
Polymorphic Types with Polynomial Sizes
Jean-Louis Colaço

ANSYS
Toulouse, France

Jean-Louis.Colaco@ansys.com

Baptiste Pauget
ANSYS

Toulouse, France
INRIA

Paris, France
Baptiste.Pauget@ansys.com

Marc Pouzet
Ecole normale supérieure – PSL

university ; INRIA
Paris, France

Marc.Pouzet@ens.fr

Abstract
This article presents a compile-time analysis for tracking
the size of data-structures in a statically typed and strict
functional language. This information is valuable for static
checking and code generation. Rather than relying on depen-
dent types, we propose a type-system close to that of ML:
polymorphism is used to define functions that are generic in
types and sizes; both can be inferred. This approach is con-
venient, in particular for a language used to program critical
embedded systems, where sizes are indeed known at compile-
time. By using sizes that are multivariate polynomials, we
obtain a good compromise between the expressiveness of
the size language and its properties (verification, inference).
The article defines a minimal functional language that is

sufficient to capture size constraints in types. It presents its
dynamic semantics, the type system and inference algorithm.
Last, we sketch some practical extensions that matter for a
more realistic language.

CCS Concepts: • Software and its engineering→ Func-
tional languages; Polymorphism; Recursion; Semantics;
Automated static analysis; Embedded software; Software safety;
Software usability.

Keywords: array programming, type systems
ACM Reference Format:
Jean-Louis Colaço, Baptiste Pauget, and Marc Pouzet. 2023. Poly-
morphic Types with Polynomial Sizes. In Proceedings of the 9th
ACM SIGPLAN International Workshop on Libraries, Languages and
Compilers for Array Programming (ARRAY ’23), June 18, 2023, Or-
lando, FL, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3589246.3595372

1 Introduction
We are interested in the programming, with a high-level lan-
guage, of certified real-time embedded software submitted to

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
ARRAY ’23, June 18, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0169-6/23/06. . . $15.00
https://doi.org/10.1145/3589246.3595372

strong safety requirements, such as those found in avionics,
railway and automotive (eg, flight control, braking, electri-
cal engine). In this field, the domain-specific programming
language Scade [7], is used for more than twenty years. It in-
herits the principles and style of the synchronous language
Lustre [14]. The specific features of these languages are
essentially orthogonal to our discussion, but the targetted
applications imposes structuring constraints:

(i) Both memory and execution time must be statically
bounded. This ensures that a system can run for an
arbitrarily long time and meet its deadlines.

(ii) Programs must be certified by independent authori-
ties. This requires a reference specification, extensive
testing, and property checking, both for programs and
the tools used to generate code.

To this end, the size of any data-structure in Scade must
be known statically. While some functions may depend on
size parameters, these sizes get ultimately instantiated at
compile-time with a concrete value (e.g., an integer). More-
over, the language and its compiler comply with the highest
certification standards for critical software (e.g., DO178C,
level A of avionics): the generated code can be used without
any further validation that the semantics is preserved.
Modern real-time applications combine complex control

code (e.g., hierarchical automata) and intensive computa-
tion using arrays (e.g., Kalman filters, neural networks, opti-
mization algorithms). Arrays introduce dynamic accesses to
memory that must respect array bounds; otherwise, the risk
is, at best a stop of the execution, at worst a silent corrup-
tion of the memory. Ensuring the access correctness ranges
from programmer’s responsibility (e.g., in C) to program-
mer’s proof obligations (e.g., in Spark [3]), and include skep-
tical compilers that generate defensive code in various ways:
by throwing exceptions (e.g., OCaml, Ada), by saturating
the index value [13] or by adding a default value [7] — two
solutions followed in several synchronous compilers (e.g.,
Heptagon 1, Lustre V6 2 and Scade 3). This results in less
efficient generated code and the potential introduction of
dead code.4

1 https://gitlab.inria.fr/synchrone/heptagon
2 https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/reactive-toolbox/
3 https://www.ansys.com/products/embedded-software/ansys-scade-suite
4 This last point is not without importance: coverage analysis, an activity
required for the certification of critical applications, needs justifications for
the code that cannot be covered by a test case.

https://doi.org/10.1145/3589246.3595372
https://doi.org/10.1145/3589246.3595372
https://doi.org/10.1145/3589246.3595372
https://gitlab.inria.fr/synchrone/heptagon
https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/reactive-toolbox/
https://www.ansys.com/products/embedded-software/ansys-scade-suite

ARRAY ’23, June 18, 2023, Orlando, FL, USA Jean-Louis Colaço, Baptiste Pauget, and Marc Pouzet

Functional languages have popularized intensional array
operations (e.g., map, fold, transpose) [4] which provide pre-
defined access schemes and thus avoid the explicit manipu-
lation of indexes. Their safety only needs size equalities to
be solved instead of inequalities (e.g., bound checking), with
algorithms that are simpler and more efficient. That turns
out well, the data-flow style of Scade favors intensional
definitions: the scalar product is written:

function dot «n» (u, v: int32ˆn) returns (d: int32)
d = (fold $+$ «n») (0, (map $*$ «n») (u, v));

However, writing complex array operations as the ones
found in signal or image processing or AI is rapidly tedious
in Scade for multiple reasons:

(i) The language is explicitly typed. This leads to long and
redundant annotations when size expressions grow or
multiple size variables are used. E.g., in the example
above, the size 𝑛 appears four times.

(ii) Array primitives (map, fold, concat, ...) are limited to
linear relations between sizes. Sampling or filtering
are hardly expressed and inefficiently programmed.

(iii) The Scade compiler checks sizes at program elabora-
tion (i.e. instantiation), where sizes get constant values.
Error detection is thus late and non-modular.

(iv) All dynamic array accesses are guarded, leading to
codewith unnecessary conditionals and dead branches.

Contribution. Webelieve that the possible improvements
for the above remarks share a common seed: a type-like
knowledge of sizes, available during the whole compilation
process, not only after elaboration, would give new per-
spectives for verification and code generation. In short, the
proposed solution is based on the following elements:

(i) A language of sizes made of multivariate polynomials.
It provides a practical compromise between formal
manipulations and expressiveness.

(ii) An ML-like type system that extends polymorphism to
sizes. Sizes are generalized at declarations and instan-
tiated at variable occurrences, like in ML. This allows
to handle sizes and types in the unified manner.

(iii) An inference algorithm. Although incomplete, it al-
lows most sizes to be omitted. The size constraints are
restricted to vanishing polynomials 𝑃 [𝑋] = 0.

Although being modest, this extension of the type system
deeply affects language properties. First, principal typing (as
for dependent types), is lost: some terms may receive multi-
ple (incomparable) types. Second, sizes have a computational
content, i.e. the language semantics is not type erasable. Both
points are challenges for the inference algorithm: it should
not only produce a well-typed term but it must also ensure
that the semantics is independent from inference choices.
This presentation is purposely conducted on a toy func-

tional language that contains the minimal constructs to high-
light the main issues. The article is organized as follows:

Section 2 gives a general overview of the proposed contribu-
tion. The language and its semantics and typing discipline
are defined in Section 3. Then, Section 4 details type and size
inference and establishes their meta-theoretical properties.
Practical extensions are sketched in Section 5. We briefly
present the use of static sizes for both verification and com-
pilation in Section 6. We discuss related works in Section 7
and conclude in Section 8.
An extended version of this type system is implemented

in a prototype of compiler for a synchronous language with
arrays. A type checker for a simpler, ML-like language with
the proposed syntax is available. 5 The appendices can be
found in the Supplemental Material at the ACM DL.

2 Overview
For brevity, we introduce a core language L[that contains
theminimal constructs required to introduce a notion of sizes
into types. In particular, it has no primitive notion of arrays:
they are considered as functions on a bounded domain. This
section gives an informal insight of L[, its type system and
type inference through simple examples.

L[is equipped with a separate language for sizes, namely
sizes and expressions are distinct syntactical objects. This
size language is made of multivariate polynomials. Sizes
(ranged over by [, . . .) and their variables (ranged over by
], ^, 𝛿, . . .) are handled in a similar way to types (𝜏, . . .) and
type variables (𝛼, 𝛽,𝛾, . . .).

Intensional Arrays and Size Consistency. In numerous
programming languages intended for scientific computations
such as Sisal [10], explicit index manipulations are replaced
by operators acting on arrays called combinators [17, 20].
This style benefits especially to functional and data-flow
programming languages by allowing to write array defini-
tions with single expressions. Array combinators provide
predefined access patterns that are always correct, avoid-
ing at the same time the need for runtime checks. However,
some of these primitives still require array sizes to coin-
cide. To enforce such properties by type checking, sizes need
to be expressed in types. The point-wise function applica-
tion (map), its binary variant (map2) and the array reduction
(fold), three operators that are available in Scade, are given
the following type schemes in the proposed language L[:

val map : ∀] ·𝛼 ·𝛽. (𝛼 � 𝛽) � <]> � []]𝛼 � []]𝛽
val fold : ∀] ·𝛼 ·𝛽. (𝛼 � 𝛽 � 𝛼) � <]> � 𝛼 � []]𝛽 � 𝛼

val map2 : ∀] ·𝛼 ·𝛽 ·𝛾 . (𝛼 � 𝛽 � 𝛾) � <]> � []]𝛼 � []]𝛽 � []]𝛾

Given a polynomial size [, the type <[> (read value of
size [) denotes a refinement of the integer base type, i.e.
{𝑥 : int | 𝑥 = [}. Actually, this is a singleton type. Here,
the second argument of each function thus allows to con-
strain the value of the size variable]. Using the notation
of Futhark [17], [[]𝜏 is the type of arrays with length [
5https://gitlab.inria.fr/bpauget/array-2023

https://gitlab.inria.fr/bpauget/array-2023

Polymorphic Types with Polynomial Sizes ARRAY ’23, June 18, 2023, Orlando, FL, USA

and elements of type 𝜏 . Used as an expression, the syntax
<[> also designates the only value of type <[>, thus the par-
tial application —map 𝑓 <9>— can only be given an array of
length 9. These signatures highlight polymorphism that act
both on type variables (𝛼 ,𝛽 ,𝛾) and size variables (]). Using
them, the scalar product is expressed as:

let dot = _𝑢. _𝑣 . fold (+) <_> 0 (map2 (*) <_> 𝑢 𝑣)
[∀]. []]int � []]int � int]

The second line renders the inferred type scheme. In the
definition of dot, the size values —<_>— are omitted for both
iterators: they are inferred. The built type scheme forces the
sizes of 𝑢 and 𝑣 to coincide. The size variable] cannot be
directly constrained: no arguments have type <]>. Thus,]
will be deduced from the size of 𝑢 and 𝑣 . Let assume the
definition of a primitive window defining a sliding window
of size ^ with step 1:

val window : ∀] ·^ ·𝛼. <^> � [] + ^ − 1]𝛼 � []][^]𝛼

This function builds a matrix whose rows are slices of
length ^ of the input array, starting at the element given by
the row index. For example —window <3> [0, 1, 2, 3, 4]— pro-
duces thematrix [[0, 1, 2], [1, 2, 3], [2, 3, 4]]. The size] + ^ − 1
encodes the relation between input and output array sizes
so that the former is fully read. Filtering data with a kernel
𝐾 of size ^ is a common signal processing operation. It is ex-
pressed with a discrete convolution: (𝐾 ∗ 𝐼)𝑖 =

∑^−1
𝑗=0 𝐾 𝑗 · 𝐼𝑖+𝑗 .

This uni-dimensional filter may be defined as:

let convolution = _𝑘. _𝑖. map (dot 𝑘) <_> (window <_> 𝑖)
[∀] ·^. [^]int � [] + ^ − 1]int � []]int]

Here as well, the inference is able to determine the miss-
ing sizes (and types), making the kernel size coincide with
slices length. Inference derives the above type scheme for
this declaration. Note that, by a change of variables, it is
equivalent to ∀] ·^. [^]int � []]int � [] − ^ + 1]int.

Extensional Arrays and Bounds Propagation. Arrays
are not primitive constructs: the type [[]𝜏 is a shortcut for
[[] � 𝜏 where [[] (read index of size [) is a second refine-
ment of type int denoting non-negative integers strictly
lesser than [: {𝑥 : int | 0 ≤ 𝑥 < [}. Although not realis-
tic for compilation, this simplifies the formalism. Using this
refinement, the map2 iterator is expressible in L[:

let map2 = _𝑓 . _𝑛 :<‘]>. _𝑢. _𝑣 . _𝑖 :[‘]]. 𝑓 (𝑢 𝑖) (𝑣 𝑖)
[∀] ·𝛼 ·𝛽 ·𝛾 . (𝛼 � 𝛽 � 𝛾) � <]> � []]𝛼 � []]𝛽 � []]𝛾]

It defines an ’array’, i.e. a function with a bounded domain,
whose content is obtained by applying 𝑓 to 𝑢 and 𝑣 elements.
Array accesses are denoted by the applications —(𝑢 𝑖) ; (𝑣 𝑖)—
that respect bounds by construction. The second argument
—𝑛— of map2 is unused, but the types annotations <‘]> and
[‘]], where ‘] is an anonymous size variable alike OCaml’s
ones, force 𝑛 to be the size of index 𝑖 .

The index type only allows to propagate known bounds.
Notably, no arithmetic operations are defined for indexes.
Values of type [[] are obtained by calling functions with a
bounded codomain, e.g., the modulo, whose type scheme is
∀]. int � <]> � []]. Although elementary, this refined type
allows to separate bound checking from array accesses.

The Ghost Size Issue. In the previous examples, all un-
specified sizes were deducible from the types. This is not
always that simple. With the annotation [_], the cst func-
tion below defines a constant array with an arbitrary size.

let cst = _𝑐. _𝑖 :[_]. 𝑐 [∀] ·𝛼. 𝛼 � []]𝛼]
let even = fold (+) <_> 0 (cst 2) (Error: Unconstrained size)

In the declaration of even, summing the elements of cst 2
without specifying fold’s size leads to an ambiguous value
since this size is unconstrained. This must be rejected.

Contrary to types in ML like languages where semantics
is type-erasable6, sizes have a computational content: they
may determine the semantics of expressions. Inference must
thus ensure that the semantics of the reconstructed term was
already specified in the source. We formalize this property in
subsection 4.5: when type inference succeeds, all well typed
annotated versions of the source program evaluate to the
same result. Our even example becomes unambiguous by
adding an argument:

let even = _𝑛. fold (+) 𝑛 0 (cst 2) [∀]. <]> � int]

3 A Typed Core Functional Language with
Size Polymorphism

The type system for our language aims at expressing as many
relations between sizes as possible while remaining decidable
and largely implicit. It combines two widely studied type
systems traits: (i) a restricted form of refinement types, as
defined in Xi and Pfenning [38], and (ii) the ubiquitous let-
polymorphism of Milner [27] extended to sizes.
Polynomial sizes lead to constraints that cannot be re-

solved formally. Nonetheless, the context of Scade ensures
that all sizes get ultimately known statically: once elabora-
tion is done, size checking is trivial but late and non modular.
We pursue an earlier and modular size checking, that rely
on the specialization as a fallback mechanism only.
For clarity, the tightest possible language L[is used: a

core ML (_-calculus with let bindings) augmented with a few
constructs. We propose some extensions that are useful for
a realistic language in Section 5.

3.1 Syntax and Semantics
The syntax of L[is summed-up in Figure 1. It is explicitly
typed i.e. type annotations are part of expressions. In the
subsequent, 𝑛 denotes an integer. To emphasize on their

6 Unless advanced features, such as type classes, are considered.

ARRAY ’23, June 18, 2023, Orlando, FL, USA Jean-Louis Colaço, Baptiste Pauget, and Marc Pouzet

[::= Sizes

|], ^, 𝛿 variable
| 𝑛 constant
| [+ [sum
| [* [product

𝜏 ::= Types

| 𝛼, 𝛽, 𝛾 variable
| 𝜏 � 𝜏 function
| int integer
| <[> singleton
| [[] interval

𝑽 ::= Y |] ·𝑽 | 𝛼 ·𝑽 Generalization

𝑺 ::= Y | [· 𝑺 | 𝜏 · 𝑺 Instantiation

𝑒 ::= Expressions

| 𝑺𝑥 variable
| 𝑒 𝑒 application
| _𝑥 :𝜏 . 𝑒 abstraction*
| let 𝑑 in 𝑒 local binding
| 𝑒 ⊲ 𝜏 coercion
| <[> size value
| 𝑛 integer*

𝑑 ::= 𝑥𝑽 :𝜏 = 𝑒 Declarations

Figure 1. Syntax of L[. Note that the syntax <[> is overloaded: it denotes both the singleton type and its unique value. The
values used in the semantics are marked with *.

similarities, sizes, types and their variables are designated
by Greek letters whereas the Latin ones will be dedicated to
terms and program variables.

Name-spaces, Free Variables. Because sizes, types and
expressions are syntactically separated, their variables are
taken in distinct name-spaces, respectively denoted V[, V𝜏

and V𝑒 , allowing for name reuse without masking. In the
formalization, these sets are considered disjointed. Given
a syntactical object 𝑜 , the set 𝐹𝑉 (𝑜) ∈ V[∪V𝜏∪V𝑒 of free
variables contains the variables that are not bound by the
rules: (i) abstraction —_𝑥 :𝜏 . 𝑒— binds 𝑥 in 𝑒 ; (ii) local binding
—let 𝑥𝑽 : 𝜏 = 𝑒 in 𝑒′— binds 𝑥 in 𝑒′ and variables 𝑽 in 𝜏
and 𝑒 . Closed objects are the ones with no free variables.

Sizes and Types. The size language is made of multivari-
ate polynomials with integer coefficients: Z[V[]. The main
benefit of this restricted class of arithmetic expressions lies in
the existence of a normal form: a weighted sum of products
of variables. This allows for symbolic comparison of sizes
that are structurally different (e.g., (] − 1)2 − 1 =] ∗ (] − 2)).
Besides functions, the type language contains a single

constructor int, along with two refinements, as defined by
Xi and Pfenning [38]: (i) the type <[> (read value of size [)
denotes the singleton {[} and (ii) [[] (read index of size
[) represents the interval J0, [− 1K, where [is the value
of [, depending on the valuation of size variables. In the
syntax refinement types, they are respectively expressed as
{𝑥 : int | 𝑥 = [} and {𝑥 : int | 0 ≤ 𝑥 < [}

Polymorphism. Types, including polymorphism, are ex-
plicit in L[: variables —𝑺𝑥— are instantiated with a list 𝑺 of
sizes and types while local bindings —let 𝑥𝑽 :𝜏 = 𝑒 in 𝑒′—
declare the list7 𝑽 of size and type variables that are gener-
alized. We shift away from the standard notation —let 𝑥 :
∀𝑺. 𝜏 = 𝑒 in 𝑒— to emphasize on generalized variables’
scope: their are bound in both type 𝜏 and expression 𝑒 .

7 The use of lists simplifies the association of generalized variables with
their instantiations

Expressions. Integers occur in two ways: —𝑛— denotes
immediate values while —<[>— stands for the only value of
type <[>, that is defined by size variable valuation.
Last, the coercion —𝑒 ⊲ 𝜏— represents an explicit type

constraint. Because of refined types, it plays a central role in
the definition of the semantics (see subsection 3.2).

Arrays. L[has no support for array manipulation, nei-
ther in types nor in expressions. For typing purposes, arrays
are essentially functions on a bounded domain: that is the
role of the index refinement. To make examples more in-
tuitive, we will use the notation of Futhark [[]𝜏 [17] as a
shorthand for the type [[] � 𝜏 . Allowing sub-typing from
functions to arrays seems irrelevant, both for clarity and com-
pilation perspectives. However, the typing issues that arise
from refinement types would still occur with a dedicated
language support for arrays.

3.2 Semantics
The big-step semantics of L[—𝑒 { 𝑣— associates to some
closed expressions a value. As defined in Figure 1, values
are either integers or abstractions. The deduction rules are
detailed in Figure 2. They are syntax-directed, thus L[se-
mantics is deterministic.

Substitutions. Substitutions (ranged over by 𝜌 , . . .) are
defined for each syntactical class and variable/element pairs.
Their application is written 𝑒{𝜌}. Explicit ones are uniformly
denoted ·/·. Thus, 𝑒{[/]} is the substitution in expression 𝑒 of
the occurrences of the size variable] by the size [, including
in sizes and types contained in 𝑒 . This notation is naturally
extended to generalization and instantiation lists, assuming
they are compatible, i.e. that each size variable is substituted
with a size and likewise for types.

When evaluating let bindings (rule E-Let), each occur-
rence of the defined variable —𝑺𝑥— get substituted with its
coerced definition in which generalized size and type vari-
ables have been instantiated — (𝑒 ⊲ 𝜏){𝑺/𝑽 }.

Polymorphic Types with Polynomial Sizes ARRAY ’23, June 18, 2023, Orlando, FL, USA

Semantics of closed Expressions 𝑒 { 𝑣

E-Size
<𝑛> { 𝑛

E-App
𝑒1 { _𝑥 :𝜏 . 𝑒 𝑒2 ⊲ 𝜏 { 𝑣 𝑒 {𝑣/Y𝑥 } { 𝑣′

𝑒1 𝑒2 { 𝑣′

E-Coerce
𝑒 { 𝑣 𝑣 ⊲ 𝜏 { 𝑣′

𝑒 ⊲ 𝜏 { 𝑣′
E-Let

𝑒′ { (𝑒 ⊲ 𝜏) {𝑺/𝑽 }/𝑺𝑥 } { 𝑣

let 𝑥𝑽 :𝜏 = 𝑒 in 𝑒′ { 𝑣

Semantics of Coercions 𝑣 ⊲ 𝜏 { 𝑣′

C-Size
𝑛′ = 𝑛

𝑛′ ⊲ <𝑛> { 𝑛′ C-Index
𝑛′ ∈ J0, 𝑛 − 1K
𝑛′ ⊲ [𝑛] { 𝑛′

C-Int
𝑛 ⊲ int { 𝑛

C-Fun
𝑣 = _𝑥 :𝜏 . 𝑒

𝑣 ⊲ 𝜏1 � 𝜏2 { _𝑥 :𝜏1 . 𝑣 𝑥 ⊲ 𝜏2

Figure 2. Semantics of L[.

Refinements and Coercions. The semantics of L[is not
type-erasable. This obviously transpires in the rule E-Size
that extracts a value from a size. Moreover, refinements dis-
criminate between values of the same shape (or base type)
and they must be checked in several places. For instance,
the term —(_𝑥 : [4]. 𝑒) 8— should not be reduced further
since the argument —8— is not a value of the expected type:
[4]. More generally, for any substitution of a term variable,
the substituting value must fulfill the substituted variable
refinement. Therefore, the E-App and E-Let rules insert co-
ercions; hence the need of an explicit coercion construction
in expressions.
For integer refinements, coercions check that the refine-

ment is fulfilled (rules C-Int, C-Size and C-Index). Similarly
to _𝐻 [11], function coercions reduce into delayed coercions
on argument and result (rule C-Fun), that will be evaluated
upon application. The coercion on argument is actually in-
serted by the evaluation of the introduced application: 𝑣 𝑥 .

Type Independence. Although L[semantics is not type-
erasable, only sizes have computational content i.e. the ob-
servational semantics of an expression does not depend on
the valuation of its type variables. Changing types (hence
possible refinements) only restrict semantics domain.

Definition 3.1 (Observational equivalence). Two closed ex-
pressions 𝑒1 and 𝑒2, are observationally equivalent —𝑒1 ≡ 𝑒2—
if and only if, for any closed expressions 𝑎1, . . . , 𝑎𝑘 and inte-
gers 𝑛1, 𝑛2: {

𝑒1 𝑎1 . . . 𝑎𝑘 { 𝑛1
𝑒2 𝑎1 . . . 𝑎𝑘 { 𝑛2

=⇒ 𝑛1 = 𝑛2

Expressions for which no such common evaluation envi-
ronment exist are considered equivalent. Used along with
typing assumptions to rule out silly cases (e.g., expressions
have different types), it allows to compare functions on their
common domain.

Definition 3.2 (Equality modulo types). Two expressions
𝑒1 and 𝑒2 are equal modulo types —𝑒1 ≈𝜏 𝑒2— if and only if it
exists an expression 𝑒 , free type variables 𝛼 of 𝑒 and types
𝜏1, 𝜏2 such that the following syntactical equalities hold:

𝑒1 = 𝑒{𝜏1/𝛼} ∧ 𝑒2 = 𝑒{𝜏2/𝛼}

Equivalence modulo type is preserved by the semantics:

Theorem 3.3 (Type independence). Given two closed terms
𝑒1, 𝑒2 such that 𝑒1 ≈𝜏 𝑒2, then

∀ 𝑣1 𝑣2,
{
𝑒1 { 𝑣1
𝑒2 { 𝑣2

=⇒ 𝑣1 ≈𝜏 𝑣2

Proof. This invariant holds across semantics rules thanks to
the following observations (detailed in Appendix A):

• Size substitutions cannot capture types. The instances
of E-Size rule are thus equals and yield the same value.

• Selecting between C-Fun and other coercion’s rules
depends only on value shape. □

Corollary 3.4 (Type observable independence). Expressions
that are equal modulo types are observationally equivalent:

∀ 𝑒1 𝑒2, 𝑒1 ≈𝜏 𝑒2 =⇒ 𝑒1 ≡ 𝑒2
Proof. Given 𝑒1, 𝑒2 such that 𝑒1 ≈𝜏 𝑒2, and closed expressions
𝑎1, . . . , 𝑎𝑘 , we immediately have 𝑒1 𝑎1 . . . 𝑎𝑘 ≈𝜏 𝑒2 𝑎1 . . . 𝑎𝑘 .
Observational equivalence follows because equality modulo
types for integers implies equality: if both applications re-
duce, and one of the result is an integer, then the other is
identical. Thus expressions coincide on the intersection of
their domain (that might be empty). □

3.3 Typing
A type discipline, based on the one of Hindley and Mil-
ner [18], filters the terms for whom a semantics exists, i.e.
expressions that may be reduced to a value.

Environment. Expressions are typed in an environment
Γ defined as a pair (Γ𝑣, Γ𝑒) where Γ𝑣 ⊂ V[∪ V𝜏 is the set
of bound size and type variables and Γ𝑒 is a partial map
from term variables to type schemes —𝜎 := ∀𝑽 . 𝜏—. In the
following, terms are supposed to be named so that no clashes
occur. The environment is thus unordered and insertions
—Γ, 𝑥 :∀𝑽 . 𝜏, 𝑽 — assume that added variables —𝑥 and 𝑽—
are unbound in Γ.

Judgments. The typing judgment —Γ ⊢ 𝑒 : 𝜏— reads ‘in
the environment Γ, the expression 𝑒 has type 𝜏 ’. This relation
implicitly assumes that 𝜏 and 𝑒 are well-formed, i.e. that their
free variables are bound in Γ. It is defined alongside the
sub-typing relation —𝜏1 <: 𝜏2— in Figure 3.
It is worth mentioning that type equality, used in S-Refl

rule among others, requires a syntactical identity between
the sizes appearing in refinements. For instance, types []]
and [2 −]] are considered different even though they yield
equal types when instantiated with] = 1.

ARRAY ’23, June 18, 2023, Orlando, FL, USA Jean-Louis Colaço, Baptiste Pauget, and Marc Pouzet

Expressions Typing Γ ⊢ 𝑒 : 𝜏

T-Var
Γ (𝑥) = ∀𝑽 . 𝜏

Γ ⊢ 𝑺𝑥 : 𝜏 {𝑺/𝑽 }
T-SubType

Γ ⊢ 𝑒 : 𝜏 𝜏 <: 𝜏 ′

Γ ⊢ 𝑒 : 𝜏 ′
T-Coerce

Γ ⊢ 𝑒 : 𝜏
Γ ⊢ 𝑒 ⊲ 𝜏 : 𝜏

T-Abs
Γ, 𝑥 :∀Y. 𝜏 ⊢ 𝑒 : 𝜏 ′

Γ ⊢ _𝑥 :𝜏 . 𝑒 : 𝜏 � 𝜏 ′
T-App

Γ ⊢ 𝑒1 : 𝜏 ′ � 𝜏 Γ ⊢ 𝑒2 : 𝜏 ′
Γ ⊢ 𝑒1 𝑒2 : 𝜏

Sub-typing 𝜏1 <: 𝜏2

S-Size
<[> <: int S-Index

[[] <: int

S-Refl
𝜏 <: 𝜏 S-Fun

𝜏2 <: 𝜏1 𝜏 ′1 <: 𝜏
′
2

𝜏1 � 𝜏 ′1 <: 𝜏2 � 𝜏 ′2

T-Let
Γ, 𝑽 ⊢ 𝑒 : 𝜏 Γ, 𝑥 :∀𝑽 . 𝜏 ⊢ 𝑒′ : 𝜏 ′

Γ ⊢ let 𝑥𝑽 :𝜏 = 𝑒 in 𝑒′ : 𝜏 ′
T-Size

Γ ⊢ <[> : <[>
T-ISize

Γ ⊢ 𝑛 : <𝑛>
T-IIndex

0 ≤ 𝑛 < 𝑝

Γ ⊢ 𝑛 : [𝑝]

Figure 3. Type system for L[, non syntax directed

Refinements and Sub-typing. General dependent type
systems such as DML [38] provide rich sub-typing relations
based on refinement implication, at the cost of static check-
ing undecidability. For that reason as well as inference per-
spectives, sub-typing is restricted to inserting or dropping
refinements (with respect to the variance). Thus, the relations
[[] <: int and int � 𝛼 <: [[]𝛼 are valid, whereas the se-
mantically correct relation []] <: [] + 1] is invalid. This flat
order between refined types, illustrated bellow, is the key
restriction to keep type checking decidable: correction only
relies on size equalities, instead of general inequalities on
polynomials.

int

<[> <[′> . . . [[][[′]

The Types of Constants. The only immediate values we
consider here are integers. The rules T-ISize and T-IIndex
allows any semantically correct refined type whose size is
an immediate value. This is needed to state type preservation.
Otherwise the expression <𝑛> of type <𝑛> would reduce to
𝑛, that could not be given the same type. In _𝐻 , Flanagan
[11] faces a similar situation: constant are given singleton
types, so that any possible refinements may be derived using
sub-typing. Because our sub-typing lattice is not closed by
intersection, we directly provide all the possible types.

Preservation and Soundness. This type system enjoys
both preservation and soundness: types are preserved by
reduction and well-typed terms have a semantics. Formally:

Theorem 3.5 (Preservation and soundness).
Given an expression 𝑒 and a type 𝜏 such that ⊢ 𝑒 : 𝜏 .
Then there exists a value 𝑣 such that 𝑒 { 𝑣 . (Soundness)
Moreover, ⊢ 𝑣 : 𝜏 . (Preservation)

Proof. The generic construction for big step semantics set
up by Dagnino et al. [8] allows to establish these results
from three local properties on the type system and the se-
mantics (see Appendix B):local preservation, ∃-progress and
∀-progress. To establish them, a key step is the normaliza-
tion of typing derivations, that confines the instances of
T-SubType rule to specific premises. □

4 Inference
Although type annotations might be helpful for documen-
tation purposes (e.g., in interfaces), they tend to obfuscate
programs as size expressions get larger. They should be in-
ferred. However, pursuing a full and complete type inference
as the HM type discipline enjoys [18] is vain: the size lan-
guage, that allows non-linear arithmetic expressions, will
surely cause unsolvable constraints. Despite this, the size
relations that occurs in data-intensive applications are often
simple, giving the opportunity to omit most of them. Figure 4
gives implicitly typed definitions of simple linear algebra
operation and their inferred type.

One point must be carefully handled: L[semantic is spec-
ified over closed typed terms. Inference must ensure that the
semantics of reconstructed terms is fully defined by implic-
itly typed ones. The ghost size issue sketched in Section 2
is crucial here: unconstrained size variables should not get
defined during reconstruction. As a result, inference must
ensure that no unnecessary size relations are introduced.

4.1 Implicitly Typed L[

As an implicitly typed language, a slight variation of L[is
used: generalization and instantiation places, i.e. 𝑽 and 𝑺
in L[syntax, are omitted. Contrary to polymorphism, type
annotations are still present in implicitly typed terms, but
they might contain size and type variables that are unbound.
Given a term 𝑒 , the inference builds a completion of 𝑒 by
providing definitions for polymorphism places, i.e. a list
of size and type variables that are generalized or used for
instantiation, alongside a substitution of unbound size and
type variables. In examples, place-holders (_) stand for fresh
size or type variables.

4.2 Algorithm
Size equality constraints amount to vanishing polynomi-
als. Unlike types, whose unification is structural, these con-
straints cannot be solved easily. For that reason, instead
of building a substitution on the fly as done by Algorithm
W [27], sub-typing constraints and unbound size and type
variables are collected by a term traversal and the result-
ing system is solved at generalization places (i.e. let), in
the hope of using the simplest constraints to simplify the
most complex ones. In the context of sub-typing, similar

Polymorphic Types with Polynomial Sizes ARRAY ’23, June 18, 2023, Orlando, FL, USA

let dot = _𝑢. _𝑣 . fold (+) <_> 0 (map2 (*) <_> 𝑢 𝑣) [∀]. []]int � []]int � int]
let mat_vec = _𝑎. _𝑣 . map (dot 𝑢) <_> (transpose 𝑎) [∀] ·^. []][^]int � []]int � [^]int]
let mat_mat = _𝑎. _𝑏. map (mat_vec 𝑏) <_> 𝑎 [∀] ·^ ·𝛿. []][^]int � [^][𝛿]int � []][𝛿]int]

Figure 4. Usual linear algebra primitives defined with iterators

algorithms were proposed, e.g., by Aiken and Wimmers [1],
where constraints are simplified at generalization points.
The constraint collecting algorithm is explained in details in
Appendix C.

Let bindings introduce generalization: once the definition
has been traversed, sub-typing constraints are solved. As for
simple ML, the remaining type and size variables that do not
appear in the environment are generalized. Moreover, two
extra checks are performed on the generalized variables:

1. They should not appear in remaining constraints.
2. They must appear in declaration’s type.
The former allows to keep simple polymorphism, while

the latter detects unconstrained variables. This last check is
crucial since term’s semantics depend on sizes: the Section 2
gives an example of such ambiguous term:

let even = fold (+) <_> 0 (cst 2) (Error: Unconstrained size)

4.3 Principal Typing
Before presenting the constraint resolution strategy, let us
focus on a thorn in our side: this type system does not enjoy
principal types, i.e. some declarations do not have a most
general type scheme. Comparison of type schemes is defined
by the subsumption relation presented by Jones et al. [22].
Informally 𝜎1 ≼ 𝜎2 if and only if any instance of 𝜎2 may be
obtained by instantiating 𝜎1 and using sub-typing. 𝜎1 is then
more general than 𝜎2. It naturally defines a notion of equiva-
lence, that amounts for simple ML types (without sizes), to
a renaming of type variables. Because size equality is not
structural, this relation widens here: the uni-dimensional
convolution defined in Section 2 may be given the following
type schemes:

val convolution : ∀] ·^. [^]int � []]int � [] − ^ + 1]int
val convolution : ∀] ·^. [^]int � [] + ^ − 1]int � []]int

Any instance of the first is an instance of the second, and
reciprocally. More importantly, some terms may be given
multiple type schemes that have no common generalization;
this must be carefully handled by the inference. There are
two reasons for this:

1. Polynomial Sizes. Allowing more than linear expres-
sions for sizes surely causes constraints with multiple so-
lutions. Given a function split, declared below, that trans-
forms a 1-dimensional array into a 2-dimensional one, its
application to an ‘array’ of size 4 raises several possible types,
corresponding to different semantics:

val split : ∀] ·^ ·𝛼. [] ∗ ^]𝛼 � []][^]𝛼

let mat = split (_𝑖 :[4]. 0)

[1][4]int
[2][2]int
[4][1]int

In such a situation, the underlying constraint (] ∗ ^ − 4 = 0)
will not be solved (see section 4.4), and inference will fail,
asking for more annotations.

2. Sub-typing and Simple Polymorphism. Because poly-
morphism is unconstrained, all the refinements are selected
at definition. The slope function below computes the ratio
of images’ difference over arguments’ difference, assuming
suitable arithmetic operators defined over integers.

let slope = _𝑓 . _𝑖 . _ 𝑗 . (𝑓 𝑖 - 𝑓 𝑗) / (𝑖 - 𝑗)

The subtlety comes from the simultaneous applications of
𝑓 to 𝑖 and 𝑗 : should 𝑓 ’s domain and both argument share the
same refinement ? Indeed, possible type schemes include:

∀]. (<] > � int) � <] > � <] > � int (𝜎𝑠𝑠)
∀] ·^. (int � int) � <] > � <^> � int (𝜎𝑏𝑠)

(int � int) � int � int � int (𝜎𝑏
𝑏
)

∀] ·^. (int � int) � []] � [^] � int (𝜎𝑏𝑖)
∀]. ([]] � int) � []] � []] � int (𝜎𝑖𝑖)

Among them, 𝜎𝑏
𝑏
≼ 𝜎𝑠

𝑏
and 𝜎𝑏

𝑏
≼ 𝜎𝑖

𝑏
. Others are incompati-

ble pair-wise (denoted 0) for multiple reasons: refinements...
1. are incompatible: 𝜎𝑠𝑠 0 𝜎

𝑖
𝑖 ; 𝜎

𝑏
𝑠 0𝜎

𝑏
𝑖 ; 𝜎

𝑏
𝑠 0 𝜎

𝑖
𝑖 ; 𝜎

𝑠
𝑠 0𝜎

𝑏
𝑖

2. appear covariant and contravariant: 𝜎𝑠𝑠 0𝜎𝑏𝑏 ; 𝜎
𝑖
𝑖 0𝜎

𝑏
𝑏

3. impose extra size constraints: 𝜎𝑠𝑠 0𝜎
𝑏
𝑠 ; 𝜎𝑖𝑖 0𝜎

𝑏
𝑖 .

Constrained Polymorphism. Coupling sub-typing and
simple polymorphism is unusual. The general theory pro-
posed by Aiken andWimmers [1] provides constrained types
schemes. Shrinking the constraint set at generalization point
is then the key to avoid an exponential blow-up of con-
straints [32]. Such systems enjoy the principal types prop-
erty. In this context, the function slope would be given the
type scheme:

∀𝛼 ·𝛽 ·𝛾 | 𝛼 <: int ∧ 𝛽 <: 𝛼 ∧ 𝛾 <: 𝛼. (𝛼 � int) � 𝛽 � 𝛾 � int

However, modularity would be sacrificed here, by deferring
size constraints resolution to monomorphic instantiations.
Coupled with the loss of readability of such types, this is the
main reason for keeping simple polymorphism.

Inference and Semantics. This issue about principal type
is all the more crucial because our semantics is not type
erasable. Sizes have computational contents in our language.
For that reason, inference should ensure that no sizes have
been arbitrarily defined. We formalize this in subsection 4.5.

ARRAY ’23, June 18, 2023, Orlando, FL, USA Jean-Louis Colaço, Baptiste Pauget, and Marc Pouzet

let slope = _𝑓 :[_] � _. _𝑖 : _ . _ 𝑗 : _ . (𝑓 𝑖 - 𝑓 𝑗) / (𝑖 - 𝑗) [∀] . ([]] � int) � []] � []] � int]
let slope = _𝑓 : _ � _. _𝑖 :[]]. _ 𝑗 :[]]. (𝑓 𝑖 - 𝑓 𝑗) / (𝑖 - 𝑗) [∀] . ([]] � int) � []] � []] � int]
let slope = _𝑓 : _ � _. _𝑖 :[_]. _ 𝑗 :[_]. (𝑓 𝑖 - 𝑓 𝑗) / (𝑖 - 𝑗) [∀] ·^. (int � int) � []] � [^] � int]

Figure 5. Different type annotations in the slope example lead to different type schemes.

4.4 Constraint Solving
Solving the constraint system aims at extracting from the
set of sub-typing constraints a most general unifier, i.e. a
necessary substitution of the free variables. This is achieved
gradually: (i) types (without refinements) are inferred using
structural unification; (ii) necessary refinements of type int
are selected; (iii) sizes constraints are solved; (iv) refinements
are propagated. Similar stratification has been previously
used for inference in extended type systems [24, 34, 37].
However these steps are utterly entangled in our proposal:
instead of separating phases across multiple passes, types,
refinements and sizes get partially defined at each solving
point (let), allowing an easier handling of polymorphism
than it would be possible with disconnected inference passes.
To illustrate our overview of the solving process, three

slightly modified version of the slope example used previ-
ously are defined in Figure 5: some annotations are added,
constraining the refinements at different places.

(i) Types. To begin with, refinements are ignored to build
simple types that will be made precise in the subsequent
phases. By replacing every refinements with int, sub-typing
relations are turned into equalities. They are solved using
structural unification, failing in the usual modalities (e.g., top-
level type constructor inequality, cyclic types). It generates
a most general unifier [27]. At that point, Each declaration
of slope get type (int � int) � int � int � int.

(ii) Refinements. The integer types previously derived
may now be refined: each occurrence of int in the sub-
stitution are replaced by fresh type variables. Sub-typing
constraints are distributed with the S-Fun rule (the usual
variance rule), leading to simple constraints containing vari-
ables and refined types. The ones of the form 𝛼 <: [_],
𝛼 <: <_> and int <: 𝛼 define variable 𝛼 ’s refinement while
the unsolvable constraints such as int <: [_] lead to errors
that are reported to the programmer. Refinements are not
propagated further: this is postponed after size resolution,
since adding refinements may introduce constraints between
sizes that would otherwise be unrelated. Unconstrained vari-
ables get thus substituted with int.
In our example, the first definition of the slope function

get type ([_] � int) � [_] � [_] � int while two others
get (int � int) � [_] � [_] � int.

(iii) Sizes. Then, sub-typing constraints are distributed
again, extracting size equalities, i.e. vanishing polynomials
[1 − [2 = 0 for the constraints of the form <[1> <: <[2> or

[[1] <: [[2]. The resulting polynomial system 𝐶[is solved,
by deriving a most general substitution:

Definition 4.1 (Most general substitution). Given a con-
straint set 𝐶 , a substitution 𝜌 is most general if and only if
for any substitution 𝜌 ′, such that ⊢ 𝐶{𝜌 ′}, then there exists
a substitution 𝜌 ′′ such that 𝜌 ′ = 𝜌 ◦ 𝜌 ′′.
For now, we have implemented a simple resolution strat-

egy that eliminates isolated variables, i.e. substituting [for
] when a constraint] − [= 0 exists. The resulting substitu-
tion is immediately a most general one. This task could be
delegated to an external solver, but this is unpractical in the
context of safety-critical sofware for certification purposes8.
Moreover, this elementary strategy works for most of the size
constraints we encountered. Adding some annotations helps
for the remaining cases. At this point, the three versions of
slope get respectively types:

1. ([]] � int) � []] � []] � int
2. (int � int) � []] � []] � int
3. (int � int) � []] � [^] � int
In particular,] and ^ sizes are not unified in the last decla-

ration, because sub-typing is at each application.

(iv) Propagation. Last, refinements are propagated. This
aims at making types more accurate. Among the type vari-
ables introduced during refinement inference, the oneswhose
lower bound only contains a unique type []] or <]>, are de-
fined accordingly.
In 2., refinements are now equal: they are propagated,

yielding type ([]] � int) � []] � []] � int. Conversely,
they differ in the third version: 𝑓 domain cannot be refined.

4.5 Inference Properties
The expressiveness of the size language allows no hope for a
complete inference. Nevertheless, it is sound and we expect
inference to be non-specializing, i.e. that it rejects any terms
with ambiguous semantics.

Theorem 4.2 (Inference soundness). Given an implicitly
typed expression, if inference succeeds, the reconstructed term
is well-typed.

Proof sketch. The detailed proof is available in Appendix
C,alongside a formalization of the inference algorithm. It
established the following invariant: for each sub-term and
a substitution that solves the constraints gathered by the
algorithm, it exists a type derivation for the substituted term,
in the same environment. □
8 Even though the compiler is not embedded, it must fulfill the highest
certification level, hence the need of a certified solver...

Polymorphic Types with Polynomial Sizes ARRAY ’23, June 18, 2023, Orlando, FL, USA

Conjecture 4.3 (Inference non-specialization). Given an
expression 𝑒 , if inference succeeds and produces a closed term
𝑒′, then for any possible well-typed completion 𝑒′′ of 𝑒 , 𝑒′ ≡ 𝑒′′.

This proof has not been fully conducted yet. The main
difficulty lies in the handling of let bindings that induce
diverging constraint sets.

5 Toward a Realistic Array Language
Our simplistic language L[provides the basis for an ML-like
language where sizes are handled in a same way than types,
i.e. with polymorphism. This section gives an insight of some
extensions that are necessary for a more realistic array lan-
guage. They are implemented in a compiler prototype for a
domain specific language, that is synchronous and data-flow.
Because it is first order, we prefer to present these extensions
in a larger context here.

5.1 Locally Abstract Sizes
In OCaml, locally abstract types allows to declare types
within a scope. These types may not escape their scope, i.e.
no substitution of an outer free type variable may capture
them. They serve advanced purposes (first-class modules,
GADTs, ...) by introducing type variables that can be gener-
alized outside of their scope.
Providing a similar mechanism, for both sizes and types,

has a simpler use in our context: local existential quantifi-
cation — let size] = 𝑒 in 𝑒′. It defines an abstract size
] in 𝑒′, using the value of an arbitrary expression 𝑒 . Such a
mechanism is useful to overcome size language limits.

5.2 Polymorphic Recursion
Recursive algorithms on array such as the Fast Fourier Trans-
form calls themselves on sub-arrays whose sizes vary at each
call. Because sizes are part of types, polymorphic recursion is
needed. This extension has been extensively studied [26, 29].

Semantics. While adding recursive declarations requires
few changes on the implementation, it impacts deeply the
formalization: diverging terms now exist, theymust be distin-
guished from blocked ones in L[big-step semantics. Fortu-
nately, the Dagnino et al. [8] formalization was designed for
non-deterministic semantics. By giving a non-deterministic
evaluation of fixpoint (either stopping with an error value
or reducing further), the preservation and soundness results
(subsection 3.3) may be extended.

Inference. As shown by Henglein [15], polymorphic re-
cursion turns inference into an undecidable problem. We fol-
low the classical approach, by considering fix-pointsmonomor-
phic unless explicitly generalized at declarations.
An extra check is required to ensure that the actual type

of the declaration is indeed as polymorphic as the specified
one, as defined in the subsumption relation in subsection 4.3.

This validates a posteriori that the recursive occurrences of
the introduced variable have been correctly instantiated.

5.3 Explicit Coercions
The size language might get too limited, especially when
local existential sizes are used.We provide an explicit coercion
—𝑒 ▶ 𝜏— to spot some size properties that cannot be check
by the type system: expression’s type and 𝜏 ’s sizes must only
have the same structure, allowing for size mismatches.

As mentioned by Jay and Sekanina [20], coercions may be
checked in various ways: at run-time, with defensive code
or using alternative formal verification tools. In the context
of static sizes, Nielson and Nielson [30] proposed binding
times, to ensure that coercions (and local existential sizes)
are computable at compiler time.

5.4 Language Support for Arrays
Arrays deserve special language constructs, both for readabil-
ity and compilation purposes. Besides distinguishing their
types from function’s one, L[should be extended with ded-
icated syntax for accesses —𝑒[𝑒′]— and array definition —
[𝑒, . . . , 𝑒]—. As far as typing is concerned, these constructs
amount for type constraint insertions, i.e. 𝑒[𝑒′] requires
sub-expressions to have type []]𝛼 and []].
To avoid operator overloading, index manipulations are

provided as a set of first order combinators that transform
arrays’ shape. They provide a safe way to introduce cor-
rect index computation. In addition to the usual transpose,
reverse and concat linear primitives9, the following ones
are added. They are illustrated bellow.

val window : ∀] ·^ ·𝛼. <^> � [] + ^ − 1]𝛼 � []][^]𝛼
val sample : ∀] ·^ ·𝛼. <^> � [] ∗ ^ − ^ + 1]𝛼 � []]𝛼
val splitxx : ∀] ·^ ·𝛼. <^> � [] ∗ ^]𝛼 � []][^]𝛼
val flatten : ∀] ·^ ·𝛼. <^> � []][^]𝛼 � [] ∗ ^]𝛼

let pack = _𝑠. _𝑥 . sample 𝑠 (window <_> 𝑥)
[∀] ·^ ·𝛿 ·𝛼. <𝛿> � [] ∗ 𝛿 − 𝛿 + ^]𝛼 � []][^]𝛼]

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3
1 2 3 4

2 3 4 5
3 4 5 6

4 5 6 7
5 6 7 8

6 7 8 9
7 8 9 10

8 9 10 11

window

pack

window

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3
4 5 6 7
8 9 10 11sample

split

flatten

The window function (see Section 2) builds a matrix whose
rows are slices of the input array. The sample function ex-
tracts one element out of every ^ , selecting both ends of the
9 With the iterators, these are the available array functions in Scade.

ARRAY ’23, June 18, 2023, Orlando, FL, USA Jean-Louis Colaço, Baptiste Pauget, and Marc Pouzet

array. The size of the input array must thus by a multiple of ^
plus 1. Composing these functions defines a general sampling
operator pack. It selects] slices of size ^ that are uniformly
distributed and cover both ends of the input array, whose
size is obtained by considering a sampling step 𝛿 . Note that
the size argument of sample and pack are necessary since
the associated variable might not be deduced from array size
(because of non linear sizes). Although redundant, the split
primitive carries a extra information: it defines a bijection
between arrays. Defining filters or convolutions requires
such building blocks (see Section 2). Here is an example of
pack application:

pack <2> (_𝑖 :[7]. 𝑖) ⊲ [3][3]int {
[

0 1 2
2 3 4
4 5 6

]

5.5 Implicit Size Parameters
Our proposal allows to infer any size. However, functions’
arguments of type <[> might not be syntactically omitted:
an explicit size value expression with an unspecified size
—<_>— must at least be provided.

To make these arguments fully implicit, some syntacti-
cal restrictions are needed, so as to determine the places
where such unspecified size values should be inserted. For
instance, providing n-ary size abstraction —_<]1, . . .,]𝑛>. 𝑒—
and application —𝑒 <]1, . . .,]𝑛>—without curryfication makes

6 Purposes of Sized Types
The size information has several usages, both for program
verification and compilation. Carrying size alongside types
has proven to be practical in our ongoing experimentation.

6.1 Verification
As mentioned in Section 2, array combinators turn bound
checking into size consistency (e.g., map2 arguments must
have the same size). Our type system precisely ensures this
property. For decidability purposes, the type system only
handles size equalities. In particular, it does not ensure that
size are positive. In this context, array safety is based on the
emptiness of type [[] when [is negative or null: none of
the language’s primitives deliver indexes of negative size.
Thinking of array combinators as pure index computa-

tions, as we breifly discuss about below, linear array primi-
tives (concat, reverse, window, ...) as well as index produc-
ers (mapi, the modulo), are indeed safe, but Pandora’s box
opens when providing non-linear primitives: the use of a
negative step ^ in sample would allow to build an array of
positive (thus nonempty) size from a negatively sized one,
hence introducing faulty accesses.

To rule out these hazardous uses, constraints must be
added to type schemes. The split primitive is restricted to
strictly positive steps10 with the type:

val sample : ∀] ·^ ·𝛼. <^> � [] ∗ ^ − ^ + 1]𝛼 � []]𝛼 where ^ >0

These constraints are ignored by the inference. They are
checked either symbolically or at final instantiation, where
they become trivial relations on integer values. 11

6.2 Compilation
Conveying sizes into types is useful for compilation pur-
poses. In particular, the declarative style favors definitions of
complex data by pieces that are aggregated (e.g., using array
concatenation). To avoid extra memory consumption and
data moves, the placement of each part must be carefully
chosen. This is, for example, the role of the built-in-place
optimization designed by Gaudiot et al. [12] for Sisal. For
arrays, it strongly relies on size information.

Iterator Fusion. Complex transformations are expressed
by composing extensional primitives that produce interme-
diate arrays. Fusing these operations is an indispensable step
for compiler of functional languages that target efficient soft-
ware. In some of them [17, 35], this is achieved by using a set
of rewrite rules with the drawback of requiring new rules
for additional primitives or some fallback mechanism.

Other proposals such as Obsidian [6] or Dex [31] rely on
the array-function analogy to provide forms that compose
arbitrarily. We experiment a similar approach, restricted
to array combinators by representing them in a uniform
way: functions that map indexes. For instance, reversing
an array of size [is described by the function 𝑥 ∈ [[] ↦→
<[− 1> - 𝑥 ∈ [[], which captures the size. During code
generation, these index functions induce computed array
accesses that are correct by construction.

Unchecked Accesses. Currently in Scade [7], every dy-
namic array accesses are guarded, by providing a default
value in the event that the index is out of bound. For ac-
cesses where bounds are actually met, such as the iterator
mapi (point wise application with index), this generates dead
code and an extra branching. The index refinement allows
to decouple array access from bound verification: a value of
type [[]may be used in several places without any dynamic
check that it is indeed within bounds.

7 Discussion and Related Works
The definition of a typed functional language with array op-
erations offers several design choices that must be assessed.
How expressive are the language and its type system; how
10 A zero step could make sense here, by accessing the single value of an
array (of size 1), but this stricter version enjoys an extra property: it is
injective, which gives additional compilation perspectives.
11Similar constraints on type variables are already used in Scade, as shown
in the linear algebra examples of Section 7

Polymorphic Types with Polynomial Sizes ARRAY ’23, June 18, 2023, Orlando, FL, USA

difficult and modular are type checking and type reconstruc-
tion; what about the verbosity of the code; what is diagnosis
like in case of errors?
The motivation of the present work is the extension of

the domain-specific functional and synchronous language
Scade [7] that is used for implementing real-time embed-
ded software. Scade stands out from general purpose func-
tional language by being first-order with a predefined set
of higher-order operators on arrays, extending a proposal
for Lustre [25]. The expressiveness of the language is pur-
posely limited to ensure safety properties (e.g., memory and
execution time are bounded and known statically). More-
over, applications in Scade are almost exclusively developed
graphically by connecting blocks in diagrams so that an-
notating elements (wires and blocks) with types is rapidly
cumbersome, in particular when size expressions get larger.
Neither type nor size inference are currently available in
Scade. We aim at extending the expressiveness of the lan-
guage beyond the linear iterators (e.g., map, fold) and pro-
viding size inference. By comparison, the matrix product of
Figure 4 is written in Scade in the following way.

-- Scalar product of two vectors: u(n) · v(n)
function dot «n» (u, v: ’Tˆn)
returns (w:’T) where ’T numeric

w = (fold $+$ «n») (0, (map $*$ «n») (u, v));

-- Product of a matrix by a vector: A(m,n) * u(n)
function mat_vec «m, n» (A : ’Tˆmˆn; u : ’Tˆn)
returns (w: ’Tˆm) where ’T numeric

w = (map (dot «n») «m») (transpose (A; 1; 2), uˆm);

-- Matrix product: A(m,n) * B(n,p)
function mat_mat «m, n, p» (A : ’Tˆmˆn; B : ’Tˆnˆp)
returns (C:’Tˆmˆp) where ’T numeric

C = (map (mat_vec «m, n») «p») (Aˆp, B);

Here, sizes need to be expressed both in types and in-
stantiations of array iterators and functions. The proposi-
tion presented in the paper increases significantly what it is
possible to express with the current version of Scade with
lighter-weight notations for both definitions and interfaces.

We hope this proposition to be applicable in a wider con-
text than the one of Scade. Actually, this approach based
on polymorphism deals with features that are not available
with Scade such as higher-order and recursion.

Modularity. Circuit design languages such as Lava [5]
andWired [2] extensively use arrays. Because of their tar-
get, programs are fully expanded before size checking. This
allows using arbitrary (static) expressions in sizes that are
evaluated at compile time to ensure correct array use. The
same approach is used for Halide [33], that produces GPU
kernels: functions are compiled and optimized once sizes
have been given concrete values.

For safety critical embedded software, sizes are also stat-
ically fixed, but both checking and compilation gain from
modularity, e.g., by allowing easier definition of libraries, or
in a view to produce modular code. For error tracking, this
type system allows to spot defects of polymorphic definitions
before their use in a monomorphic context.

However, since sizes are static, we do not restrict our lan-
guage to the formally type-provable programs. We provide
coercions as a fallback mechanism for remaining checks to
be performed after specialization.

A Rudimentary System of Refined Types. Our proposal
uses a very restricted form of refinement types, by providing
only singleton (<[>) and interval ([[]) refinements, with-
out sub-typing between them. This is a key for both type
checking and inference.

The general theory of dependent types worked out by Xi
and Pfenning [38] allows to express arbitrary predicates in
type systems. However, this has a cost: type checking is un-
decidable in general, mainly because sub-typing amounts to
proof obligations of predicate implication. These authors also
delineated in [37] some restrictions for arrays size checking.
Trojahner and Grelck [36] extended a similar type system to
provide dependently typed rank polymorphism. Both works
extract sets of arithmetic constraints that are resolved with
an external procedure (SMT solvers). Besides requiring heavy
machinery for type checking at the risk of opaque errors,
size relations are mainly limited to linear expressions, for
the constraint system to be solvable. To lift this reductions,
_𝐻 proposes hybrid type checking [11], a system of refine-
ment types that allows deferring unprovable implications to
run time. Our proposal resembles, using static evaluation to
eliminate remaining checks.

Inference in extended type systems has been studied in the
context of _𝐻 [24] and Liqid Types [34]. Both approaches
are similar to ours: after collecting the set of sub-typing con-
straints, a most general solution is extracted (using external
tools such as SMT solvers).

Explicit Proof Obligations (coercions). We provide an
escape mechanism for the terms that cannot be checked by
the type systems In _𝐻 [11] such coercions are ubiquitous,
although implicit: they are systematically inserted at func-
tion applications, generating checks that are eliminated at
compile time if possible. In the restricted context of arrays,
far less coercions are needed that in the general setting. Thus,
we follow the approach of Futhark [16] and Dex [31] (co-
ercions occur at fromOrdinal calls): every possibly failing
coercion is explicit. This strengthens the guarantees pro-
vided by typing: coercion errors may occur only at explicitly
marked points of the program.
Jay and Sekanina [20] mention several ways to check

shape constraints, that apply for our coercions: defensive
run-time code generation, static checking with advanced
formal methods or partial evaluation at compile time.

ARRAY ’23, June 18, 2023, Orlando, FL, USA Jean-Louis Colaço, Baptiste Pauget, and Marc Pouzet

A Separated Size Language. Our sizes are syntactically
distinguished from general expressions. This matters for
cross-compilation (which is common for embedded applica-
tions), because sizes are symbolicallymanipulated at compile-
time i.e. on the development host, whereas integer values
must be represented on the targeted device with machine
(finite) integers that are submitted to overflows. Converting
sizes into machine integer is thus non-trivial: then compiler
must ensures size’s value is actually representable within
the concrete type.

The idea of using a separated language for sizes appeared
already in [19] to express bounds on the size of recursive
data-types. The set of sizes is extended a limit 𝜔 that to
represent data of arbitrary size.
The Vec language of Jay and Sekanina [20] follows a dif-

ferent path, by enforcing size expressions (a subset of expres-
sions of the language) to be independent of data that come
with dedicated typing rules. This results in an analogous
restrictions: sizes are static.

Indexed Types. Our proposal strongly resembles the one
of Zenger [39], where types are parametrized by polyno-
mial indexes. Alike our type system, dependent types are
avoided by considering indexes as types, that are syntac-
tically separated from terms. It is even stricter: the values
may not depend on indexes. Hence, the semantics remains
type-erasable and no sub-typing is required, but bounded
integers are hardly representable.
The purpose of inference differs too: instead of recon-

structed omitted sizes, inference for indexed types constraints
and checks whether they are satisfied. To this end, it builds
on the general theory of radical ideals, that is applicable for
complex polynomials. For size reconstruction, this would
lead to meaningless sizes (e.g., non-integer).

Comparison to Futhark and Dex. The Futhark [9]
and Dex [31] languages shares strong similarities with this
work. The founding principle seems similar: most array sizes
should be controlled in some inexpensive ways, without try-
ing to fully check arrays, at the risk of limiting language
expressiveness. Instead of proving predicates, these type sys-
tems keep track of values’ properties (bounds), allowing to
decouple their verification, either static (argument assump-
tions) or dynamic (coercions) and their uses (array accesses).
This finer control also benefits the compilation by helping
to rule out redundant checks.
Both Dex and Futhark provide dependent types that

allow arbitrary size computations, but static verifications
are limited to syntactic equality. Hence, neither concat nor
reshape are given a satisfactory type. Our sizes must be
static, but the size language is more expressive. Despite the
loss of completeness for inference, such polynomial sizes
seems useful because they are easily checkable.

Polymorphism, Dependent Types and Dynamic Sizes.

Separating the size language has a direct consequence: no-
tions of scopes, abstractions and applications are needed
to express terms that are generic in sizes. Because they are
not terms, dependent types are inadequate here. Following
Hughes et al. [19], we handle similarly sizes and types (let
generalization), which is consistent, at least in the context
of static sizes.

The dimension type system proposed by Kennedy [23] also
resembles ours: polymorphism over dimensions is consid-
ered. Its inference enjoys principal types, since the dimension
language is simpler: it is equipped with a single operation,
the product, that is both associative and commutative. How-
ever, some difficulties still echo to ours: most general types
are not unique and polymorphic recursion seems rapidly
necessary.

Even Futhark, whose type system uses dependent types,
shares strong similarities: its normalized form [16] is ob-
tained by adding let bindings so as to name and scope exis-
tentially quantified size variables.

Moreover, the work on indexed types [39] illustrates how
existential quantification in data types allows to handle dy-
namically sized data-structure. Since the work of Mitchell
and Plotkin [28], first class polymorphism [21, 22] gener-
alized these data-types to universal quantification. In this
context, typing heavily relies on the local quantification
sketched in Section 5.

8 Conclusion and Perspectives
This article have presented an ML-like type system which
adds a size information into types: genericity on sizes is
expressed through polymorphism. The size language, made
of multivariate polynomials, allows to express a large class
of array manipulations, while being easily checked.

Our proposal is not restricted to safety critical languages
like Scade: it may provide the key elements to track array
sizes in a functional language, and to highlight the parts that
cannot be checked with a simple ML-like type system. This
information is valuable for both checking and compilation
steps, in particular to reduce the need for defensive code.
Besides assessing the compatibility of this type system

with temporal constructs of synchronous languages, the effi-
cient compilation of the proposed array manipulations (array
iterators, recursion on size) in the context of safety critical
software will be studied next. In particular, targeting de-
vices that are used for intensive computation such as GPUs
remains an open question for such applications.

Acknowledgments. We thanks the anonymous referees
for their helpful and relevant comments.

Polymorphic Types with Polynomial Sizes ARRAY ’23, June 18, 2023, Orlando, FL, USA

References
[1] Alexander Aiken and Edward L. Wimmers. 1993. Type Inclusion

Constraints and Type Inference. In Proceedings of the conference on
Functional programming languages and computer architecture, FPCA
1993, Copenhagen, Denmark, June 9-11, 1993, JohnWilliams (Ed.). ACM,
31–41. https://doi.org/10.1145/165180.165188

[2] Emil Axelsson, Koen Claessen, and Mary Sheeran. 2005. Wired: Wire-
Aware Circuit Design. In Correct Hardware Design and Verification
Methods, 13th IFIP WG 10.5 Advanced Research Working Conference,
CHARME 2005, Saarbrücken, Germany, October 3-6, 2005, Proceedings
(Lecture Notes in Computer Science, Vol. 3725), Dominique Borrione
and Wolfgang J. Paul (Eds.). Springer, 5–19. https://doi.org/10.1007/
11560548_4

[3] John G. P. Barnes. 2003. High Integrity Software - The SPARK Approach
to Safety and Security. Addison-Wesley. http://www.addison-wesley.
de/main/main.asp?page=englisch/bookdetails&ProductID=88293

[4] Richard S. Bird and Philip Wadler. 1988. Introduction to functional
programming. Prentice Hall.

[5] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998.
Lava: Hardware Design in Haskell. In Proceedings of the third ACM SIG-
PLAN International Conference on Functional Programming (ICFP ’98),
Baltimore, Maryland, USA, September 27-29, 1998, Matthias Felleisen,
Paul Hudak, and Christian Queinnec (Eds.). ACM, 174–184. https:
//doi.org/10.1145/289423.289440

[6] Koen Claessen, Mary Sheeran, and Joel Svensson. 2012. Expressive
array constructs in an embedded GPU kernel programming language.
In Proceedings of the POPL 2012 Workshop on Declarative Aspects of
Multicore Programming, DAMP 2012, Philadelphia, PA, USA, Saturday,
January 28, 2012, Umut A. Acar and Vítor Santos Costa (Eds.). ACM,
21–30. https://doi.org/10.1145/2103736.2103740

[7] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. 2017. SCADE 6: A
formal language for embedded critical software development (invited
paper). In 11th International Symposium on Theoretical Aspects of Soft-
ware Engineering, TASE 2017, Sophia Antipolis, France, September 13-15,
2017, Frédéric Mallet, Min Zhang, and Eric Madelaine (Eds.). IEEE
Computer Society, 1–11. https://doi.org/10.1109/TASE.2017.8285623

[8] Francesco Dagnino, Viviana Bono, Elena Zucca, and Mariangiola
Dezani-Ciancaglini. 2020. Soundness Conditions for Big-Step Se-
mantics. In Programming Languages and Systems - 29th European
Symposium on Programming, ESOP 2020, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS
2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in
Computer Science, Vol. 12075), Peter Müller (Ed.). Springer, 169–196.
https://doi.org/10.1007/978-3-030-44914-8_7

[9] Martin Elsman, Troels Henriksen, and Niels Gustav Westphal Serup.
2019. Data-parallel flattening by expansion. In Proceedings of the
6th ACM SIGPLAN International Workshop on Libraries, Languages
and Compilers for Array Programming, ARRAY@PLDI 2019, Phoenix,
AZ, USA, June 22, 2019, Jeremy Gibbons (Ed.). ACM, 14–24. https:
//doi.org/10.1145/3315454.3329955

[10] John Feo, David C. Cann, and R. R. Oldehoeft. 1990. A Report on the
Sisal Language Project. J. Parallel Distributed Comput. 10, 4 (1990),
349–366. https://doi.org/10.1016/0743-7315(90)90035-N

[11] Cormac Flanagan. 2006. Hybrid type checking. In Proceedings of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2006, Charleston, South Carolina, USA, January 11-13,
2006, J. Gregory Morrisett and Simon L. Peyton Jones (Eds.). ACM,
245–256. https://doi.org/10.1145/1111037.1111059

[12] J-L Gaudiot, Wim Bohm, Walid Najjar, Tom DeBoni, John Feo, and
Patrick Miller. 1997. The Sisal model of functional programming and
its implementation. In Parallel Algorithms/Architecture Synthesis (Pro-
ceedings. Second Aizu International Symposium). IEEE, 112–123.

[13] Léonard Gérard, Adrien Guatto, Cédric Pasteur, and Marc Pouzet. 2012.
Amodular memory optimization for synchronous data-flow languages:

application to arrays in a lustre compiler. In SIGPLAN/SIGBED Con-
ference on Languages, Compilers and Tools for Embedded Systems 2012,
LCTES ’12, Beijing, China - June 12 - 13, 2012, Reinhard Wilhelm, Heiko
Falk, andWang Yi (Eds.). ACM, 51–60. https://doi.org/10.1145/2248418.
2248426

[14] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud.
1991. The synchronous data flow programming language LUSTRE.
Proc. IEEE 79, 9 (1991), 1305–1320. https://doi.org/10.1109/5.97300

[15] Fritz Henglein. 1993. Type Inference with Polymorphic Recursion.
ACM Transactions on Programming Languages and Systems (TOPLAS)
15, 2 (1993), 253–289. https://doi.org/10.1145/169701.169692

[16] Troels Henriksen and Martin Elsman. 2021. Towards size-dependent
types for array programming. In ARRAY 2021: Proceedings of the
7th ACM SIGPLAN International Workshop on Libraries, Languages
and Compilers for Array Programming, Virtual Event, Canada, 21
June, 2021, Tze Meng Low and Jeremy Gibbons (Eds.). ACM, 1–14.
https://doi.org/10.1145/3460944.3464310

[17] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Hen-
glein, and Cosmin E. Oancea. 2017. Futhark: purely functional GPU-
programming with nested parallelism and in-place array updates. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 556–571.
https://doi.org/10.1145/3062341.3062354

[18] Roger Hindley. 1969. The principal type-scheme of an object in com-
binatory logic. Transactions of the american mathematical society 146
(1969), 29–60.

[19] John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Correct-
ness of Reactive Systems Using Sized Types. In Conference Record
of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Papers Presented at the Sympo-
sium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, Hans-
Juergen Boehm and Guy L. Steele Jr. (Eds.). ACM Press, 410–423.
https://doi.org/10.1145/237721.240882

[20] C Barry Jay and Milan Sekanina. 1997. Shape checking of array pro-
grams. In Computing: the Australasian Theory Seminar, Proceedings.
Australian Computer Science Communications, Vol. 19. University of
Technology, Sydney, Australia, 113–121.

[21] Mark P. Jones. 1997. First-class Polymorphism with Type Infer-
ence. In Conference Record of POPL’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Papers
Presented at the Symposium, Paris, France, 15-17 January 1997, Peter
Lee, Fritz Henglein, and Neil D. Jones (Eds.). ACM Press, 483–496.
https://doi.org/10.1145/263699.263765

[22] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. 2007. Practical type inference for arbitrary-rank types.
Journal of functional programming 17, 1 (2007), 1–82. https://doi.org/
10.1017/S0956796806006034

[23] Andrew Kennedy. 1994. Dimension Types. In Programming Lan-
guages and Systems - ESOP’94, 5th European Symposium on Program-
ming, Edinburgh, UK, April 11-13, 1994, Proceedings (Lecture Notes in
Computer Science, Vol. 788), Donald Sannella (Ed.). Springer, 348–362.
https://doi.org/10.1007/3-540-57880-3_23

[24] Kenneth L. Knowles and Cormac Flanagan. 2007. Type Reconstruc-
tion for General Refinement Types. In Programming Languages and
Systems, 16th European Symposium on Programming, ESOP 2007, Held
as Part of the Joint European Conferences on Theory and Practics of Soft-
ware, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings
(Lecture Notes in Computer Science, Vol. 4421), Rocco De Nicola (Ed.).
Springer, 505–519. https://doi.org/10.1007/978-3-540-71316-6_34

[25] Florence Maraninchi and Lionel Morel. 2004. Arrays and Contracts
for the Specification and Analysis of Regular Systems. In 4th Inter-
national Conference on Application of Concurrency to System Design

https://doi.org/10.1145/165180.165188
https://doi.org/10.1007/11560548_4
https://doi.org/10.1007/11560548_4
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&ProductID=88293
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&ProductID=88293
https://doi.org/10.1145/289423.289440
https://doi.org/10.1145/289423.289440
https://doi.org/10.1145/2103736.2103740
https://doi.org/10.1109/TASE.2017.8285623
https://doi.org/10.1007/978-3-030-44914-8_7
https://doi.org/10.1145/3315454.3329955
https://doi.org/10.1145/3315454.3329955
https://doi.org/10.1016/0743-7315(90)90035-N
https://doi.org/10.1145/1111037.1111059
https://doi.org/10.1145/2248418.2248426
https://doi.org/10.1145/2248418.2248426
https://doi.org/10.1109/5.97300
https://doi.org/10.1145/169701.169692
https://doi.org/10.1145/3460944.3464310
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/237721.240882
https://doi.org/10.1145/263699.263765
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1007/3-540-57880-3_23
https://doi.org/10.1007/978-3-540-71316-6_34

ARRAY ’23, June 18, 2023, Orlando, FL, USA Jean-Louis Colaço, Baptiste Pauget, and Marc Pouzet

(ACSD 2004), 16-18 June 2004, Hamilton, Canada. IEEE Computer Soci-
ety, 57–66. https://doi.org/10.1109/CSD.2004.1309116

[26] Lambert G. L. T. Meertens. 1983. Incremental Polymorphic Type Check-
ing in B. In Conference Record of the Tenth Annual ACM Symposium on
Principles of Programming Languages, Austin, Texas, USA, January 1983,
John R. Wright, Larry Landweber, Alan J. Demers, and Tim Teitelbaum
(Eds.). ACM Press, 265–275. https://doi.org/10.1145/567067.567092

[27] Robin Milner. 1978. A Theory of Type Polymorphism in Program-
ming. Journal of computer and system sciences 17, 3 (1978), 348–375.
https://doi.org/10.1016/0022-0000(78)90014-4

[28] John C. Mitchell and Gordon D. Plotkin. 1988. Abstract Types Have
Existential Type. ACM Transactions on Programming Languages and
Systems (TOPLAS) 10, 3 (1988), 470–502. https://doi.org/10.1145/44501.
45065

[29] Alan Mycroft. 1984. Polymorphic Type Schemes and Recursive Defi-
nitions. In International Symposium on Programming, 6th Colloquium,
Toulouse, France, April 17-19, 1984, Proceedings (Lecture Notes in Com-
puter Science, Vol. 167), Manfred Paul and Bernard J. Robinet (Eds.).
Springer, 217–228. https://doi.org/10.1007/3-540-12925-1_41

[30] Hanne Riis Nielson and Flemming Nielson. 1988. Automatic Bind-
ing Time Analysis for a Typed lambda-Calculus. Science of computer
programming 10, 1 (1988), 139–176. https://doi.org/10.1016/0167-
6423(88)90025-1

[31] Adam Paszke, Daniel D. Johnson, David Duvenaud, Dimitrios Vy-
tiniotis, Alexey Radul, Matthew J. Johnson, Jonathan Ragan-Kelley,
and Dougal Maclaurin. 2021. Getting to the point: index sets and
parallelism-preserving autodiff for pointful array programming. Pro-
ceedings of the ACM on Programming Languages 5, ICFP (2021), 1–29.
https://doi.org/10.1145/3473593

[32] François Pottier. 2001. Simplifying Subtyping Constraints: A The-
ory. Information and computation 170, 2 (2001), 153–183. https:
//doi.org/10.1006/inco.2001.2963

[33] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman P. Amarasinghe. 2013. Halide: a

language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, Seattle,
WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan
(Eds.). ACM, 519–530. https://doi.org/10.1145/2491956.2462176

[34] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liq-
uid types. In Proceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementation, Tucson, AZ, USA,
June 7-13, 2008, Rajiv Gupta and Saman P. Amarasinghe (Eds.). ACM,
159–169. https://doi.org/10.1145/1375581.1375602

[35] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
Dubach. 2015. Generating performance portable code using rewrite
rules: from high-level functional expressions to high-performance
OpenCL code. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, September 1-3, 2015, Kathleen Fisher and John H. Reppy (Eds.).
ACM, 205–217. https://doi.org/10.1145/2784731.2784754

[36] Kai Trojahner and Clemens Grelck. 2009. Dependently typed array
programs don’t go wrong. J. Log. Algebraic Methods Program. 78, 7
(2009), 643–664. https://doi.org/10.1016/j.jlap.2009.03.002

[37] Hongwei Xi and Frank Pfenning. 1998. Eliminating Array Bound
Checking Through Dependent Types. In Proceedings of the ACM SIG-
PLAN ’98 Conference on Programming Language Design and Imple-
mentation (PLDI), Montreal, Canada, June 17-19, 1998, Jack W. David-
son, Keith D. Cooper, and A. Michael Berman (Eds.). ACM, 249–257.
https://doi.org/10.1145/277650.277732

[38] Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical
Programming. In POPL ’99, Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San An-
tonio, TX, USA, January 20-22, 1999, Andrew W. Appel and Alex Aiken
(Eds.). ACM, 214–227. https://doi.org/10.1145/292540.292560

[39] Christoph Zenger. 1997. Indexed Types. Theoretical computer science
187, 1-2 (1997), 147–165. https://doi.org/10.1016/S0304-3975(97)00062-
5

Received 2023-03-31; accepted 2023-04-21

https://doi.org/10.1109/CSD.2004.1309116
https://doi.org/10.1145/567067.567092
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/44501.45065
https://doi.org/10.1145/44501.45065
https://doi.org/10.1007/3-540-12925-1_41
https://doi.org/10.1016/0167-6423(88)90025-1
https://doi.org/10.1016/0167-6423(88)90025-1
https://doi.org/10.1145/3473593
https://doi.org/10.1006/inco.2001.2963
https://doi.org/10.1006/inco.2001.2963
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/2784731.2784754
https://doi.org/10.1016/j.jlap.2009.03.002
https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/292540.292560
https://doi.org/10.1016/S0304-3975(97)00062-5
https://doi.org/10.1016/S0304-3975(97)00062-5

	Abstract
	1 Introduction
	2 Overview
	3 A Typed Core Functional Language with Size Polymorphism
	3.1 Syntax and Semantics
	3.2 Semantics
	3.3 Typing

	4 Inference
	4.1 Implicitly Typed L
	4.2 Algorithm
	4.3 Principal Typing
	4.4 Constraint Solving
	4.5 Inference Properties

	5 Toward a Realistic Array Language
	5.1 Locally Abstract Sizes
	5.2 Polymorphic Recursion
	5.3 Explicit Coercions
	5.4 Language Support for Arrays
	5.5 Implicit Size Parameters

	6 Purposes of Sized Types
	6.1 Verification
	6.2 Compilation

	7 Discussion and Related Works
	8 Conclusion and Perspectives
	References

