
Introduction à la vision 
artificielle V 

Jean Ponce 
Email: ponce@di.ens.fr 
Web: http://www.di.ens.fr/~ponce 
 
Planches après les cours sur : 
http://www.di.ens.fr/~ponce/introvis/lect5.pptx 
http://www.di.ens.fr/~ponce/introvis/lect5.pdf 
 
Souvenez vous: Le premier exo est du aujourd’hui.. 
Du le 20: 
http://www.di.ens.fr/willow/teaching/introvis14/assignment2/  
 



Gaussian Filtering 
and Denoising 

•  Gaussian filters and noise 
•  Separability 
•  Oriented filters 
•  Sparse coding and noise 
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Slight abuse of notation:  
We ignore the normalization  
constant such that 

∫ =1)( dxxg

Gaussian filters 
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Gaussian Smoothing to Remove Noise 

σ = 2 σ = 4 No smoothing 

Bottom line: The standard deviation of white noise is divided by k*sigma 



Increasing σ	




σ = 1 

σ = 3 

σ = 5 

Shape of Gaussian filter as function of s 



Basic Properties 
•  Gaussian removes “high-frequency” components from the image 

 “low pass” filter 
•  Larger σ remove more details 
•  Combination of 2 Gaussian filters is a Gaussian filter: 

•  Separable filter: 

•  Critical implication: Filtering with a NxN Gaussian kernel can be 
implemented as two convolutions of size N  reduction 
quadratic to linear  must be implemented that way  
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•  Gaussian function has infinite support 

•  In actual filtering, we have a finite kernel size 

Note about Finite Kernel Support 
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Oriented Gaussian Filters 
•  Gσ smoothes the image by the same amount in all directions 
•  If we have some information about preferred directions, we might want to 

smooth with some value σ1 in the direction defined by the unit vector [a b] 
and by σ2 in the direction defined by [c d] 

 

•  We can write this in a more compact form by using the standard multivariate 
Gaussian notation: 

 

•  The two (orthogonal) directions of filtering are given by the eigenvectors of 
Σ, the amount of smoothing is given by the square root of the corresponding 
eigenvalues of Σ. 
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Signal: x2 Rm 
Dictionary:  

D=[d1,...,dp]2Rm x p 

Sparse linear models 

x ≈ ®1d1 + ®2d2 + ... + ®pdp  = D®,  with |®|0 « p  
(Olshausen and Field, 1997;  Chen et al., 1999; Mallat, 1999; Elad and Aharon, 2006) 
(Kavukcuoglu et al., 2009; Wright et al.,  2009; Yang et al., 09; Boureau et al., 2010) 



Signal: x2 Rm 
Dictionary:  

D=[d1,...,dp]2Rm x p 

Sparse linear models 

x ≈ ®1d1 + ®2d2 + ... + ®pdp  = D®,  with |®|1 « ρ  
(Olshausen and Field, 1997;  Chen et al., 1999; Mallat, 1999; Elad and Aharon, 2006) 
(Kavukcuoglu et al., 2009; Wright et al.,  2009; Yang et al., 09; Boureau et al., 2010) 



Dictionary learning for denoising (Elad & Aharon’06; 
Mairal, Elad & Sapiro’08) 
     min DєC,®1,..., ®n

∑1≤i≤n  [ 1/2 | xi – D®i |2
2 + ¸ |®i|1 ] 

    x = 1/n ∑1≤i≤n  RiD®i 

State of the art in image denoising 

Non-local means filtering  
(Buades et al.’05) 



Dictionary learning for denoising (Elad & Aharon’06; 
Mairal, Elad & Sapiro’08) 
     min DєC,®1,..., ®n

∑1≤i≤n  [ 1/2 | xi – D®i |2
2 + ¸ |®i|1 ] 

    x = 1/n ∑1≤i≤n  RiD®i 

State of the art in image denoising 

Non-local means filtering  
(Buades et al.’05) 

BM3D (Dabov et al.’07) 



|A|p,q= ∑1≤i≤k |®i|q
p  (p,q) = (1,2) or (0,1) 

     min     ∑ [∑ 1/2 | xj – D®ij |F
2] + ¸ |Ai|p,q 

i       j2Si   D2 C 
A1,...,An 

Sparsity       vs        Joint sparsity 

Non-local sparse models for image restoration 

(Mairal, Bach, Ponce, Sapiro, Zisserman, ICCV’09) 





PSNR comparison between our method (LSSC) and  Portilla et al.’03 [23];  
Roth & Black’05 [25]; Elad& Aharon’06 [12]; and Dabov et al.’07 [8]. 



Real noise (Canon Powershot G9, 1600 ISO) 
Raw Jpeg Adobe Camera Raw Noiseware 

DXO LSC LSSC 



Image Derivatives 

•  Image Derivatives 
•  Derivatives increase noise 
•  Derivative of Gaussian 
•  Laplacian of Gaussian (LOG) 



Image Derivatives 
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Difference between 
Actual image values 

True difference 
(derivative) 

Sum of the noises 

•  We want to compute, at each pixel (x,y) the derivatives: 
•  In the discrete case we could take the difference 

between the left and right pixels: 

•  Convolution of the image by  

•  Problem: Increases noise 

1 0  -1  =∂ x



Finite differences 



Finite differences responding to noise 

Increasing zero-mean Gaussian noise	




Smooth Derivatives 
•  Solution: First smooth the image by a Gaussian Gσ and then take 

derivatives: 

•  Applying the differentiation property of the convolution: 

•  Therefore, taking the derivative in x of the image can be done by 
convolution with the derivative of a Gaussian: 

•  Crucial property: The Gaussian derivative is also separable: 
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Derivative + Smoothing 

Better but still blurs away edge information 

Without smoothing With smoothing 



Applying the first derivative of Gaussian 
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There is ALWAYS a tradeoff between smoothing and  
good edge localization! 

Image with Edge Edge Location 

Image + Noise Derivatives detect 
edge and noise 

Smoothed derivative removes 
noise, but blurs edge 
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Directional Derivatives 
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Second derivatives:  
Laplacian 



DOG Approximation to LOG 
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Separable, low-pass filter 

Not-separable, approximated by 
A difference of Gaussians. Output 
of convolution is Laplacian of image: 
Zero-crossings correspond to edges 

Separable, output of  
convolution is gradient at scale 
σ:  σGII ∇=∇ *

Gaussian 

Derivatives of Gaussian 

Directional Derivatives 

Laplacian 

Output of convolution is magnitude 
of derivative in direction θ. Filter is 
linear combination of derivatives in x and y 
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Oriented Gaussian 

Smooth with different scales in 
orthogonal directions 



Edge Detection 
Edge Detection 

–   Gradient operators 
–   Canny edge detectors 
–   Laplacian detectors 



What is an edge? 

Edge = discontinuity of intensity 
in some direction. 
Could be detected by looking for 
places where the derivatives of 
the image have large values. 



There are three major issues: 
   1) The gradient magnitudes at different scales are different;  
        which one should we choose? 
   2) The gradient magnitude is large along thick trails; how 
        do we identify the significant points? 
   3) How do we link the relevant points up into curves? 

Gradient-based edge detection 



The Laplacian of Gaussian  
(Marr-Hildreth 80) 

•  Another way to detect an 
extremal first derivative 
is to look for a zero 
second derivative. 

•  Appropriate 2D analogy is 
rotation invariant: 
–  the Laplacian 
 r2 f=∂2f/∂x2+∂2f/∂y2 

•  Bad idea to apply a Laplacian 
without smoothing: 
–  Smooth with Gaussian, 

apply Laplacian. 
–  This is the same as 

filtering with a Laplacian 
of Gaussian filter. 

•  Now mark the zero points 
where there is a sufficiently 
large derivative, and enough 
contrast. 



The Laplacian of a Gaussian 



sigma=2	


sigma=4	


contrast=1	
 contrast=4	
LOG zero crossings	




θ 

Edge pixels are at local maxima of gradient magnitude 
Gradient computed by convolution with Gaussian derivatives 
Gradient direction is always perpendicular to edge direction 
 



Gradient magnitude along an idealized curved edge. 
 
Curved edges are locally straight: The gradient is  
orthogonal to the edge direction. 



Small sigma Large sigma 



σ= 10 σ= 1 

Large σ   Good detection (high SNR) 
                  Poor localization 

Small σ  Poor detection (low SNR) 
                 Good localization 



Canny’s Result 
•  Given a filter f, define the two objective functions: 

Λ(f) large if f produces good localization 
Σ(f) large if f produces good detection (high SNR) 

•  Problem: Find a family of filters f that maximizes the compromise criterion  
                                     Λ(f)Σ(f)  
    under the constraint that a single peak is generated by a step edge 
•  Solution: Unique solution, a close approximation is the Gaussian derivative 

filter! 

Canny Derivative of Gaussian 



Next Steps 
•  The gradient magnitude enhances the edges but two problems 

remain: 
–  What threshold should we use to retain only the “real” 

edges? 
–  Even if we had a perfect threshold, we would still have poorly 

localized edges. How to extract optimally localize contours? 
•  Solution: Two standard tools: 

–  Non-local maxima suppression 
–  Hysteresis thresholding 



Different thresholds 
applied to gradient 
magnitude 



Input image 



Different thresholds 
applied to gradient 
magnitude 



Non-Local Maxima Suppression 

1.5 

2 

2 

4.1 

Gradient magnitude at center pixel  
is lower than the gradient magnitude  
of a neighbor in the direction of the  
gradient   Discard center pixel  
(set magnitude to 0) 

Gradient magnitude at center pixel  
is greater than gradient magnitude  
of all the neighbors in the direction  
of the gradient  
 Keep center pixel unchanged 

2.5 

1.0 



Non-maximum 
suppression 
 

      At q we have a 
maximum if the 
value is larger than 
those at both p and 
at r. Interpolate to 
get these values. 



T = 15 T = 5 

Two thresholds applied to gradient magnitude 



Weak pixels but connected 

Very strong edge response.  
Let’s start here 

Weaker response but it is  
connected to a confirmed  
edge point. Let’s keep it. 

Continue… 

Weak pixels but isolated 

Hysteresis Thresholding 



T=15 T=5 

Hysteresis 
Th=15 Tl = 5 

Hysteresis  
thresholding 



The Canny edge detector (1983) 



We have unfortunate behaviour 
at corners 



Summary 
•  Edges are discontinuities of intensity in images 
•  Correspond to local maxima of image gradient 
•  Edges correspond to zero-crossings of the second 

derivative (Laplacian in 2-D) 
•  Gradient computed by convolution with derivatives of 

Gaussian 
•  General principle applies: 

–  Large σ : Poor localization, good detection 
–  Small σ : Good localization, poor detection 

•  Canny showed that Gaussian derivatives yield good 
compromise between localization and detection 


