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ABSTRACT
Synchronous data-flow languages such as Scade/Lustre
manage infinite sequences, or streams, as primitive values
making them naturally adapted to the description of data-
dominated systems. Their conservative extension with means
to define control-structures or modes has been a long-term
research topic through which several solutions have emerged.

In this paper, we pursue this effort and generalize exist-
ing solutions by providing two constructs: a general form
of state machines called parameterized state machines, and
valued signals, as can be found in Esterel. Parameterized
state machines greatly reduce the reliance on error-prone
mechanisms such as shared memory in automaton-based
programming. Signals provide a new way of programming
with multi-rate data in synchronous data-flow languages.
Together, they allow for a much more direct and natural
programming of systems that combine data-flow and state-
machines.

The proposed extension is fully implemented in the new
Lucid Synchrone compiler.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; D.3.2 [Language classi-
fications]: Data-flow languages; F.3.2 [Semantics of pro-
gramming languages]: Operational semantics

General Terms
Design, Languages, Theory

Keywords
Synchronous languages. Mode automata. Compilation.

1. INTRODUCTION
The question of bringing together data-flow and state-ma-

chines — the two main paradigms that stand behind most
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programming languages for real-time embedded systems —
has been explored by many research projects [16, 20, 8, 7,
6, 18, 10] or industrial tools.

Existing solutions rely on the collaboration between two
independent languages or tools. In [10], we advocated the
need for a more integrated solution inside a unique language
when dealing with safety-critical applications. By providing
a unified semantics, such an integration increases the mod-
ularity of designs and the quality of the generated code.
Moreover both styles can be combined in any conceivable
way. It is possible, for example, to define an automaton with
equations attached to its states like Mode-Automata [18] or
data-flow operators written as state machines as is tradi-
tionally done with the combination of Simulink and State-
flow [23] or Scade and SyncChart [22].

In this paper, we continue the exploration of data-flow lan-
guages equipped with first class-automata. This combina-
tion provides opportunities for new programming constructs
allowing for a simpler and safer description of systems. We
propose two such constructs:

• Parameterized state machines – These provide a way
to communicate values between states without using a
shared memory mechanism. They are also lightweight
for the user and enjoy the same efficient compilation
technique as the one introduced in [10].

• Valued signals – These are events tagged with values
as found in Esterel [5]. They provide a positive way
of programming where the user only focuses on the
instant where an event is produced, the event being
implicitly absent otherwise. Though unusual in data-
flow programming, it appears to combine well with
the rest of the language. Moreover, these signals are
safe: their content can only be accessed if the signal is
present thus avoiding initialization issues.

These extensions are achieved by extending an existing
synchronous data-flow language with a means to define state
machines and signals. For that purpose, we define a syn-
chronous logical semantics that accounts for both data-flow
and imperative constructs. This semantics gives new in-
sights on the operational behavior of automata and the way
transitions are fired during a reaction.

The paper is organized as follows. Section 2 illustrates
the use of parameterized state machines and signals in a
synchronous data-flow system. Section 3 defines the syn-
chronous semantics for a synchronous language extended
with these constructions. This semantics is related to the
logical semantics of Esterel, defining the execution of a



synchronous system as a sequence of atomic reactions. It
is done in two steps, starting with a basic synchronous lan-
guage and then adding an automaton construct and a means
to manage signals. Section 5 discusses the proposed solution
and compilation issues and we conclude in section 6

2. OVERVIEW

2.1 Parameterized State Machines
When programming with automata, it is often necessary

to communicate values between two states upon taking a
transition. A setup state needs to communicate initialization
values to a run one for example.

Several mechanisms can be offered to establish such com-
munications. This can be done, for example, through the
use of shared imperative variables as it is done in State-
flow [19] where a global variable is defined, modified in the
state that is exited, or on the transition itself, and read in
the newly entered one. Such a mechanism is very light to
use, however, it is not entirely satisfactory.

1. It breaks the locality of the communication, requir-
ing a global variable to be declared, even though the
communication only takes place between two states.

2. It breaks modularity, each state depending on this
global variable to be in the current scope.

It is important to note that a shared variable mechanism
allows much more general communication than the one we
are considering: it can be used for example to communicate
between entirely unrelated parts of a program, or through
time. This is why a limited form of shared variables (pre-
cisely shared flows) have been introduced in [10] and is of
natural use for describing modes. For the simpler case,
which is also the one most needed, of communication be-
tween two states when transitioning from one to the other,
we can offer an even simpler mechanism, with better prop-
erties, in the form of parameterized state machines. The
exited state sends a value on the transition that is used to
initialize or instantiate the target state.

An example of such communication is a system with sev-
eral modes of normal execution, and a failure mode. The
failure mode is entered from any other mode upon detection
of an error. It is used to set back the system into a valid
configuration before resuming execution. This failure mode
typically needs to get some contextual information about the
error and the measure that should be taken. Passing this in-
formation in shared memory would mean having global vari-
ables to hold it. These would need to receive meaningless
values during normal execution and be set on the transition
itself: the transition being taken right-away upon detection
of an error. This not only breaks modularity and locality but
is also very error-prone. Making sure that all such variables
are always set correctly before being used is not a trivial
task and it gets more and more complex as systems grow.
Using parameterized state machines, the transition requires
all the values to be provided, eliminating any risk of error:
the program is correct by construction. Moreover, locality
and modularity are preserved. Finally, as the communica-
tion is known to be instantaneous it does not use memory
and is more efficiently compiled.

The example below written in Lucid Synchrone syn-
tax [21] illustrates this typical usage. Our system is a three

mode automaton, one of them being a failure state. Let
in1 and in2 be integer input streams and out be an integer
output stream of the system. State1 is the entry state of
the automaton. In the normal mode, the system computes
a stream out using some auxiliary function f. This state is
active until one of the two escaping conditions (out > 10)

or (in2 = 0) is satisfied. x and resume are local variables
to their state.

let node controller in1 in2 = out where

automaton

| State1 ->

do out = f (in1, in2)

until (out > 10) then State2

until (in2 = 0) then Fail_safe(1, 0)

| State2 ->

let rec x = 0 -> (pre x) + 1 in

do out = g (in1,x)

until (out > 1000) then Fail_safe(2, x)

| Fail_safe(error_code, resume_after) ->

let rec

resume = resume_after -> (pre resume) - 1 in

do out = if (error_code = 1) then 0

else 1000

until (resume <= 0) then State2

end

Upon failure, two values are passed to the Fail_safe state.
One is an error code, the second one is a time that the
system should stay in the failure mode until operation can
safely resume. The communication is kept completely local,
and is explicitly needed when a failure is detected.

This mechanism is reminiscent of the use of continuation
passing style in place of gotos that is largely used in gen-
eral purpose languages and particularly functional ones [2].
The motivations behind its introduction are basically the
same, as positioning shared variables before transitioning to
another state is similar to positioning shared variables be-
fore a goto instruction and is as error-prone [12]. Alterna-
tive approaches could have been considered. In [9, 15], we
used the functional nature of the language and properties
of tail-recursion to define reconfiguration mechanisms. Of-
fering a dedicated mechanism for communication between
states gives a much more lightweight solution and allows
for more efficient implementation. In particular, these au-
tomata are a generalization of the basic automata proposed
in [10] and the same analysis and compilation techniques
can be applied.

Parameterized states are complementary to global shared
variables and are not intended to replace then. They provide
a way to keep the communication between two states local
without interfering with the rest of the automaton. More-
over, it does not raise initialization issues as global variables
do. Indeed, in imperative formalisms (e.g., Stateflow, Es-
terel V5 and V7), a global variable (or signal in Esterel)
is implemented as a memory whose default behavior is to
keep its previous value. As a consequence, the compiler has
to check that the variables has been initialized before behing
defined which call for sophisticated program analysis. Our
motivation is thus to offer a simple mechanism with better
properties and for which the good initialization of program
in particular can be easily checked.



2.2 Signals and Signal Patterns
We now consider the addition of signals. Adding signals

to a synchronous data-flow language seems like a strange
idea as a stream is itself the representation of a signal: a
data which might take different values in time and which
can be either present or absent. So, more precisely, we use
the term signal to refer to Esterel signals, that is, valued
events. Our interest in signals is that they lead to a differ-
ent way of programming, not directly available in data-flow
programming. Signal-based programming is positive: the
programmer only specifies things that happen and their ef-
fect, signal being implicitly absent otherwise. In data-flow
on the other hand, the programmer needs to describe the
effect of things happening, as well as not happening, which
can be cumbersome when looking at control dominated sys-
tem like automata.

A signal can only be emitted or tested for presence. When
it is present its value can be accessed. We can for example
write a function that adds the value of two integer signals if
they are both present, it returns the value of the one present
if only one is present and nothing otherwise:

let node sum x y = o where

present

| x(v) & y(w) -> do emit o = v + w done

| x(v1) -> do emit o = v1 done

| y(v2) -> do emit o = v2 done

| _ -> do done

end

The construction x(v) & y(w) is a synchronization pattern
which is verified when both signals x and y are present. In
this case, the parameters v and w are bound to the values of
x and y and the correspond equation emit o = v + w is exe-
cuted. Such a construction is new in a synchronous data-flow
language and is reminiscent of pattern-matching in func-
tional languages or join-patterns in the Join-calculus [13].
It matches patterns of events. The same function is easy
to write in a purely data-flow style but is a lot less direct
than this one. It requires completing the streams with the
right values to get the result we want when adding them in
a single operation.

Accessing signals through patterns allows accesses to be
entirely safe: the value of a signal can only be read if the
signal is present. This is a key difference with Esterel,
for example, where the value of a signal can be read at any
time, leading to initialization issues.

2.3 State Machines and Signals
These two features are orthogonal and address different is-

sues. They both improve the definition of control-dominated
systems in a data-flow language. They compose well and
together lead to a more direct and concise programming of
systems. The example below makes use of both features. It
implements a mouse controller. An informal specification of
this system is:

“Return the event double when two click has
been received in less than four tops. Emit single
if only one click has been received”.

This example can be programmed as an automaton receiving
two signals click and top and emitting a signal o that can
take two possible values from an enumerated type: Single

and Double. The expression ? e returns the value true when
e is present and false otherwise.

type output = Single | Double

let node count e = cpt where

rec cpt = if ? e then 1 -> pre cpt + 1

else 0 -> pre cpt

let node controler click top = o where

automaton

| Await -> do until click(_) then One

| One ->

do unless click(_) then Detected(Double)

unless (count top = 4) then Detected(Single)

| Detected(x) ->

do emit o = x

until true then Await

end

The automaton awaits for the first emission of the signal
click (pattern _ means that its carried value is ignored)
then it enters in state One. In this state, at the instant
where click is received, it immediately enters the parame-
terized state Detected giving the initial value Double. Oth-
erwise and at the fourth occurrence of top, it enters in state
Detected with initial value Single. In the target state, it
emits the signal o then goes in state Await for the remaining
execution.

Many other examples illustrating these two constructs and
their combination are available in the distribution of the
Lucid Synchrone compiler.

3. FORMALIZATION

3.1 A Core Data-flow Language
We define a first-order synchronous data-flow kernel con-

sidered as a basic calculus. We equip it with two control
structures, a means to reset the computation of a set of
equations, and a pattern-matching construct over a user de-
fined data-type. Their translation into regular synchronous
code (e.g., Lustre) is given in [15, 10].

A program is made of a sequence of global value declara-
tions (d) and type declarations. A global value declaration
defines a node (let node x(p) = e). Expressions (e) are
made of constructed values (Cn(e1, ..., en)) built with a con-
structor C with arity n, an initialization operator (e1 ->k e2),
a delay initialized with a value (prev(e)), a local definition
(e where D), variables (x), a point-wise application (op(e))
or a node application (f(e)).

A pattern p may be a value constructor (Cn) with ar-
ity n applied to n patterns (Cn(p1, ..., pn)), a variable (x)
or a wildcard ( ). A declaration (D) can declare a value
(p = e), a collection of parallel equations (D andD), it may
introduce local names (letD1 inD2) or it can be a control-
structure. A control-structure can be a pattern-matching
construction (match e with p -> Dk ... p -> Dk) or a defi-
nition reset on a boolean condition (reset D every e). In
the pattern-matching construction, each handler is tagged
with a local reset bit k. In concrete syntax, we simply
write (match e with p1 -> D; ...; pn -> Dn) as a short-cut
for (match e with p1 -> D0

1; ...; pn -> D0
n). Value construc-

tors (Cn) are tagged with their arity. A sum type type t =



{Cn1
1 : t11 × ... × t1n1 ; ...; C

nm
m : tm1 × ... × tmnm} is well

formed if all the Ci are distinct from each other.

e ::= Cn(e, ..., e) | x | e1 ->k e2 | prev(e)
| e where D | op(e) | f(e)

D ::= D andD | p = e | letD inD
| match e with p -> Dk ... p -> Dk

| reset D every e

p ::= Cn(p, ..., p) | x |
op ::= + | ...
k ::= 0 | 1
d ::= let node f(p) = e | d; d
td ::= type t | td; td

type t = {Cn : t× ...× t; ...; Cn : t× ...× t}

We note fv(e) the set of free variables from an expression
e. Def (D) stands for the defined names from D. Their
definition is given in appendix 6.

We also suppose that the last handler of match/with state-
ment is of the form -> D in order to guarantee that the
pattern matching is exhaustive1.

e1 ->k e2 stands for the initialization operator and prev(e)
for the initialized delay. The initialization operator is a sim-
ple two state machine which returns the current value of its
first input and then the current value of its second input.
The extra argument k where k ∈ {0, 1} indicates if the au-
tomaton is in its initial state or not (k = 0 standing for
the initial state). In conventional Lustre or Lucid Syn-
chrone syntax we simply write e1->e2 as a short-cut for
e1 ->0 e2. In the same way, pre(e) stands for the previous
value of e and is a short-cut for prenil(e) where nil denotes
any value with the type of e. op(e) stands for the point-wise
application of a combinatorial function (typically an exter-
nal function such as +, not). A pair is simply written (x, y)
instead of ,(x, y). If x and y are two streams, +(x, y) stands
for the point-wise addition that we write x + y.

x x0 x1 x2 x3 ...
y y0 y1 y2 y3 ...
x -> y x0 y1 y2 y3 ...
pre (y) nil y0 y1 y2 ...
x fby y x0 y0 y1 y2 ...
x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 ...
(x, y) (x0, y0) (x1, y1) (x2, y2) (x3, y3) ...

The language provides an ml-like pattern-matching con-
struct. Such a construction allows to combine stream equa-
tions. Keeping the notation of the presented kernel, the
conditional if/then/else can be encoded as:

let node ifthenelse (c, x, y) = o where

match c with

| true -> o = x
| false -> o = y

In the rest of the paper we simply write t for true and f
for false.

3.2 Synchronous Semantics
The synchronous semantics is given by reaction rules, fol-

lowing the logical semantics of Esterel [4]. We define the

1This is stronger than necessary and ml languages have de-
veloped exhaustivity analysis [17].

set of instantaneous values (v) that can be produced dur-
ing a reaction. For simplicity of the presentation, values are
structured with constructors. The language is first-order.

Values: v ::= Cn(v, ..., v) | C0

Environments: R ::= [v1/x1, ..., vn/xn] (locals)
I ::= R (inputs)
O ::= R (outputs)

Reaction: R
k

` e1
v−→ e2 k ∈ {0, 1}

R
k

` D
R′
−→ D′ with R′ ⊆ R k ∈ {0, 1}

and Def (D) = Dom(R′)

Dom(R) denotes the domain of R. If x ∈ Dom(R) then R(x)
denotes the value associated to x in R. R1 +R2 denotes the
concatenation of R1 and R2, provided there is no name con-
flict, that is, Dom(R2) ∩ Dom(R1) = ∅. In other words, a
variable defined in R2 must not be already defined in R1. A
substitution ρ = [v1/x1, ..., vn/xn] is lifted to patterns such
that ρ(Cn(p1, ..., pn)) = Cn(ρ(p1), ..., ρ(pn)). A pattern p
filters a value v noted p � v if there exists a substitution ρ
such that ρ(p) = v and we write [v/p] for it. A wildcard

matches any pattern and [v/ ] produces the empty sub-
stitution. k stands for a reset bit with values from {0, 1}
interpreted as booleans.

The predicate R
k

` e1
v−→ e2 means that the expression e1

under the environment R emits the value v and rewrites into
the expression e2. In doing this, we introduce a special reset
flag. When k = 0, the reaction is reset and starts in its initial

state. When k = 1, it is not. The predicate R
k

` D
R′
−→ D′

means that the declaration D defines the instantaneous envi-
ronment R′ and rewrites into the declaration D′. To simplify
the presentation, we impose that every name defined in D
be produced during the reaction. A more general solution is
proposed in [10] where values which are not produced keep
their previous value. We shall come back to this point in
section 5. The complete execution of a declaration D1, un-
der a sequence of input environments HI = I1.I2... produces
a sequence of environments HO = O1.O2....

Ii + Oi + Ri

1

` Di
Oi+Ri−→ Di+1

During a synchronous reaction, computations may observe
both input, local or output signals emitted during the reac-
tion. This is why the reaction is computed in an extended
environment Ii + Oi + Ri. An execution is made in a global
static environment S made of the node definitions of a pro-
gram. A program defining nodes f1, ..., fn produces an ini-
tial environment of the following form:

S = [λp1.e1/f1, ..., λpn.en/fn]

Being global, we keep it implicit in the rule and shall simply
write S(f) for the node definition associated to the identifier
f .

Reduction rules are defined in figure 1. We consider them
modulo renaming (α-conversion). Functions imported from
the host language apply point-wise to their arguments (rule
(app)). A node application evaluates by first expanding its
definition (rule (APP)). The notation Cn(e1, ..., en) stands
for the point-wise application of a n-ary constructor C to a



(C)
R

k

` e1
v1−→ e′1 · · · R

k

` en
vn−→ e′n

R
k

` Cn(e1, ..., en)
C(v1,...,vn)−→ Cn(e′1, ..., e

′
n)

(app)
R

k

` e
v−→ e′ v′ = op(v)

R
k

` op(e)
v′
−→ op(e′)

(PRE)
R

k

` e
v′
−→ e′

R
k

` prev(e)
v−→ prev′(e

′)

→k

R
0

` e1
v1−→ e′1 R

0

` e2
v2−→ e′2

R
0

` e1 ->k e2
v1−→ e′1 ->1 e′2

→10

R
1

` e1
v1−→ e′1 R

1

` e2
v2−→ e′2

R
1

` e1 ->0 e2
v1−→ e′1 ->1 e′2

→11

R
1

` e1
v1−→ e′1 R

1

` e2
v2−→ e′2

R
1

` e1 ->1 e2
v2−→ e′1 ->1 e′2

(TAUT)

R(x) = v

R
k

` x
v−→ x

(WHERE)
R + R′

k

` D
R′
−→ D′ R + R′

k

` e
v−→ e′

R
k

` e where D
v−→ e′ where D′

(APP)
S(f) = λp.e R

k

` e where p = e1
v−→ e′

R
k

` f(e1)
v−→ e′

(DEF)
R

k

` e
v−→ e′

R
k

` p = e
[v/p]−→ p = e′

(AND)
R

k

` D1
R1−→ D′

1 R
k

` D2
R2−→ D′

2

R
k

` D1 andD2
R1+R2−→ D′

1 andD′
2

(LET)
R + R1

k

` D1
R1−→ D′

1 R + R1

k

` D2
R2−→ D′

2

R
k

` letD1 inD2
R2−→ letD1 inD2

(RESET-t)
R

k

` e
t−→ e′ R

0

` D
R′
−→ D′

R
k

` reset D every e
R′
−→ reset D′ every e′

(RESET-f)
R

k

` e
f−→ e′ R

k

` D
R′
−→ D′

R
k

` reset D every e
R′
−→ reset D′ every e′

(MATCH)
R

k

` e
v−→ e′ ∀j ∈ {1, ..., i− 1}, pj 6�v R + [v/pi]

ki∧k

` Di
R′
−→ D′

i

R
k

` match e with p1 -> Dk1
1 ... pn -> Dkn

n
R′
−→ match e with p1 -> Dk1∧k

1 ... pi -> D′1 ... pn -> Dkn∧k
n

Figure 1: Synchronous Semantics for the Basic Calculus

n-tuple of instantaneous values. The delay shifts its input
argument (rule (PRE)). The initialization operator (→) acts
as a two state machine. In the initial step (k = 0), it returns
the value of its first input (rule (→k)). In the remaining steps
(k = 1), it returns the value of its first argument if the au-
tomaton is in its initial state and it returns the value of its
second argument otherwise (rules (→10) and (→11)). Indeed,
an initialization x -> y returns the first value of x when
the reset condition is true or because it is in a block which
has not been already executed. In a reaction, the current
value of x is the one present in the hypothesis (rule (TAUT)).
The rule (WHERE) is for local definitions in expressions. An
equation produces a substitution (rule (DEF)). Rules (AND)

and (LET) are for parallel and local definitions. A reset def-
inition reset D every e reacts as D does except that the
body is re-initialized every time e is true or the context k
imposes it. When the reset flag is true, every initialization
operator from D restarts with its initial value. A pattern
matching construct first evaluates the expression e then se-
lects the first branch whose pattern matches the value of e.
Note that because of the constraint on reaction, a shared
variable x must have a definition in every handler of a pat-
tern matching.

The synchronous semantics both gives meaning to the
purely data-flow part as well as the reset construction which
is more imperative. This is simply taken into account by
adding an extra tag to the semantics which leads to a simpler
formulation than existing ones [9, 15] where the reset was
expressed as a form of tail-recursion. Moreover, it follows
more closely the actual implementation in the ReLuC and

Lucid Synchrone compilers where the reset bit is tested at
the beginning of the reaction to decide whether the memory
must be re-initialized or not.

4. ADDING MODES AND SIGNALS
In this section, we introduce a programming language

which extends the basic one with new control structures and
a means to manage signals.

In Esterel, signals can be either pure or valued. A pure
signal is nothing but a boolean flow. A valued signal is
a more complex object. It is represented as a pair (p, v)
made of a value v and a presence bit (the enable in circuit
terminology or the clock in synchronous data-flow program-
ming). We provide two constructions to manage those val-
ued signals. A signal x can be emitted with some value
by writing emit x = e whereas the presence can be tested
and its carried value can be accessed through a pattern-
matching construct present. We extend the language of
equations in the following way. An equation can define
the current value of a signal (emit x = e). Two extra
control-structures are added. A present construct is of the
form (present si → Dk ... si → Dk) and an automaton con-

struct (automatonvs
k sp → uk′

unless sk ...). In a present
construct, si stands for a signal pattern. A signal pattern
may be a synchronization pattern (si1 & si2), an atomic sig-
nal testing x〈p〉 stating that x must be present and match
the pattern p, or it can be a boolean expression e. An au-
tomaton is annotated with the current entry state of the
automaton vs and an initialization status k ∈ {0, 1} indi-
cating whether the entry state must reset or not on entry.



Moreover, each handler of the form spi → u
k′

i
i unless ski

i is
annotated with two bits k′i and ki which whether the set of
equations u (with its set of weak conditions) or the strong
conditions s must be reset or not. In concrete syntax, we
simply write automaton sp1 → u1 unless s1 ... as a short-
cut for (automatonsp1

0 sp1 → u0
1 unless s0

1 ...) meaning that
the first state in the list is the initial state and that every
computation has to be reset on entry. In an automaton,

every handler (sp → uk′
unless sk) is made of two parts.

(u) defines a set of shared variables (do D until s) which
may use some auxiliary local names (letD inu) and a set
of escaping conditions (s) to escape weakly from the handler.

The second part (uk′
unless sk) defines the strong condi-

tions to leave the current state. The keyword until means
that the condition are tested at the end of the reaction. The
transition is weak (to keep Esterel terminology) whereas
the keyword unless means that the condition is tested be-
fore the definitions from u are executed. A state pattern
(sp) has the form S(p1, ..., pn) and a state expression has
the form S(e1, ..., en). State patterns are supposed to be
pairwise different and the initial state has no parameter (it
is of the form S).

D ::= D andD | p = e | letD inD
| emit x = e
| match e with p -> D ... p -> D
| reset D every e
| present si -> Dk ... si -> Dk

| automatonvs
k

sp → uk unless sk

...
sp → uk unless sk

u ::= letD inu | do D until s
s ::= si then se s | si continue se s | ε
si ::= si & si | x〈p〉 | e |
se ::= S | S(e, ..., e)
sp ::= S | S(p, ..., p)

We define the set Emit(D) of a set of definitions as the
set of emitted names from D. Its definition is given in the
appendix 6.

As we did for the pattern-matching construct, we suppose
that the last handler from a present statement is of the form
→ D.

4.1 Synchronous Semantics
We now extend the synchronous semantics, generalizing

the idea introduced in the basic one with the use of the
k tag. An automaton is annotated with two informations,
the current active state and an initialization tag k stating
whether the current state must be reset on entry or not. The
reaction of an automaton thus computes a set of equations
and defines how these these two tags change.

A signal can be either present or absent and we extend
the set of instantaneous values which can be emitted during
a reaction. A state value is simply the name of a state
parameterized by some values. We have:

Values: v′ ::= v | abs

State values: vs ::= S | S(v, ..., v)

Environments: R ::= [v′1/x1, ..., v
′
n/xn] (locals)

I ::= R (inputs)
O ::= R (outputs)

Reaction: R
k

` e1
v−→ e2 k ∈ {0, 1}

R
k

` D
R′
−→ D′ k ∈ {0, 1}

Moreover, in order to be applied, a synchronous reaction

R
k

` D
R′
−→ D′ must verify the following properties:

1. x ∈ Def (D) ⇒ [v/x] ∈ R ∧ [v/x] ∈ R′

2. x ∈ Emit(D) ∧ [v/x] ∈ R′ ⇒ [v/x] ∈ R

3. x ∈ Emit(D) ∧ [v/x] 6∈ R′ ⇒ [abs/x] ∈ R

The first property was already imposed on the basic lan-
guage. It states that every stream variable defined in a block
D must be produced by the reaction. The second property
states that if the signal x is emitted with value v then it also
has the value v in the hypothesis R. Finally, if a signal x
is defined in a definition D but it is not emitted then it is
marked absent in the hypothesis.

The emission of a signal x is done by the equation emit x =
e with the corresponding reaction rule:

(EMIT)
R

k

` e
v−→ e′

R
k

` emit x = e
[v/x]−→ emit x = e′

The extended language provides a pattern matching mech-
anism over signals. Signals are special values which can be
either present (v) or absent (abs). We define the predicate

R
k

` si
R′

→
v

si′ stating that the signal pattern si may define

the local environment R′ and rewrites to si′. A signal testing
succeeds when v = t and it fails when v = f . The defini-
tion of this predicate is given in figure 2. An atomic signal
testing x〈p〉 fails if x is absent (rule (TEST-abs)) or the value
is not matched (rule (TEST-f)). It succeeds if x is present
and its value is matched by the pattern p (rule (TEST-t))
or it is a wildcard pattern (rule (WILD)). A synchronization
pattern si1 & si2 succeeds if the two succeed and it produces
the union of the two environments. A boolean test succeeds
if the expression evaluates to the true value (rule (EXP)). For
a present statement, all the signal patterns are evaluated
and the selected branch is the first one in the list of handlers
(rule (PRESENT)).

For example, the signal pattern x〈0〉& y〈z〉& (cpt = 0)
succeeds when the signal x is present and carries the value
0, the signal y is present and the boolean condition cpt = 0
is true. When this synchronization pattern occurs, it binds
the variable z to the actual value carried by the signal y. In
a present statement, synchronization patterns are tested
sequentially and the first pattern to succeed determines the
selected branch.

The semantics of state machines is necessarily a little more
subtle because every state defines a set of equation and can
be escaped with a variety of transitions. Transitions may
be strong or weak and this depend on the instant where the
condition is tested. Moreover, for each transition, we must
decide if the target state is reset on entry or not. For this
semantics, we introduce two auxiliary predicates, one for the
semantics of escaping conditions and one for the execution

of the body of a state. The predicate R
k

v̀s
s

vs′

→
k′

s′ states

that in the environment R, a reset context k and the cur-
rent state value vs, the escape condition s produces the new



(TEST-abs) R + [abs/x]
k

` x〈p〉
∅
→
f

x〈p〉 (TEST-f)

p 6�v

R + [v/x]
k

` x〈p〉
∅
→
f

x〈p〉
(TEST-t)

p � v

R + [v/x]
k

` x〈p〉
[v/p]
→
t

x〈p〉

(&)

R
k

` si1
R1→
v1

si′1 R
k

` si2
R2→
v2

si′2

R
k

` si1 & si2
R1+R2→
v1∧v2

si′1 & si′2

(EXP)

R
k

` e
v−→ e′

R
k

` e
∅
→
v

e′
(WILD) R

k

`
∅
→
t

(PRESENT)

∀j ∈ {1, ..., n} R
k

` sij
Rj

→
vj

si′j ∀j ∈ {1, ..., i− 1} vj = f vi = t R + Ri

ki∧k

` Di
R′

i−→ D′
i

R
k

` present si1 → Dk1
1 ... sin → Dkn

n

R′
i−→ present si′1 → Dk1∧k

1 ... si′i → D′1
i ... si′j → Dkn∧k

n

Figure 2: Signal Matching and Presence Testing

state value vs′, the reset condition k′ and rewrites to s′.

The predicate R
k

v̀s
u

R′

→
k′,vs′

u′ states that under the envi-

ronment R, the reset condition k and the current state vs,
the body u produces the environment R′, a reset condition
k′, a state value vs′ and rewrites to u′. k′ states that the
target state is reset on entry.

The semantics for automata is given in figure 3. Two cases
may occur according to the reset context k (rules (AUT0) and
(AUT1)). When k = 0, this means that the current state is
the initial state sp1 of the automaton and every state is thus
reset. The automaton first evaluates the strong condition s1

which produces the state value v and reset condition k′ on
entry on that state. We select the state pattern that match v
and, during the same reaction, we execute the corresponding
body ui. This execution produces several results: a reaction
environment R′, a reset condition k′0 for the next reaction
and a target state value vs′0. The second rule (TAUT1) is
for the remaining executions of an automaton. The current
active state (which matches the stored value vs0) is selected
and the reset condition k0 is the one that has been returned
by the previous reaction. The strong conditions are first
executed to determine what is the current active state spi.
Then, it is executed during the same reaction and produces
the environment and information for the next reaction.

Observe that, as a consequence of this semantics, in an au-
tomaton only one set of equations is executed during a reac-
tion. It is moreover possible to enter strongly in a state and
leave it weakly (or conversely). Nonetheless, it is not possi-
ble to enter and leave strongly during one reaction, that is,
to cross more than two transitions. This is a key difference
with the SyncChart or StateCharts, and largely simpli-
fies program understanding and analysis. We shall come
back to this point in section 5.

Rules (LET) and (DO) define how the body of an automa-
ton reacts. In the first rule, the local definition is first
evaluated. Then, in the extended environment, u is evalu-
ated. The second rule exhibits the main difference between
strong and weak conditions. Here, the set of equations D
in do D until s is executed no matter are the values of the
weak conditions s. These conditions will determine the ac-
tive state and reset status for the next reaction only, not the
current one.

The five rules defining the semantics of escape conditions
are given in figure 4. They are very similar to each other.
The keyword then means that the target state is reset whe-

reas the keyword continue means that it is not. Moreover,
conditions are evaluated in sequence. If no condition suc-
ceed, then the current state vs is returned and is not reset
(rule (Epsilon)).

5. DISCUSSION
In this section, we explain how parameterized automata

and signals are compiled and we discuss the design choices
we have made.

5.1 Translation Semantics
In [10] we have introduced a translation semantics for a

synchronous data-flow language extended with finite state
machines. The semantics was neither operational nor deno-
tational in the usual sense: the semantics of automata was
given by their translation into a basic language, thus giving
at the same time a compilation method. Though satisfac-
tory, a more direct semantics was lacking and the present
paper answers to that need.

The compilation of parameterized state machines and sig-
nals does not raise technical difficulties and the translation
method introduced previously has been easily generalized.
We illustrate it informally on the following two states au-
tomaton. This automaton awaits for the presence of both
signals a and b. When they are present, it enters in the
state Emit parameterized by the sum of the values of a and
b. This sum is constantly emitted as soon as the boolean
condition r is true (it is of course possible to write a form
where o is emitted only on entry). We write it in the ab-
stract syntax given in section 3 (see [21] for its writing in
concrete syntax).

let node sum (a, b, r) = o where

automaton

| Await -> do unless a〈x〉&b〈y〉 then Emit (x + y)
| Emit (v) -> do emit o = v unless r then Await

A signal can be represented by a constructed value. An
absent value is represented by the constructor Abs whereas
a present value with value x is represented by P(x). An
alternative concrete representation is to use pairs instead
(this is what is done in the Lucid Synchrone compiler).
Following the method introduced in [10], an automaton is
translated into the core data-flow language, and generates
two pattern-matching constructs. For this purpose, we in-
troduce two extra variables. The variable pnextstate defines



(AUT0)

R
0

s̀p1
s1

vs
→
k′ s′1 spi � vs R + [vs/spi]

0

v̀s
ui

R′

→
k′
0,vs′

0

u′i

R
0

` automaton
vs0
k0

sp1 → u
k′
1

1 unless sk1
1

...

spi → u
k′

i
i unless ski

i

...

spn → u
k′

n
n unless skn

n

R′
−→ automaton

vs′
0

k′
0

sp1 → u0
1 unless s′1

1

...

spi → u′i
1
unless sk′

i

...
spn → u0

n unless s0
n

(AUT1)

spj � vs0 R
k0∧kj

v̀s0
sj

vs
→
k′ s′j spi � vs R + [vs/spi]

k′∧k′
i

v̀s
ui

R′

→
k′
0,vs′

0

u′i

R
1

` automaton
vs0
k0

sp1 → u
k′
1

1 unless sk1
1

...

spi → u
k′

i
i unless ski

i

...

spn → u
k′

n
n unless skn

n

R′
−→ automaton

vs′
0

k′
0

...

spj → u
k0∧kj

j unless s′j
1

...

spi → u′i
1
unless sk′

i

...

spn → u
k′

n
n unless skn

n

(LET)

R + R′
k

` D
R′
−→ D′ R + R′

k

v̀s
u

R′′

→
k′,vs′

u′

R
k

v̀s
letD inu

R′′

→
k′,vs′

letD′ inu′
(DO)

R
k

` D
R′
−→ D′ R

k

v̀s
s

vs′

→
k′

s′

R
k

v̀s
do D until s

R′

→
k′,vs′

do D′ until s′

Figure 3: The Synchronous Semantics for Automata

the target state produced by the previous reaction whereas
the variable state defines the current active state. The first
pattern-matching computes the current active state accord-
ing to strong transitions whereas the second one defines what
is computed (here the value of o and the weak transitions)
and what will be the active state for the next reaction. In
the abstract syntax of the basic language, we get the follow-
ing program.

let node sum (a, b, r) = o where

match pnextstate with

| Await -> match (a, b) with

| (P(x), P(y) -> state = Emit(x + y)
| -> state = Await

| Emit(v) -> match r with

| true -> state = Await

| false -> state = Emit(v)
and

match state with

| Await -> o = Abs and nextstate = Await

| Emit(v) -> o = P(v) and nextstate = Emit(v)
and

pnextstate = Await -> pre nextstate

This program can in turn be compiled using the existing
code generation tools of synchronous languages. Such a two
step compilation strategy, where the extended language is
first translated into its data-flow subset before code genera-
tion is applied, has several useful properties in the context of
critical systems. It allows existing qualified code generation
to be used (such as the one of Scade), it increases traca-

bility and produces efficient code. This is why the solution
have been retained for the next Scade compiler.

5.2 Transient States
The automata construction proposed here is rather rich

in terms of transitions. A transition can be strong or weak
and can continue or reset the target state. The semantics
of strong transitions consists in inspecting their guards at
the very beginning of the cycle in order to determine what
is the state that must be evaluated in the current cycle.
Conversely, weak transitions are evaluated at the end of the
current active state and determine the next state. While a
little subtle to use, these two types of transitions are nec-
essary in many applications. The semantics is quite clear
locally and in an homogeneous automaton (with only weak
or only strong transitions). What we have considered here
is an arbitrary mixture of both, which needs more design
choices to decide what to do when a state is entered with a
transition of a different kind that its leaving one. Thus, two
possible situations may occur during a synchronous reaction:

1. entering with a strong and leaving with a weak, or

2. entering with a weak and leaving with a strong.

Note that this is already much simpler than what is offered
in other automata based formalisms like SyncChart [1] or
the Stateflow where an arbitrary number of states can
be crossed during a reaction. Nonetheless, one can wonder
if this must be more restricted. It is clear that only one
state is active per cycle. We might want something similar
for transitions and may impose that only one transition be



(TH-t)

R
k

` si
R′

→
t

si′ R + R′
k

` se
vs′
−→ se′ R

k

v̀s
s

vs′′

→
k′

s′

R
k

v̀s
si then se s

vs′

→
0

si′ then se′ s′
(TH-f)

R
k

` si
R′

→
f

si′ R
k

v̀s
s

vs′

→
k′

s′

R
k

v̀s
si then se s

vs′

→
k′

si′ then se′ s′

(CO-t)

R
k

` si
R′

→
t

si′ R + R′
k

` se
vs′
−→ se′ R

k

v̀s
s

vs′′

→
k′

s′

R
k

v̀s
si continue se vs′

vs′

→
1

si′ continue se′ s′
(CO-f)

R
k

` si
R′

→
f

si′ R
k

v̀s
s

vs′

→
k′

s′

R
k

v̀s
si continue se s

vs′

→
k′

si′ continue se′ s′

(Epsilon) R
k

v̀s
ε

vs
→
1

ε

Figure 4: The Synchronous Semantics for escaping conditions

fired during a cycle. To respect this condition, the rule for
weak transitions must keep track on the fact that a strong
one has been fired at the beginning of the cycle. This choice
answers situation 1. For the second one, we can either allow
to go through a state without activating it (by composing
a weak transition followed by a strong one) or avoid that
when testing strong transitions.

We have two choices for both thus leading to four possi-
ble semantics. The semantics proposed in this paper allows
situations 1 and 2 and the Lucid Synchrone compiler fol-
lows it precisely. Deciding if a more constraining rule must
be taken is still unclear. The possibility to compose these
two types of transitions is useful in practice and not that
much complex. Such sequences of transitions are inherently
difficult to understand. More methodological consideration
about the right way to design programs that uses both kind
of transitions are certainly needed. Such situations are com-
mon and expected when combining several paradigms.

5.3 Completing Incomplete Definitions
The semantics proposed here requires a complete defini-

tion of streams defined in states. This means that a stream
must be defined at every cycle. Since exactly one state is
active during a reaction, each state must contain a definition
for the streams defined by an automaton.

The language presented in [10] does not need to give a def-
inition of a stream in every state and proposes to maintain
the latest computed value. We introduced for that the con-
struction last x as a way to refer to the last computed value
of a shared value x and absent definitions are implicitly com-
pleted with the equation x = last x. This choice is pretty
comfortable from the user point of view as it strongly re-
minds the behavior of variables in any imperative languages
where the value is maintained as long as no new assignment
occurs. This is also the case in Stateflow where the action
language is imperative with a more unsafe mechanism since
multi-emission (which is feasible in Stateflow) is forbid-
den here. Indeed, keeping the single assignment property is
a key point in the simplification of parallelism provided in
synchronous languages.

The signals introduced here correspond to the case where
a partial definition is allowed (the single definition per cycle
still holds) without filling the holes corresponding to the cy-
cle where the signal is not emitted. Signals have two proper-
ties: they may not be always produced and there is no need
to introduce memory to maintain their values. Moreover
they lead to a nice programming discipline as it is impossi-

ble to access they value when the signal is absent.
In Esterel, the choice is to have both an implicit com-

pletion of the signal value with its latest one and a way to
test that this value is produced in the current cycle. But
the access and the test are not necessarily grouped and it
may be possible to access the value of a signal which is not
emitted, thus raising initialization problems.

5.4 Signals as Clocked Values
The introduction of Esterel-like signals gives an alter-

native way of programming where only the emissions are
considered, the signal being implicitly absent otherwise.

Internally, the proposed mechanism relies on the use of
clocks as they were originally introduced in Lustre [14] and
Signal [3]. These synchronous language manages clocked
sequences, that is, sequences which are associated to a type
information — a clock — defining the instants where the
sequence is present. Thus, they already provide a means
to manage streams which are present from time to time.
Nonetheless, clocks are somethimes heavy to program with
and we were interested in finding a more comfortable way
of managing them through a suitable syntactic sugar. In
this context, a signal is nothing but a pair made of a clock
(or enable) and a value sampled on that clock. Thus, if ck
stands for the clock type of a value v, the clock type of a
signal is a dependent pair Σ(c : ck).ck on c. A signal boxes
(or hide) the internal clock of the stream and corresponds
exactly to the actual implementation of a signal in Esterel.

The interesting consequence of this representation is that
existing clock calculus [9, 11] extend to this construction.

6. CONCLUSION
In this paper, we have considered an extension of a syn-

chronous data-flow language with a generalized form of state
machines called parameterized state machines and a means
to manage valued signals, that is, events carrying a value.

We have proposed a synchronous semantics for the whole
language. Such a semantics for a language combining data-
flow equations and state machines is new and complements
the translation semantics given in previous works. Though
not addressed in the paper, all the classical static analysis of
synchronous languages (e.g., typing, clock calculus, causal-
ity analysis) can be extended to the resulting language. This
work reveals that the operational semantics for such a lan-
guage is intrinsically more complex than a translation se-
mantics into a data-flow kernel. This confirm the interest of
the later as a basis for an implementation.



Parameterized states gives an answer to the common need
to pass some initial information to a state when entering it.
This leads to a safer and more modular programming dis-
cipline than what is traditionnaly done through the use of
global shared variables and imperative modifications in tools
like the SyncChart or Stateflow. Yet, it can be compiled
efficiently and combines well with the data-flow nature of
the basic language. The ability to manage signals brings an
easy way to manipulate multi-rate data, and leads to a pos-
itive programming, usually found in imperative languages
like Esterel.
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[1] Charles André. Representation and Analysis of
Reactive Behaviors: A Synchronous Approach. In
CESA, Lille, july 1996. IEEE-SMC. Available at:
www-mips.unice.fr/∼andre/synccharts.html.

[2] Andrew W. Appel. Compiling with Continuations.
Cambridge University Press, 1992.

[3] A. Benveniste, P. LeGuernic, and Ch. Jacquemot.
Synchronous programming with events and relations:
the SIGNAL language and its semantics. Science of
Computer Programming, 16:103–149, 1991.

[4] Gérard Berry. The constructive semantics of pure
esterel. Draft book, 1999.

[5] Gérard Berry. The esterel v5 language primer, version
5.21 release 2.0. Draft book, 1999.

[6] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer,
Y. Zhao, and H. Zheng. Heterogeneous Concurrent
Modeling and Design in Java. Memorandum
UCB/ERL M04/27, EECS, University of California,
Berkeley, CA USA 94720, July 2004.

[7] J. Buck, S. Ha, E. Lee, and D. Messerschmitt.
Ptolemy: A framework for simulating and prototyping
heterogeneous systems. International Journal of
computer Simulation, 1994. special issue on Simulation
Software Development.

[8] Reinhard Budde, G. Michele Pinna, and Axel Poigné.
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APPENDIX
Def (D1 andD2) = Def (D1) ∪Def (D2)
Def (letD1 inD2) = Def (D2)
Def (p = e) = fv(p)
Def (emit x = e) = ∅
Def (reset D every e) = Def (D)
Def (match e with {pi → Di}) = ∪1≤i≤nDef (Di)
Def ( automaton

{spi → u
k′

i
i unless s

ki
i }

) = ∪1≤i≤nDef (ui)

Def (letD inu) = Def (u)
Def (do D w) = Def (D)

Emit(D1 andD2) = Emit(D1) ∪ Emit(D2)
Emit(letD1 inD2) = Emit(D2)
Emit(p = e) = ∅
Emit(emit x = e) = {x}
Emit(reset D every e) = Emit(D)
Emit(match e with {pi → Di}) = ∪1≤i≤nEmit(Di)
Emit( automaton

{spi → u
k′

i
i unless s

ki
i }

) = ∪1≤i≤nEmit(ui)

Emit(letD inu) = Emit(u)
Emit(do D w) = Emit(D)
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