
SMOOTH SURFACES AND 
THEIR OUTLINES II

• The second fundamental form
• Koenderink’s Theorem
• Aspect graphs
• More differential geometry
• A catalogue of visual events
• Computing the aspect graph
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Smooth Shapes and their Outlines

Can we say anything about a 3D shape
from the shape of its contour?



What can happen to a curve in the vicinity of a point?

(a) Regular point;

(b) inflection;

(c) cusp of the first kind;

(d) cusp of the second kind.



The Gauss Map

• It maps points on a curve onto points on the unit circle.

• The direction of traversal of the Gaussian image reverts
at inflections: it folds there.



The curvature

C

• C is the center of curvature;

• R = CP is the radius of curvature;

• κ = lim δθ/δs = 1/R is the curvature.

dt/ds = κ n



Closed curves admit a canonical orientation..

κ > 0

κ < 0

κ = dθ / ds ← derivative of the Gauss map!



Normal sections and normal curvatures

Principal curvatures:
minimum value  κ
maximum value  κ

1
2

Gaussian curvature:
K = κ  κ1 2



The differential of the Gauss map

dN (t)= limδ s → 0

Second fundamental form:
II( u ,  v) = uT dN ( v )

(II is symmetric.)

• The normal curvature is κt = II ( t , t ).
• Two directions are said to be conjugated when II ( u , v ) = 0.



The local shape of a smooth surface

Elliptic point Hyperbolic point
K > 0 K < 0

Reprinted from “On Computing
Structural Changes in Evolving 
Surfaces and their Appearance,”
By S. Pae and J. Ponce, the
International Journal of Computer
Vision, 43(2):113-131 (2001).
© 2001 Kluwer Academic
Publishers.

K = 0Parabolic point



The parabolic lines marked on the Apollo Belvedere by Felix Klein



Asymptotic directions:

II(u,u)=0

The contour cusps when
when a viewing ray grazes
the surface along an 
asymptotic direction.N . v = 0 ⇒ II( t , v )=0



The Gauss map

Reprinted from “On Computing
Structural Changes in Evolving 
Surfaces and their Appearance,”
By S. Pae and J. Ponce, the
International Journal of Computer
Vision, 43(2):113-131 (2001).
© 2001 Kluwer Academic
Publishers.

The Gauss map folds at parabolic points.

K = dA’/dA



Smooth Shapes and their Outlines

Can we say anything about a 3D shape
from the shape of its contour?



Theorem [Koenderink, 1984]: the inflections of the silhouette
are the projections of parabolic points.



Koenderink’s Theorem (1984)

K  =  κ κr c

Note: κ > 0.r

Corollary: K and κ have
the same sign!

c

Proof: Based on the idea that,
given two conjugated directions,

K sin2θ = κu κv



What are the contour stable features??
Reprinted from “Computing Exact 
Aspect Graphs of Curved Objects: 
Algebraic Surfaces,” by S. Petitjean,
J. Ponce, and D.J. Kriegman, the 
International Journal of Computer
Vision, 9(3):231-255 (1992). © 1992
Kluwer Academic Publishers.

folds T-junctionscusps

How does the appearance of an object change with viewpoint?



Imaging in Flatland: Stable Views



Visual Event: Change in Ordering of Contour Points

Transparent ObjectOpaque Object



Visual Event: Change in Number of Contour Points

Transparent ObjectOpaque Object



Exceptional and Generic Curves



The Aspect Graph
In Flatland



The Geometry of 
the Gauss Map

Cusp of
Gauss

Gutterpoint

Concave
fold

Convex
fold

Gauss
sphere

Image of
parabolic
curve

Moving
great
circle

Reprinted from “On Computing
Structural Changes in Evolving 
Surfaces and their Appearance,”
By S. Pae and J. Ponce, the
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Publishers.



Asymptotic directions at ordinary 
hyperbolic points

The integral curves of the asymptotic
directions form two families of
asymptotic curves (red and blue)



Asymptotic curves Asymptotic curves’ images

Gauss
map

Parabolic curve Fold

• Asymptotic directions are self conjugate:  a . dN ( a ) = 0

• At a parabolic point dN ( a ) = 0, so for any curve
t . dN ( a ) = a . dN ( t ) = 0

• In particular, if t is the tangent to the parabolic curve itself
dN ( a ) ≈ dN ( t )



The Lip Event v . dN (a) = 0 ⇒ v ≈ a

Reprinted from “On Computing
Structural Changes in Evolving 
Surfaces and their Appearance,”
By S. Pae and J. Ponce, the
International Journal of Computer
Vision, 43(2):113-131 (2001).
© 2001 Kluwer Academic
Publishers.



The Beak-to-Beak Event v . dN (a) = 0 ⇒ v ≈ a

Reprinted from “On Computing
Structural Changes in Evolving 
Surfaces and their Appearance,”
By S. Pae and J. Ponce, the
International Journal of Computer
Vision, 43(2):113-131 (2001).
© 2001 Kluwer Academic
Publishers.



Ordinary Hyperbolic Point

Reprinted from “On Computing
Structural Changes in Evolving 
Surfaces and their Appearance,”
By S. Pae and J. Ponce, the
International Journal of Computer
Vision, 43(2):113-131 (2001).
© 2001 Kluwer Academic
Publishers.

Flecnodal Point



Red asymptotic curves

Red flecnodal curve

Red asymptotic curves

Red flecnodal curve

Asymptotic
spherical
map

Cusp pairs appear or disappear as one crosses the fold of the
asymptotic spherical map.
This happens at  asymptotic directions along parabolic curves,
and asymptotic directions along flecnodal curves.



The Swallowtail Event

Flecnodal Point

Reprinted from “On Computing Structural Changes in Evolving Surfaces and their Appearance,” by S. Pae and J. Ponce, the
International Journal of Computer Vision, 43(2):113-131 (2001). © 2001 Kluwer Academic Publishers.



The Bitangent Ray Manifold:
P

P’

P”

Ordinary
bitangents..

limiting bitangent line

unode

..and exceptional
(limiting) ones.

Reprinted from “Toward a Scale-Space Aspect Graph: Solids of
Revolution,” by S. Pae and J. Ponce, Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (1999). © 1999 IEEE.



The Tangent Crossing Event

Reprinted from “On Computing Structural Changes in Evolving Surfaces and their Appearance,” by S. Pae and J. Ponce, the
International Journal of Computer Vision, 43(2):113-131 (2001). © 2001 Kluwer Academic Publishers.



The Cusp Crossing Event

After  “Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces,” by S. Petitjean, J. Ponce, and D.J. Kriegman, 
the International Journal of Computer Vision, 9(3):231-255 (1992). © 1992 Kluwer Academic Publishers.



The Triple Point Event

After  “Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces,” by S. Petitjean, J. Ponce, and D.J. Kriegman, 
the International Journal of Computer Vision, 9(3):231-255 (1992). © 1992 Kluwer Academic Publishers.



Tracing Visual Events Computing the Aspect Graph

X0

E1

S1

S2

E3

S1

S2

X1

F(x,y,z)=0

P1(x1,…,xn)=0
…
Pn(x1,…,xn)=0

After  “Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces,”
by S. Petitjean, J. Ponce, and D.J. Kriegman,  the International Journal of Computer 
Vision, 9(3):231-255 (1992). © 1992 Kluwer Academic Publishers.• Curve Tracing

• Cell Decomposition



An Example



Approximate Aspect Graphs (Ikeuchi & Kanade, 1987)

Reprinted from “Automatic Generation of Object Recognition Programs,” by K. Ikeuchi and T. Kanade, Proc. of the IEEE, 76(8):1016-1035 (1988).
© 1988 IEEE.



Approximate Aspect Graphs II: Object Localization
(Ikeuchi & Kanade, 1987)

Reprinted from “Precompiling a Geometrical
Model into an Interpretation Tree for Object
Recognition in Bin-Picking Tasks,” by K. Ikeuchi,
Proc. DARPA Image Understanding Workshop,
1987.



VISUAL HULLS

• Visual hulls
• Differential projective geometry
• Oriented differential projective geometry
• Image-based computation of projective visual hulls



Rim

Projective visual hulls
Lazebnik & Ponce (IJCV’06)



Projective visual hulls
Lazebnik, Furukawa & Ponce (2005)



Frontier points







Triple points
Intersection of 
the boundaries 
of two cones

The visual hull
Baumgart (1974); Laurentini
(1995);  Petitjean (1998);
Matusik et al. (2001);
Lazebnik, Boyer & Ponce (2001);
Franco & Boyer (2005).

Oriented projective 
structure
Lazebnik & Ponce (2003)

Stolfi (1991); Laveau
& Faugeras (1994)

Aspect graphs
Koenderink & Van 
Doorn (1976)

Visibility complexes
Pocchiola & Vegter (1993);
Durand et al. (1997)



The visual hull
Baumgart (1974); Laurentini
(1995);  Petitjean (1998);
Matusik et al. (2001);
Lazebnik, Boyer & Ponce (2001)

Oriented projective 
structure
Lazebnik & Ponce (2003)

Stolfi (1991); Laveau
& Faugeras (1994)

Aspect graphs
Koenderink & Van 
Doorn (1976)

Visibility complexes
Pocchiola & Vegter (1993);
Durand et al. (1997)



The visual hull
Baumgart (1974); Laurentini
(1995);  Petitjean (1998);
Matusik et al. (2001);
Lazebnik, Boyer & Ponce (2001)

Oriented projective 
structure
Lazebnik & Ponce (2003)

Stolfi (1991); Laveau
& Faugeras (1994)

Aspect graphs
Koenderink & Van 
Doorn (1976)

Visibility complexes
Pocchiola & Vegter (1993);
Durand et al. (1997)





Elliptical Hyperbolic Parabolic

K=ln-m2
l  = |X, Xu , Xv , Xuu |
m = |X, Xu , Xv , Xuv |
n = |X , Xu , Xv , Xvv |



concaveinflexionconvex

concave

convex

κ = | x, x’, x” |



Koenderink (1984)



Projective visual hulls

Furukawa, Sethi, Kriegman
& Ponce (2004)

Affine structure and motion

Lazebnik, Furukawa & Ponce (2004)





What about plain projective geometry? 

concave

convex

inside

outside

With X. Goaoc, S. Lazard,
S. Petitjean, M. Teillaud.



What about polyhedral approximations of
smooth surfaces? With X. Goaoc and S. Lazard.








