Conversely, a global

one is launched with zero delay, as if the next detected event
was the triggering event (rule (Missed Global Group)).

Example. For example, assume that g2 is declared as
global, e2 is missing and e3 is detected. Then, the cor-
responding performance will be: {(3, 0.0, a22), (3, 1.0, a23)}.
Similarly, if e2 and e3 are missing and e4 is de-
tected, then, the performance corresponding to g2 will be:
{(4, 0.0, a22), (4, 1.0, a23)}. If the group is declared local,
the performance will be empty.

For the two other attributes, the first thing to do is to
split the body of the group into two subsequences (see Sec-
tion 2.2): actions that should have been launched before the
error detection (past), and actions that should occur after
the error detection (future).

Formally, let g be a group declared as causal or partial,
with body seq = [(δ1 x1) (δ2 x2) ... (δn xn)]. We suppose
that g is bound to a missing event i 6∈ D such thatM(i) = j.
First, we associate a date dk, relative to the tempo, to each
element xk (see the slicing of tight groups in Section 3.4).
Then we can split the sequence seq into the two subse-
quences, past and future. This is done by the function Split:

Split(i, j, δ, seq) = (past, future)

where past = [(δ1 x1) ... (δp xp)] with dp < E(j) ≤ dp+1

and future = [(δp+1 xp+1) ... (δn xn)]

Attributes partial and causal only differ in the treatment
of past actions. The difficulty comes from the hierarchical
structure of the score. Indeed a group that appears in the
past could contain an action that should be launch in the
future. Hence, nested groups must be split as well. We solve
this problem by recursively applying the missed version of
the rule (Exec Sequence) on past actions sequences.

If the past contains an atomic action this action will be
launched immediately. This is described by the rule (Missed
Action). This is the desired behavior for a causal group.
On the other hand, to achieve the partial behavior, we
need to ignore past atomic actions. In other words, the past
of a partial group only contains past nested groups.

Thus for a partial group, we need to compute a new se-
quence which contains only past nested groups. The past
is a sequence of actions, therefore the delay associated to
each action is relative to the previous one. Hence we must
re-compute the delays associated to each group while ex-
tracting them. Let xg1 be the first group of the past, xg2
the second one and so on. Since xg1 is the first group, ac-
tions x1, x2, ..., xg1−1 are atomic actions. Thus in the new
sequence, the delay associated to xg1 is δ1 + δ2 + ... + δg1 .
More generally, the new delay of a group xgi is the sum of
delays between xgi and the previous group xgi−1 : δgi−1+1 +
δgi−1+2 + ...+ δgi .

Extract(past) = [(δ′g1 xg1) (δ′g2 , xg2) . . . (δ′gp xgp)]

where ∀1 ≤ i ≤ p δ′gi =
∑gi

k=gi−1+1 δk

Motor

Time

position

tempo

actions

sequencer

Figure 7: Architecture of the sequencer.

Finally we wrap the future into a fresh group with the
synchronization attribute and the error handling attribute
of the original group. We thereby preserve both the syn-
chronization strategy and the error handling strategy for
the future. The last thing to do is to execute the missed
version of the (Exec Sequence) rule on the past and the
detected version of this rule on the future. Thus, the future
is launched as if it were related to the detected event j, and
the rest of the score is executed as if the error never oc-
curred. These behaviors are described by the rules (Missed
Causal Group) and (Missed Partial Group).

Example. To illustrate the case of nested groups, let us
assume that the groups g11 and g12 have been declared par-

tial, and that e1 is missed and e2 is detected, i.e., 1 6∈ D
andM(1) = 2. When g11 is split, a12 is in the future and g12
appears in the past.

Split(1, 2, 0.0, g11) = ((1.0 g12), (0.0 a12))

Extract(1.0 g12) = (1.0 g12)

However, a13 which is bounded to g12, must be launched af-
ter e2 (see Figure 4). By recursively applying a predicate
missed, g12 is split in turn. Thus, a13 appears in the future
and will be launched after e2.

Split(1, 2, 1.0, g12) = ((0.0 a11), (0.5 a13))

Extract(0.0 a11) = ε

The corresponding performance is:
{(2, 0.0, a12), (2, 0.5, a13)}

4. A SYNCHRONOUS EMBEDDING
The implementation of the sequencer is divided into two

parts (see Figure 7). The module Time interfaces the ab-
stract time relative to the tempo (in beats) with the physi-
cal time (in ms) (Section 4.2).F3 The module Motor receives
the current position in the score and triggers atomic ac-
tions (Section 4.3).F

4.1 Survival Kit for ReactiveML
ReactiveML4 is a synchronous language which combines

features found in ML-like typed functional languages with
synchronous features à la Esterel [2]. It borrows the basic
principles and constructs of OCaml5 on which it is built and
compiled to. Like other synchronous languages, it provides
a notion of global logical time on which all processes can
synchronize. Semantically, processes execute in lock step
and they communicate with each other in zero time.

3The symbol F denotes source code available online.
4A tutorial is available at http://reactiveml.org/tryrml.
5http://caml.inria.fr/ocaml/index.en.html.

Time and Signals.
In ReactiveML, a process is a function that lasts for

several logical instants. It is introduced with a special key-
word process. The following program defines the process
emit_clock which takes two arguments period and clock.
Its purpose is to emit a signal clock every period second.F

1 let process emit_clock period clock =
2 let next = ref (Unix.gettimeofday () +. period) in
3 loop
4 let current = Unix.gettimeofday () in
5 if current >= !next then begin
6 emit clock ();
7 next := !next +. period
8 end;
9 pause

10 end

The variable next always contains the desired date
for the next emission.6 This variable is initialized
with the current time (in milliseconds), using the func-
tion Unix.gettimeofday from the Unix module, plus the
duration of a period. Then the process loops infinitely. At
every instant, it computes the current time (line 4); com-
pares it to the value of the desired date !next; if current is
greater than this date, it emits the signal clock (line 7) and
update next. Finally, it awaits for the next instant (line
10). We assume here that logical steps are much smaller
than period, which is the case in practice. Typically, we
simulate a clock with a period from one to ten milliseconds.

Using the signal clock, one can write a process that does
nothing except waiting for a duration dur in seconds:

let process wait_abs dur period clock =
let d = int_of_float (dur /. period) in
do
for i = 1 to d do pause done

when clock done

The do/when construct executes its body only when the sig-
nal clock is present. The only thing to do is to wait for d

instants: for i=1 to d do pause done where d is the du-
ration dur expressed as a number of instants.

Synchronous Parallelism.
Now, ReactiveML allows for the definition of processes

that run in parallel. For instance, the following process waits
for a duration dur1 and then emits a signal a. In parallel, it
waits for a duration dur2 and then emits a signal b:

let process ab dur1 dur2 a b =
signal ck in
let period = 0.001 in
run (emit_clock period ck) ||
(run (wait_abs dur1 period ck); emit a ()) ||
(run (wait_abs dur2 period ck); emit b ())

We declare a local signal ck and the period of the
clock period. Operator || is for parallel composition and
run denotes the execution of a process. Thus, the pro-
cess emit_clock, and the two calls to processes wait_abs

are executed in parallel and communicate through the local
signal ck.

4.2 Following the Tempo
Remember that, in our version of Antescofo, all delays

are expressed relative to the tempo in beats. In practice, the

6+., *., /. the floating-point addition, multiplication, divi-
sion. If x denotes a reference, !x is its content.

tempo is computed by the listening machine: for each detec-
tion, the listening machine sends the label of the detected
instrumental event and the estimated tempo.

We need to compute the elapsed delay, relative to the
tempo, since the beginning of the performance. This is
just like calculating the distance an object travels by in-
tegrating its speed. It is a simple fixed-step integrator of
a piecewise constant function bps (the tempo only changes
when an instrumental event is detected). In the following,
clock denotes a global signal. It will be generated with the
process emit_clock above, with period period defined as a
global constant.

The process elapsed integrates the value of tempo since
the beginning of its execution. Here, bps is a signal that
carries the value of the tempo in beats-per-second. For each
step of the integration, we send the result on a signal date.F

let process elapsed bps date =
let x = ref 0.0 in
do
loop
x := !x +. last ?bps *. period;
emit date !x;
pause

end
when clock done

The variable x contains the current value of the integrator,
initialized to 0.0. Thus, at the n-th occurrence of clock, the
signal t is emitted with a value x(n) such that:

x (n) =
∑n

i=0 last(bps)(i)× period

The construct last ?bps denotes the last value of the signal
bps. It only changes when a new bps value is emitted. Plac-
ing the loop/end construct within a do/when means that the
loop is only executed when the signal clock is present.

Now that we can measure time relative to the tempo, we
can write a process that waits for a duration delta relative
to the tempo.

let process wait date delta =
let ending = last ?date +. delta in
while last ?date <= ending do pause done

The signal date will be produced by the process elapsed.
The process wait first computes the future date of the end of
the waiting: ending. We compare the last computed value of
date with the deadline ending, and wait until last ?date

reaches the deadline.
In practice, the waiting process is implemented using sig-

nals and a priority queue. The process wait sends a signal
and a deadline to the priority queue. Then the only thing
to do is to wait for the return of this signal. Therefore, only
the scheduler requires computation at each instant.F

4.3 Translating Semantical Rules
ReactiveML extends the language OCaml. There-

fore, the grammar presented in Section 2.1 can be repre-
sented by the declaration of an inductive type (given in Ap-
pendix A).F For every predicate defined in Figure 5, (i.e.,
exec, detected, and missed), we define a corresponding pro-
cess in ReactiveML.F

Execution Rules.
To execute a score, we launch in parallel a process

exec_score_event for each score event. Therefore, all elec-
tronic actions stay synchronous during the performance.

In particular, when an event is detected, the execution of
missed electronic actions remains synchronous with the ex-
ecution of detected ones.

let rec process exec score =
match score with
| [] -> (* rule (Empty Score) *) ()
| se::sc ->

(* rule (Exec Score) *)
run (exec_score_event se) ||
run (exec sc)

Note the similarity with rules (Empty Score) and (Exec
Score) of Figure 5.

The process exec_score_event is the implementation of
the two rules (Detect) and (Miss). The parameter se is
a structure which denotes a score event where se.seq is the
corresponding sequence of electronic actions and se.event is
the associated instrumental event. The process wait_event

awaits an instrumental event. Then, if this event is detected,
it returns the value Detected. On the other hand, if the
event is missed, the process returns the value Missed(j)

where j =M(i) is the next detected event (see Section 3.2).

let rec process exec_score_event se =
let status = run (wait_event se.event) in
match status with
| Detected ->

(* rule (Detect) *)
run (exec_seq (detect i) 0.0 se.seq)

| Missed(j) ->
(* rule (Miss) *)
run (exec_seq (missed i j) 0.0 se.seq)

Each score event is related to one instrumental event.
Thus, during the performance the only thing to do is to
wait for the detection of this event. In ReactiveML, such
waiting requires no computing at all. Indeed, one impor-
tant characteristic of the ReactiveML implementation is
the absence of busy waiting: nothing is computed when no
signal is present.

The process exec_seq generic delta s implements the
behavior described by the rules (Exec Sequence)
and (Empty Sequence) (see Section 3.1). This process
computes the delay corresponding to each action in the se-
quence s and runs a process detected or missed (see below)
in parallel for each of these actions with the computed delay.
All electronic actions are executed in parallel. Thus nested
groups can be treated as atomic actions.

let rec process exec_seq generic delta seq =
match seq with
| [] -> (* rule (Empty Sequence) *) ()
| (dae,ae)::s ->

(* rule (Exec Sequence) *)
run (generic (delta +. dae) ae) ||
run (exec_seq generic (delta +. dae) s)

Detected and Missed Rules.
The next process is the encoding of the predicate detected

of Figure 5. It matches the type of an electronic action ae,
bound to an instrumental event i with a delay delta, and
executes the corresponding behavior. When an atomic ac-
tion a is reached, the corresponding triplet (i,delta,a) is
sent on the global signal perf. In parallel, another pro-
cess listens for this signal and sends control messages to
Max/MSP.

Here date is the signal produced by the process elapsed

described previously. The function slice is the implemen-
tation of Slice defined in Section 3.4.F

val slice : label -> delay -> group -> score

It returns a fresh score where each score event contains
one zero delay loose group. Then, the process detected is
implemented as follows:F

and process detected i delta ae =
match ae with
| Action(a) ->

(* rule (Detected Action) *)
run (wait date delta);
emit perf (i,delta,a)

| Group(g) ->
begin match g.group_synchro with
| Loose ->

(* rule (Detected Loose Group) *)
let bg = g.group_seq in
run (exec_seq (detected i) delta bg)

| Tight ->
(* rule (Detected Tight Group) *)
let gs = slice i delta g in
run (exec gs)

end

In the same way, the process missed is the transcription
of the missed rules (see Appendix B).

4.4 Evaluation and Limitations
While the original system is developed as an object in

the Max/MSP programming environment, our interpreter
communicates with this environment via UDP sockets in a
local network. The communication latency between the two
applications is negligible (around 10ns). The original se-
quencer, embedded in the Antescofo object, is disabled as
the synchronous one replaces it. Hence, during the perfor-
mance, Max/MSP sends the output of the listening machine.
Then, the synchronous sequencer treats these informations
and sends control messages back to Max/MSP.

Currently, there is no proper benchmark to evaluate the
sequencer part of the system. Each modification is tested
with real scores written by composers. Nonetheless, we ex-
ercised our application on several toy examples (traditional
songs, violin concertos, etc). In these examples, the accom-
paniment is a set of groups bound to the first note of the
performer. They are relatively simple because the electronic
part does not have a complex hierarchical structure. How-
ever, they are still meaningful for an experimental validation
because the sequencer handles a realistic number of elec-
tronic actions. For instance, in the second and third move-
ments of the Tchaikovsky violin concerto, there are 3705
instrumental events for 11062 electronic actions.

The synchronous sequencer is used to control a MIDI
synthesizer which accompanies a solo musician. We test
these examples with random faults and a randomly chang-
ing tempo. On these examples, our sequencer compares well
to the original one. Indeed, the latency between the two
applications remains under 30ms, the reaction time of the
human ear [8].

Nonetheless, there is one major difference between our
implementation and the one of Antescofo. The latter is
designed for real-time interaction. As real-time is difficult
to achieve on a standard computer running a standard OS,
Antescofo is embedded in Max/MSP which provides pre-
cise timers and the means to wake-up processes on timers.

When Antescofo is activated by Max/MSP, it possibly
emits some control messages to Max/MSP, and then com-
putes the next deadline to be activated. Max/MSP wakes
Antescofo up when the deadline expires or because an in-
strumental event is detected. As our implementation is not
embedded in Max/MSP, we have experimented with a differ-
ent approach. The ReactiveML compiler generates a step
function. It is sampled using an (imprecise) UNIX timer on
which a regular signal clock is built (see Section 4.1). For
any sampling value between 1ms (the refresh frequency of
Max/MSP) to 30/2 = 15ms (half of the reaction time of the
human ear), the implementation is fast enough. However,
if the sampling value is greater than 15ms, one can hear a
noticeable delay between electronic and instrumental parts.
Besides that, when executed at full speed, the implemen-
tation keeps respecting deadlines but monopolizes the CPU
uselessly.

Moreover, if the period of the clock signal is too small
or if the sequencer requires a lot of computations, the se-
quencer may fail to produce the signal on time. This is of
no importance because it does not change the next deadline
for the signal clock. Thus, if there is nothing to do dur-
ing the next steps, the sequencer will quickly catch up. In
practice, the sequencer waits during most of the steps and
catches up very quickly. On the other hand, the period of
the clock signal is limited by the score. It can not be higher
than the minimal delay between two actions.

5. APPLICATIONS
Our implementation provides a powerful tool for prototyp-

ing. After defining the semantics of the core of Antescofo,
we were able to implement it directly in ReactiveML.
Therefore, new features of the language can be added with
little effort. For instance, we proposed two new synchro-
nization strategies partial and causal which fit perfectly
in the semantics framework and have been implemented in
ReactiveML and tested on some examples.

5.1 Prototyping New Features
In the same way, we can rely on ReactiveML features to

implement more complex structures. Assume that we want
to introduce a new preemption construct to stop the execu-
tion of a sequence when a particular instrumental event is de-
tected. Typically, this construct is difficult to add to an im-
plementation that only uses priority queues. But, thanks to
the preemptive construct do/until, the integration of this
new feature in the language is immediate. The only thing to
do is to add a case in the processes detected and missed.
Here, u is an instance of our new construct, u.until_seq

denotes a sequence of electronic actions and u.until_event

denotes the control event.F

and process detected i delta ae =
match ae with
...
| Until(u) ->

signal kill in
do
(run (exec_seq (detected i) delta u.until_seq);
emit kill)
||
(run (wait_event u.until_event);
emit kill)

until kill done

5.2 Towards New Interactions
Moreover, coupling the sequencer with ReactiveML via

signals is another valuable asset for prototyping. Indeed,
in our application, actions consist in either sending a con-
trol message to Max/MSP or emitting a ReactiveML sig-
nal (see Appendix A). Therefore, it is easy to link a score
with a ReactiveML program. One of the main advantages
of our approach is that the program and the sequencer re-
main synchronous. We can use this property, for instance to
write a performance simulator which runs in parallel with
the sequencer and sends messages containing the index of
an instrumental event and the value of the tempo, instead
of the listening machine.

This technique can also be used to write pieces with com-
plex interactions between the performer and the accompani-
ment. For example, Piano Phase is a piece written in 1967
by the minimalist composer Steve Reich. In this piece, two
pianists begin by playing a rapid twelve-note melodic figure
over and over again in unison. Then, one of the pianists
begins to play his part slightly faster than the other. When
the first pianist plays the first note of the sequence as the
second is playing the second note, they resynchronize for a
while. The process is repeated, so that the second pianist
plays the third note as the first pianist is playing the first,
then the fourth, etc.

We implemented this piece using both our sequencer and
ReactiveML.� The real musician plays the part with the
constant tempo, while the accompaniment alternates be-
tween desynchronization and resynchronization. First, the
two pianists play at the same speed. Then, the electronic
accompaniment begins to play its part slightly faster and
emit a signal first_note each time it plays the first note of
the sequence. Meanwhile, we track the position of the per-
former and emit a signal kth_note each time the performer
plays the second note of the sequence. When the two sig-
nals are close enough we resynchronize the accompaniment
and the two pianists play at the same tempo again. Then,
we restart the desynchronization but, this time, we track
the third note of the performer, and so on. The difficulty
comes from the fact that we do not know a priori when
the pianists resynchronize (in the original score, the com-
poser only specifies bounds on the number of iterations of
the sequence during the desynchronization). Programming
such a behavior is not possible to achieve with the language
described in [5]. In Antescofo, the electronic part only
synchronizes using the output of the listening machine and
a static score. Here, the sequencer has to synchronize with
both the listening machine and an external program run-
ning in parallel and sharing the same notion of time. A very
recent extension of the Antescofo language, developed in-
dependently from the present work, allows the simulation of
this new feature [4].

5.3 Toplevel and Live Coding
Finally, ReactiveML has a toplevel [10], and it is thus

possible to dynamically write, load and execute Reac-
tiveML code. This feature allowed our implementation to
be extended to support live coding. It is now possible to
write and/or correct an accompaniment during the perfor-
mance using our kernel of the Antescofo language.�

Dedicated languages and applications already exist for live
coding (i.e., realtime synthesis during a performance) [14,
12]. The main advantage here is that composers can rely on

the features of the Antescofo language during live coding,
e.g., for synchronization and error handling strategies. How-
ever, it only works in interaction with Max/MSP. Therefore
it is much more limited than languages dedicated to, and
optimized for, live coding.

6. RELATED WORK AND DISCUSSION
Differences with the original language.

The most notable differences between this core language
and Antescofo as defined in [5] are the specifications of
group attributes. In the original language, there are only two
error handling attributes: global (g) and local (l) whose
meaning depends on the synchronization strategy. To make
synchronization and error handling attributes independent
of each other, we have changed the meaning of the local and
global attributes and introduced the new attributes par-

tial and causal. The 2×4 following combinations are now
possible whereas the original system only provided 4. The
combination of tight (T) and partial was named tight

local (T l) and the combination of tight and causal was
named tight global (T g):

local global partial causal

tight(T) . . T l T g

loose(L) L l L g . .

Furthermore, the semantics proposed in [5] is based on a
normalized subset of the language: a pre-processing converts
tight groups into loose groups, and tight groups nested
inside a loose group are interpreted as loose groups. There
is no such pre-processing in our proposal. Our semantics
gives a precise meaning to arbitrary nestings of any kind
of group and directly reflects the hierarchical structure of a
score.

We focus here on a subset of the language, but the omit-
ted control structures can be easily expressed in our kernel.
For instance, in the original language, a loop is just a suc-
cession of groups characterized by the same attributes. In
the same way, the original language allows the use of contin-
uous groups [5]. Messages contained in a continuous group
correspond to the sampling of piece-wise linear functions
specified by a sequence of control vectors. Thus, it can be
easily translated into a simple group containing all the de-
sired actions. As explained above, we can attain sampling
values down to 1 ms which is comparable to the current
Antescofo system. This is satisfying enough for control,
e.g., of amplitude, but not for audio synthesis for which a
sampling period of 0.02 ms is needed.

The original language offers the possibility to specify de-
lays in seconds instead of delays relative to the tempo. This
feature can easily be added to our interpreter. The only
change recquired is to use the process wait_abs defined in
Section 4.1 instead of wait for delays expressed in seconds.

Finally, a denotational semantics in term of a datation
function of actions can be found in [6]. We believe that the
deduction rules of Section 3 are easier to understand, permit
some reasoning and a natural translation into a synchronous
implementation. Moreover, this formalism is also more open
in the sense that it is easy to extend with new constructs like
new group attributes. It is not clear for instance whether
the error handling attributes partial and causal can be
described in the semantics of [6].

Modeling of real-time.
Recent work in the Berkeley Ptides project [15] extends

the Ptolemy7 system with real-time features. Basically,
signals are tagged with time-stamps as they move through a
distributed data-flow network: input tokens are stamped at
occurrence, dates are incremented as tokens pass through
delays within the system and finally actuator tokens are
queued to take effect when their time stamps expire. In
our context, time-tags are not simply a real-time date but
a couple (i, δ) where i is a detected event and δ a delay rel-
ative to the tempo. Tags are completely ordered with the
following relation:

(i1, δ1) < (i2, δ2)⇔ E(i1) + δ1 < E(i2) + δ2

Thus, our semantics rules can be viewed as a way to compute
tags associated to each atomic action.

Language Embedding.
This work is influenced by Conal Elliott’s shallow embed-

ding of FRAN [7], a language for defining reactive anima-
tions in Haskell. We took a similar approach by embed-
ding a domain-specific language inside a functional language.
Yet, our approach is novel as we embed a reactive language
into a more expressive one. By reusing the synchronous par-
allelism of ReactiveML, we reduced much of the work of
compilation. Moreover, the implementation closely follows
the semantics rules.

7. CONCLUSION
In this paper, we proposed a semantics for the core lan-

guage of Antescofo, a system dedicated to mixed music.
This semantics highlights its synchronous nature: all run-
ning processes execute in lock-step according to a global
time scale. Moreover, this semantics naturally yields a syn-
chronous implementation. We used ReactiveML for its
expressiveness and efficiency.

By embedding Antescofo in an existing synchronous
language, much compilation work is avoided. The imple-
mentation is small (a few hundred lines of ReactiveML)
and efficient enough so that no perceptive difference has been
noticed with respect to the current implementation. We ex-
perimented with it on several musical pieces and computa-
tion delays were always below human ear tolerance (30ms).

This embedding allows the writing of complex reactive
programs in ReactiveML capable of interacting with the
rest of the musical score. We believe therefore that our
application is a powerful tool for prototyping all kinds of
new features such as new synchronization or error handling
strategies, but also for other types of new interactions be-
tween live performers and computers.

Acknowledgement
The authors would like to thank Arshia Cont and Gérard
Berry who were at the origin of these ideas. We are also
grateful to Jean-Louis Giavitto, Timothy Bourke and the
anonymous reviewers for their kind and valuable remarks.

8. REFERENCES
[1] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,

P. Le Guernic, and R. De Simone. The synchronous

7http://ptolemy.berkeley.edu/index.htm

languages 12 years later. Proceedings of the IEEE,
91(1):64–83, 2003.

[2] G. Berry and G. Gonthier. The Esterel synchronous
programming language, design, semantics,
implementation. Science of Computer Programming,
19(2):87–152, 1992.

[3] A. Cont. Antescofo: Anticipatory synchronization and
control of interactive parameters in computer music.
In International Computer Music Conference, 2008.

[4] J. Echeveste. Modeling Steve Reich’s Piano Phase
with the new version of Antescofo. Personal
communication, April 2013.

[5] J. Echeveste, A. Cont, J.-L. Giavitto, and
F. Jacquemard. Operational semantics of a domain
specific language for real time musician-computer
interaction. Journal of Discrete Event Dynamic
Systems, 2013.

[6] J. Echeveste, A. Cont, F. Jacquemard, and J.-L.
Giavitto. Formalisation des relations temporelles entre
une partition et une performance musicale dans un
contexte d’accompagnement automatique. In
Modélisation des systèmes réactifs, volume
JESA45:1-3, pages 109–124, Novembre 2011.

[7] C. Elliott and P. Hudak. Functional reactive
animation. In ACM SIGPLAN Notices, volume 32,
pages 263–273, 1997.

[8] H. Fastl and E. Zwicker. Psychoacoustics: Facts and
models, volume 22. Springer, 2006.

[9] L. Gérard, A. Guatto, C. Pasteur, and M. Pouzet. A
modular memory optimization for synchronous
data-flow languages. In Languages, Compilers and
Tools for Embedded Systems, June 12-13 2012.

[10] L. Mandel and F. Plateau. Interactive programming of
reactive systems. In Proceedings of Model-driven
High-level Programming of Embedded Systems, 2008.

[11] L. Mandel and M. Pouzet. ReactiveML: a reactive
extension to ML. In Proceedings of the International
Conference on Principles and Practice of Declarative
Programming, 2005.

[12] J. McCartney. Rethinking the computer music
language: Supercollider. Computer Music Journal,
26(4):61–68, 2002.

[13] M. Puckette. Combining event and signal processing
in the max graphical programming environment.
Computer music journal, 15:68–77, 1991.

[14] G. Wang and P. Cook. Chuck: a programming
language for on-the-fly, real-time audio synthesis and
multimedia. In Proceedings of the international
conference on Multimedia, pages 812–815. ACM, 2004.

[15] J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Derler.
Execution strategies for PTIDES, a programming
model for distributed embedded systems. In
Real-Time and Embedded Technology and Applications
Symposium, 2009. 15th IEEE, pages 77–86, 2009.

APPENDIX
A. STRUCTURE OF THE SCORE

We present here the translation of the grammar presented
in Section 2.1 in terms of OCaml types.

type delay = float
type instr_event_label = int
type tempo = float

(* Asco action: control message or RML signal *)
type action =
| Message of string (* Max/MSP control message *)
| Signal of (unit,unit list) event (* RML signal*)

(* Synchronization strategies *)
type sync = Tight | Loose

(* Error handling strategies *)
type err = Local | Global | Causal | Partial

(* Asco group *)
type group =

{ group_synchro : sync;
group_error : err;
group_seq : sequence; }

(* Generic asco action *)
and asco_event = Group of group | Action of action

(* Sequence *)
and sequence = (delay*asco_event) list

(* Electronic score event *)
type score_event =

{ event : instr_evnet_label;
seq : sequence; }

(* Score *)
type score = (score_event list)

(* Instrumental score *)
type instr_score = delay array

(* Performance element *)
type perf_elem = instr_event_label * delay * action

B. THE MISSED RULES
The process missed is the transcription of the missed

predicate (see Figure 5). Here ae is an electronic ac-
tion related to a missing event i, with a delay delta,
and M(i) =j (see Section 3.2). The function split is the
implementation of Split (see Section 3.5). It returns two
sequences of actions, the past and the future.F

val split : label -> label -> delay -> group ->
sequence * sequence

The function, extract_groups is the implementation
of Extract (see Section 3.5) and returns the sequence of past
groups.F

val extract_group : sequence -> sequence

Finally instr_sc is a map structure that contains dates
of instrumental events. It plays the role of the function E
(see Section 3.2). Then, the process missed is implemented
as follows:F

and process missed i j delta ae =
let dj = instr_score.find j in
let di = instr_score.find i in
match ae with
| Action(a) ->

(* rule (Missed Action) *)
let d = (max 0.0 (delta +. di -. dj)) in
run (wait d);
emit perf (j,d,a);

| Group(g) ->
begin match g.group_error with
| Local -> (* rule (Missed Local Group) *) ()
| Global ->

(* rule (Missed Global Group) *)
run (detected j 0.0 ae)

| Partial ->
(* rule (Missed Partial Group) *)
let past, future =
Groups.split instr_score i j delta g in

let gpast = Groups.extract_group past in
let gfuture =
Group({group_synchro = g.group_synchro;

group_error = g.group_error;
group_seq = future;})

in
(run (exec_seq (missed i j) delta gpast) ||
run (detected j 0.0 gfuture))

| Causal ->
(* rule (Missed Causal Group) *)
let past, future =
Groups.split instr_score i j delta g in

let gfuture =
Group({group_synchro = g.group_synchro;

group_error = g.group_error;
group_seq = future;})

in
(run (exec_seq (missed i j) delta past) ||
run (detected j 0.0 gfuture))

end

Note that processes exec, detect and missed are mutu-
ally recursive. Indeed, the process exec launches detect

or missed, detect sometimes executes exec, and missed

sometimes launches detect. Thus the three processes must
know each other.

C. SOURCE LINES OF CODE
We computed the number of lines of code with ocamlwc.8

File sloc

types.rml 35
time.rml 60
motor.rml 97
groups.rml 65
input.rml 87
output.rml 33
ascolib.rml 210
asco.rml 10
parser.mly 104
lexer.mll 84
reactive queue.rml 92
reactive map.rml 70
utils.rml 41
config.rml 104
network.rml 20

Total 1111

8https://www.lri.fr/~filliatr/software.en.html

