SMOOTH SURFACES AND THEIR OUTLINES II

- The second fundamental form
- Koenderink’s Theorem
- Aspect graphs
- More differential geometry
- A catalogue of visual events
- Computing the aspect graph
- http://www.di.ens.fr/~ponce/geomvis/lect8.ppt
- http://www.di.ens.fr/~ponce/geomvis/lect8.pdf

Smooth Shapes and their Outlines

Can we say anything about a 3D shape from the shape of its contour?

What can happen to a curve in the vicinity of a point?

(a) Regular point;
(b) inflection;
(c) cusp of the first kind;
(d) cusp of the second kind.

The Gauss Map

- It maps points on a curve onto points on the unit circle.
- The direction of traversal of the Gaussian image reverts at inflections: it folds there.

The curvature

- C is the center of curvature;
- $R=C P$ is the radius of curvature;

$$
d t / d s=\kappa \boldsymbol{n}
$$

- $\kappa=\lim \delta \theta / \delta s=1 / R$ is the curvature.

Closed curves admit a canonical orientation..

Normal sections and normal curvatures

Principal curvatures: minimum value κ_{1} maximum value κ_{2}

Gaussian curvature:

$$
K=\kappa_{1} \kappa_{2}
$$

The differential of the Gauss map

$$
d \boldsymbol{N}(\boldsymbol{t})=\lim _{\delta s \rightarrow 0} \frac{1}{\delta s} \delta \boldsymbol{N}
$$

Second fundamental form: $\operatorname{II}(\boldsymbol{u}, \boldsymbol{v})=\boldsymbol{u}^{T} \boldsymbol{d} \boldsymbol{N}(\boldsymbol{v})$
(II is symmetric.)

- The normal curvature is $\kappa_{t}=\operatorname{II}(\boldsymbol{t}, \boldsymbol{t})$.
- Two directions are said to be conjugated when II ($\boldsymbol{u}, \boldsymbol{v}$) $=0$.

The local shape of a smooth surface

Elliptic point
K > 0

Hyperbolic point
$K<0$

Reprinted from "On Computing Structural Changes in Evolving Surfaces and their Appearance," By S. Pae and J. Ponce, the International Journal of Computer Vision, 43(2):113-131 (2001). © 2001 Kluwer Academic Publishers.

Parabolic point $\quad K=0$

The parabolic lines marked on the Apollo Belvedere by Felix Klein

$N \cdot v=0 \Rightarrow \operatorname{II}(\boldsymbol{t}, \boldsymbol{v})=0$

Asymptotic directions:

The contour cusps when when a viewing ray grazes the surface along an asymptotic direction.

The Gauss map

The Gauss map folds at parabolic points.

$$
K=d A^{\prime} / d A
$$

Reprinted from "On Computing Structural Changes in Evolving Surfaces and their Appearance," By S. Pae and J. Ponce, the International Journal of Computer Vision, 43(2):113-131 (2001). © 2001 Kluwer Academic Publishers.

Smooth Shapes and their Outlines

Can we say anything about a 3D shape from the shape of its contour?

Theorem [Koenderink, 1984]: the inflections of the silhouette are the projections of parabolic points.

Koenderink's Theorem (1984)

$$
K=\kappa_{r} \kappa_{C}
$$

Note: $\kappa_{r}>0$.
Corollary: K and κ_{C} have the same sign!

Proof: Based on the idea that, given two conjugated directions,

$$
K \sin ^{2} \theta=\kappa_{u} \kappa_{v}
$$

What are the contour stable features??

Reprinted from "Computing Exact Aspect Graphs of Curved Objects:
Algebraic Surfaces," by S. Petitjean,
J. Ponce, and D.J. Kriegman, the

International Journal of Computer
Vision, 9(3):231-255 (1992). © 1992
Kluwer Academic Publishers.

How does the appearance of an object change with viewpoint?

Imaging in Flatland: Stable Views

Visual Event: Change in Ordering of Contour Points

TrapmqueiDD bjbject

Visual Event: Change in Number of Contour Points

Trapmquerobjbject

Exceptional and Generic Curves

The Aspect Graph In Flatland

The Geometry of the Gauss Map

Reprinted from "On Computing Structural Changes in Evolving
Surfaces and their Appearance," By S. Pae and J. Ponce, the International Journal of Computer
Vision, 43(2):113-131 (2001).
© 2001 Kluwer Academic
Publishers.

Asymptotic directions at ordinary hyperbolic points

The integral curves of the asymptotic directions form two families of asymptotic curves (red and blue)

Asymptotic curves

Parabolic curve

Asymptotic curves’ images

Fold

- Asymptotic directions are self conjugate: $\boldsymbol{a} \cdot d \boldsymbol{N}(\boldsymbol{a})=0$
- At a parabolic point $d N(\boldsymbol{a})=0$, so for any curve

$$
\boldsymbol{t} \cdot \mathrm{d} \boldsymbol{N}(\boldsymbol{a})=\boldsymbol{a} \cdot d \boldsymbol{N}(\boldsymbol{t})=0
$$

- In particular, if t is the tangent to the parabolic curve itself $d N(a) \approx d N(t)$

The Lip Event

$$
v . d N(\boldsymbol{a})=0 \Rightarrow \boldsymbol{v} \approx \boldsymbol{a}
$$

A

B

C

Reprinted from "On Computing Structural Changes in Evolving Surfaces and their Appearance," By S. Pae and J. Ponce, the
International Journal of Computer Vision, 43(2):113-131 (2001). © 2001 Kluwer Academic Publishers.

The Beak-to-Beak Event

$\boldsymbol{v} \cdot d \boldsymbol{N}(\boldsymbol{a})=0 \Rightarrow \boldsymbol{v} \approx \boldsymbol{a}$

Reprinted from "On Computing Structural Changes in Evolving Surfaces and their Appearance," By S. Pae and J. Ponce, the
International Journal of Computer Vision, 43(2):113-131 (2001). © 2001 Kluwer Academic Publishers.

Ordinary Hyperbolic Point

 International Journal of Computer
Vision, 43(2):113-131 (2001).
© 2001 Kluwer Academic
Publishers.

Red asymptotic curves

Red flecnodal curve

Cusp pairs appear or disappear as one crosses the fold of the asymptotic spherical map.
This happens at asymptotic directions along parabolic curves, and asymptotic directions along flecnodal curves.

The Swallowtail Event

Reprinted from "On Computing Structural Changes in Evolving Surfaces and their Appearance," by S. Pae and J. Ponce, the International Journal of Computer Vision, 43(2):113-131 (2001). © 2001 Kluwer Academic Publishers.

The Bitangent Ray Manifold:

Ordinary
bitangents..

..and exceptional (limiting) ones.

Reprinted from "Toward a Scale-Space Aspect Graph: Solids of Revolution," by S. Pae and J. Ponce, Proc. IEEE Conf. on Computer Vision and Pattern Recognition (1999). © 1999 IEEE.

The Tangent Crossing Event

Reprinted from "On Computing Structural Changes in Evolving Surfaces and their Appearance," by S. Pae and J. Ponce, the International Journal of Computer Vision, 43(2):113-131 (2001). © 2001 Kluwer Academic Publishers.

The Cusp Crossing Event

After "Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces," by S. Petitjean, J. Ponce, and D.J. Kriegman, the International Journal of Computer Vision, 9(3):231-255 (1992). © 1992 Kluwer Academic Publishers.

After "Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces," by S. Petitjean, J. Ponce, and D.J. Kriegman, the International Journal of Computer Vision, 9(3):231-255 (1992). © 1992 Kluwer Academic Publishers.

Tracing Visual Events

Computing the Aspect Graph

$F(x, y, z)=0$

$$
P_{1}\left(x_{1}, \ldots, x_{n}\right)=0
$$

$$
P_{n}\left(x_{1}, \ldots, x_{n}\right)=0
$$

- Curve Tracing

After "Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces," by S. Petitjean, J. Ponce, and D.J. Kriegman, the International Journal of Computer Vision, 9(3):231-255 (1992). © 1992 Kluwer Academic Publishers.

- Cell Decomposition

An Example

Approximate Aspect Graphs（Ikeuchi \＆Kanade，1987）

Aspect 7	$\begin{aligned} & 00000000 \\ & \text { nil } \end{aligned}$
Aspect6	$\begin{aligned} & 00010000 \\ & (4) \end{aligned}$
Aspect5	$\begin{gathered} -00001100 \\ (5)(6) \end{gathered}$
Aspect4	$\begin{aligned} & \left.-\quad \begin{array}{l} 11000001 \\ (1)(2)(8) \end{array}\right) \end{aligned}$
Aspect3	$\begin{aligned} & -11000010 \\ & (1)(2)(7) \end{aligned}$
Aspect2	$\begin{aligned} & -11000000 \\ & (1)(2) \end{aligned}$
Aspect1	$\begin{array}{r} -11100000 \\ (1)(2)(3) \end{array}$

（a） 0^{2}								
［10	［9］			To	¢	\％	ntsu	
00808	93	3e0 ere		0080	B）	＊		
－${ }^{\text {cose }}$	5	\cdots	Pe	（e）	50			
屑 를	退	房白	甸	国	er			
－		（1）		\％	（0）	\％	（20）	
（				Q	6）	\square	5ag［	

Reprinted from＂Automatic Generation of Object Recognition Programs，＂by K．Ikeuchi and T．Kanade，Proc．of the IEEE，76（8）：1016－1035（1988）． © 1988 IEEE．

Approximate Aspect Graphs II: Object Localization (Ikeuchi \& Kanade, 1987)

Reprinted from "Precompiling a Geometrical
Model into an Interpretation Tree for Object Recognition in Bin-Picking Tasks," by K. Ikeuchi, Proc. DARPA Image Understanding Workshop, 1987.

VISUAL HULLS

- Visual hulls
- Differential projective geometry
- Oriented differential projective geometry
- Image-based computation of projective visual hulls

Aspect graphs Koenderink \& Van Doorn (1976)
 structure
Lazebnik \& Ponce (2003)

The visual hull
Baumgart (1974); Laurentini (1995); Petitjean (1998); Matusik et al. (2001);
Lazebnik, Boyer \& Ponce (2001); Franco \& Boyer (2005).

Aspect graphs Koenderink \& Van Doorn (1976)

\square

 Oriented projective structureLazebnik \& Ponce (2003)

The visual hull
Baumgart (1974); Laurentini (1995); Petitjean (1998);

Matusik et al. (2001);
Lazebnik, Boyer \& Ponce (2001)

Durand et al. (1997)

Aspect graphs Koenderink \& Van Doorn (1976)

\square

 Oriented projective structureLazebnik \& Ponce (2003)

The visual hull
Baumgart (1974); Laurentini (1995); Petitjean (1998);

Matusik et al. (2001);
Lazebnik, Boyer \& Ponce (2001)

Durand et al. (1997)

Elliptical

Hyperbolic

Parabolic

$$
K=\ln ^{\prime}-m^{2} \quad\left\{\begin{array}{l}
l=\left|X, X_{u}, X_{v}, X_{u u}\right| \\
m=\left|X, X_{u}, X_{v}, X_{u v}\right| \\
n=\left|\boldsymbol{X}, X_{u}, X_{v}, X_{w}\right|
\end{array}\right.
$$

Koenderink (1984)

Projective visual hulls

Lazebnik, Furukawa \& Ponce (2004)

Affine structure and motion

Furukawa, Sethi, Kriegman \& Ponce (2004)

What about plain projective geometry?

With X. Goaoc, S. Lazard, S. Petitjean, M. Teillaud.

What about polyhedral approximations of smooth surfaces?

With X. Goaoc and S. Lazard.

