Introduction à la vision artificielle V

Jean Ponce Email: <u>ponce@di.ens.fr</u> Web: <u>http://www.di.ens.fr/~ponce</u>

Planches après les cours sur : http://www.di.ens.fr/~ponce/introvis/lect5.pptx http://www.di.ens.fr/~ponce/introvis/lect5.pdf

Souvenez vous: Le premier exo est du aujourd'hui.. Du le 20: http://www.di.ens.fr/willow/teaching/introvis14/assignment2/

Gaussian Filtering and Denoising

- Gaussian filters and noise
- Separability
- Oriented filters
- Sparse coding and noise

Gaussian filters

$$g(x) = e^{-\frac{x^2}{2\sigma^2}}$$

2-D:

$$G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Slight abuse of notation: We ignore the normalization constant such that

$$\int g(x)dx = 1$$

Image Noise

 $f(x,y) = \overbrace{\widehat{f(x,y)}}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}} \quad \text{Gaussian i.i.d. ("white") noise:} \\ \eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

Gaussian Smoothing to Remove Noise

Bottom line: The standard deviation of white noise is divided by k*sigma

Increasing σ

Shape of Gaussian filter as function of s

Basic Properties

- Gaussian removes "high-frequency" components from the image \rightarrow "low pass" filter
- Larger σ remove more details
- Combination of 2 Gaussian filters is a Gaussian filter:

$$G_{\sigma_1} * G_{\sigma_2} = G_{\sigma} \quad \sigma^2 = \sigma_1^2 + \sigma_2^2$$

• Separable filter:

$$G_{\sigma} * f = g_{\sigma \rightarrow} * g_{\sigma \uparrow} * f$$

• Critical implication: Filtering with a NxN Gaussian kernel can be implemented as two convolutions of size $N \rightarrow$ reduction quadratic to linear \rightarrow must be implemented that way

Note about Finite Kernel Support

Gaussian function has infinite support

• In actual filtering, we have a finite kernel size

Oriented Gaussian Filters

- G_{σ} smoothes the image by the same amount in all directions
- If we have some information about preferred directions, we might want to smooth with some value σ_l in the direction defined by the unit vector $[a \ b]$ and by σ_2 in the direction defined by $[c \ d]$

• We can write this in a more compact form by using the standard multivariate Gaussian notation:

$$G_{\Sigma} = e^{-\frac{X^T \Sigma^{-1} X}{2}} \quad X = \begin{bmatrix} x \\ y \end{bmatrix}$$

 The two (orthogonal) directions of filtering are given by the eigenvectors of Σ, the amount of smoothing is given by the square root of the corresponding eigenvalues of Σ.

$\mathbf{x} \approx \alpha_1 \mathbf{d}_1 + \alpha_2 \mathbf{d}_2 + \dots + \alpha_p \mathbf{d}_p = \mathbf{D}\alpha$, with $|\alpha|_0 \ll \mathbf{p}$

(Olshausen and Field, 1997; Chen et al., 1999; Mallat, 1999; Elad and Aharon, 2006) (Kavukcuoglu et al., 2009; Wright et al., 2009; Yang et al., 09; Boureau et al., 2010)

$\mathbf{x} \approx \alpha_1 \mathbf{d}_1 + \alpha_2 \mathbf{d}_2 + \dots + \alpha_p \mathbf{d}_p = \mathbf{D}\alpha$, with $|\alpha|_1 \ll \rho$

(Olshausen and Field, 1997; Chen et al., 1999; Mallat, 1999; Elad and Aharon, 2006) (Kavukcuoglu et al., 2009; Wright et al., 2009; Yang et al., 09; Boureau et al., 2010)

State of the art in image denoising

Non-local means filtering (Buades et al.'05)

Dictionary learning for denoising (Elad & Aharon'06; Mairal, Elad & Sapiro'08) $\min_{D \in C, \alpha_1, \dots, \alpha_n} \sum_{1 \le i \le n} [1/2 | x_i - D\alpha_i |_2^2 + \lambda |\alpha_i|_1]$ $x = 1/n \sum_{1 \le i \le n} R_i D\alpha_i$

State of the art in image denoising

BM3D (Dabov et al.'07)

Non-local means filtering (Buades et al.'05)

Dictionary learning for denoising (Elad & Aharon'06; Mairal, Elad & Sapiro'08) $\min_{D \in C, \alpha_1, ..., \alpha_n} \sum_{1 \le i \le n} [1/2 | x_i - D\alpha_i |_2^2 + \lambda |\alpha_i|_1]$ $x = 1/n \sum_{1 \le i \le n} R_i D\alpha_i$

Non-local sparse models for image restoration (Mairal, Bach, Ponce, Sapiro, Zisserman, ICCV'09)

 $\min_{\substack{\mathsf{D}\in\mathcal{C}\\A_{1},\ldots,A_{n}}} \sum_{i} \left[\sum_{j\in S_{i}} 1/2 \mid \mathbf{x}_{j} - \mathsf{D}\alpha_{ij} \mid_{\mathsf{F}}^{2} \right] + \lambda \mid \mathbf{A}_{i} \mid_{p,q}$ $\left| \mathbf{A} \right|_{p,q} = \sum_{1 \le i \le k} \left| \alpha^{i} \right|_{q}^{p} (p,q) = (1,2) \text{ or } (0,\infty)$

σ	[23]	[25]	[12]	[8]	SC	LSC	LSSC
5	37.05	37.03	37.42	37.62	37.46	37.66	37.67
10	33.34	33.11	33.62	34.00	33.76	33.98	34.06
15	31.31	30.99	31.58	32.05	31.72	31.99	32.12
20	29.91	29.62	30.18	30.73	30.29	30.60	30.78
25	28.84	28.36	29.10	29.72	29.18	29.52	29.74
50	25.66	24.36	25.61	26.38	25.83	26.18	26.57
100	22.80	21.36	22.10	23.25	22.46	22.62	23.39

PSNR comparison between our method (LSSC) and Portilla et al.'03 [23]; Roth & Black'05 [25]; Elad& Aharon'06 [12]; and Dabov et al.'07 [8].

Real noise (Canon Powershot G9, 1600 ISO)

Image Derivatives

- Image Derivatives
- Derivatives increase noise
- Derivative of Gaussian
- Laplacian of Gaussian (LOG)

Image Derivatives

- We want to compute, at each pixel (*x*,*y*) the derivatives:
- In the discrete case we could take the difference between the left and right pixels:

$$\frac{\partial I}{\partial x} \approx I(i+1,j) - I(i-1,j)$$

Convolution of the image by

$$\partial_x = 10$$
 -1

• Problem: Increases noise

$$I(\underline{i+1, j}) - I(\underline{i-1, j}) = \underbrace{\hat{I}(\underline{i+1, j}) - \hat{I}(\underline{i-1, j}) + n_{+} + n_{-}}_{\text{Sum of the noises}}$$

Difference between
Actual image values
$$True \text{ difference}_{(\text{derivative})}$$

Finite differences

Finite differences responding to noise

Increasing zero-mean Gaussian noise

Smooth Derivatives

• Solution: First smooth the image by a Gaussian G_{σ} and then take derivatives: $\partial f = \partial (G_{\sigma} * f)$

$$\frac{1}{\partial x} \approx \frac{1}{\partial x}$$

• Applying the differentiation property of the convolution:

$$\frac{\partial f}{\partial x} \approx \frac{\partial G_{\sigma}}{\partial x} * f$$

• Therefore, taking the derivative in x of the image can be done by convolution with the derivative of a Gaussian:

$$G_{\sigma}^{x} = \frac{\partial G_{\sigma}}{\partial x} = xe^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

• Crucial property: The Gaussian derivative is also separable:

$$G_{\sigma}^{x} * f = g_{\sigma}^{x} * g_{\sigma\uparrow} * f$$

Derivative + Smoothing

Better but still blurs away edge information

Applying the first derivative of Gaussian

There is ALWAYS a tradeoff between smoothing and good edge localization!

Edge Location

Image + Noise

Derivatives detect edge *and* noise

Smoothed derivative removes noise, but blurs edge

Second derivatives: Laplacian

DOG Approximation to LOG

 $\nabla^2 G_{\sigma} \approx \overline{G}_{\sigma_1} - G_{\sigma_2}$

$1 - \frac{x^2 + y^2}{2}$ Gaussian							
$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-2\sigma^2}$	Separable, low-pass filter						
Derivatives of Gaussian							
$\frac{\partial G_{\sigma}(x,y)}{\partial x} \propto x e^{-\frac{x^2 + y^2}{2\sigma^2}} \frac{\partial G_{\sigma}(x,y)}{\partial y} \propto y e^{-\frac{x^2 + y^2}{2\sigma^2}}$	Separable, output of convolution is gradient at scale σ : $\nabla I = I * \nabla G_{-}$						
$\nabla G_{\sigma} = \left[\frac{\partial G_{\sigma}}{\partial x} \ \frac{\partial G_{\sigma}}{\partial y}\right]^{t}$							
Laplacian	Not separable approximated by						
$\nabla^2 G(x,y) = \partial^2 G_{\sigma}(x,y) + \partial^2 G_{\sigma}(x,y)$	A difference of Gaussians. Output						
$\nabla G_{\sigma}(x,y) = \frac{1}{\partial x^2} + \frac{1}{\partial y^2}$	of convolution is Laplacian of image: Zero-crossings correspond to edges						
Directional Derivatives							
$\cos\theta \frac{\partial G_{\sigma}}{\partial \sigma} + \sin\theta \frac{\partial G_{\sigma}}{\partial \sigma}$	Output of convolution is magnitude						
$\partial x \qquad \partial y$	of derivative in direction θ . Filter is						
	linear combination of derivatives in x and y						
Oriented Gaussian							
$e^{-\frac{(a_1x+b_1y)^2}{2\sigma_1^2}-\frac{(a_2x+b_2y)^2}{2\sigma_2^2}}$	Smooth with different scales in orthogonal directions						

Edge Detection

Edge Detection

- Gradient operators
- Canny edge detectors
- Laplacian detectors

What is an edge?

Edge = discontinuity of intensity in some direction. Could be detected by looking for places where the derivatives of the image have large values.

Gradient-based edge detection

There are three major issues:

- 1) The gradient magnitudes at different scales are different; which one should we choose?
- 2) The gradient magnitude is large along thick trails; how do we identify the significant points?
- 3) How do we link the relevant points up into curves?

The Laplacian of Gaussian (Marr-Hildreth 80)

- Another way to detect an extremal first derivative is to look for a zero second derivative.
- Appropriate 2D analogy is rotation invariant:
 - the Laplacian $\nabla^2 f = \partial^2 f / \partial x^2 + \partial^2 f / \partial y^2$

- Bad idea to apply a Laplacian without smoothing:
 - Smooth with Gaussian, apply Laplacian.
 - This is the same as filtering with a Laplacian of Gaussian filter.
- Now mark the zero points where there is a sufficiently large derivative, and enough contrast.

The Laplacian of a Gaussian

Edge pixels are at local maxima of gradient magnitude Gradient computed by convolution with Gaussian derivatives Gradient direction is always perpendicular to edge direction

$$\frac{\partial I}{\partial x} = G_{\sigma}^{x} * I \qquad \qquad \frac{\partial I}{\partial y} = G_{\sigma}^{y} * I$$
$$|\nabla I| = \sqrt{\left(\frac{\partial I}{\partial x}\right)^{2} + \left(\frac{\partial I}{\partial y}\right)^{2}} \quad \theta = atan2\left(\frac{\partial I}{\partial y}, \frac{\partial I}{\partial x}\right)$$

Gradient magnitude along an idealized curved edge.

Curved edges are locally straight: The gradient is orthogonal to the edge direction.

Small sigma

Large sigma

Canny's Result

- Given a filter *f*, define the two objective functions:
 Λ(*f*) large if *f* produces good localization
 Σ(*f*) large if *f* produces good detection (high SNR)
- Problem: Find a family of filters *f* that maximizes the compromise criterion $\Lambda(f)\Sigma(f)$

under the constraint that a single peak is generated by a step edge

Solution: Unique solution, a close approximation is the Gaussian derivative filter!

Next Steps

- The gradient magnitude enhances the edges but two problems remain:
 - What threshold should we use to retain only the "real" edges?
 - Even if we had a perfect threshold, we would still have poorly localized edges. How to extract optimally localize contours?
- Solution: Two standard tools:
 - Non-local maxima suppression
 - Hysteresis thresholding

Different thresholds applied to gradient magnitude

Input image

Different threshold: applied to gradient magnitude

Non-Local Maxima Suppression

 ∇I

1.0

1.5

4.1

2

2.5

Gradient magnitude at center pixel is lower than the gradient magnitude of a neighbor in the direction of the gradient \rightarrow Discard center pixel (set magnitude to 0)

 ∇I

Gradient magnitude at center pixel is greater than gradient magnitude of all the neighbors in the direction of the gradient → Keep center pixel unchanged

Non-maximum suppression

At q we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

T = 15 T = 5

Two thresholds applied to gradient magnitude

Very strong edge response. Let's start here Weaker response but it is connected to a confirmed edge point. Let's keep it.

Continue...

H= 100

() A

Care i

(Umana)

0

8====

Hysteresis T_h=15 T_I = 5

Hysteresis thresholding

T=5

.

The Canny edge detector (1983)

1. Compute x and y derivatives of image

$$I_x = G^x_\sigma * I \quad I_y = G^y_\sigma * I$$

 Compute magnitude of gradient at every pixel

$$M(x, y) = |\nabla I| = \sqrt{I_x^2 + I_y^2}$$

- Eliminate those pixels that are not local maxima of the magnitude in the direction of the gradient
- 4. Hysteresis Thresholding
 - Select the pixels such that $M > T_h$ (high threshold)
 - Collect the pixels such that $M > T_l$ (low threshold) that are neighbors of already collected edge points

We have unfortunate behaviour at corners

Summary

- Edges are discontinuities of intensity in images
- Correspond to local maxima of image gradient
- Edges correspond to zero-crossings of the second derivative (Laplacian in 2-D)
- Gradient computed by convolution with derivatives of Gaussian
- General principle applies:
 - Large σ : Poor localization, good detection
 - Small σ : Good localization, poor detection
- Canny showed that Gaussian derivatives yield good compromise between localization and detection