SMOOTH SURFACES AND THEIR OUTLINES

- Elements of Differential Geometry
- The second fundamental form
- Koenderink's Theorem
- Aspect graphs
- More differential geometry
- A catalogue of visual events
- Computing the aspect graph
- http://www.di.ens.fr/~ponce/geomvis/lect6.pptx
- http://www.di.ens.fr/~ponce/geomvis/lect6.pdf

Smooth Shapes and their Outlines

Can we say anything about a 3D shape from the shape of its contour?

What are the contour stable features??

Differential geometry: geometry in the small

The normal to a curve is perpendicular to the tangent line.

A tangent is the limit of a sequence of secants.

What can happen to a curve in the vicinity of a point?

(a) Regular point;
(b) inflection;
(c) cusp of the first kind;
(d) cusp of the second kind.

The Gauss Map

- It maps points on a curve onto points on the unit circle.
- The direction of traversal of the Gaussian image revert at inflections: it folds there.

The curvature

- C is the center of curvature;
- $R=C P$ is the radius of curvature;
- $\kappa=\lim \delta \theta / \delta \mathrm{s}=1 / R$ is the curvature.

Closed curves admit a canonical orientation..

$$
\begin{aligned}
& \kappa=\mathrm{d} \theta / \mathrm{ds} \\
& \mathrm{dt} / \mathrm{ds}=\kappa \mathbf{n}
\end{aligned} \quad \leftarrow \text { derivative of the Gauss map }
$$

Twisted curves are more complicated animals..

A smooth surface, its tangent plane and its normal.

Normal sections and normal curvatures

Principal curvatures: minimum value κ_{1} maximum value k_{2}

Gaussian curvature:

$$
K=\kappa_{1} \kappa_{2}
$$

The differential of the Gauss map

$$
d \boldsymbol{N}(\boldsymbol{t})=\lim _{\delta s \rightarrow 0} \frac{1}{\delta s} \delta \boldsymbol{N}
$$

Second fundamental form: $\operatorname{II}(\boldsymbol{u}, \boldsymbol{v})=u^{T} d \boldsymbol{N}(\boldsymbol{v})$
(II is symmetric.)

- The normal curvature is $\kappa_{t}=\mathrm{II}(t, t)$.
- Two directions are said to be conjugated when II $(\boldsymbol{u}, \boldsymbol{v})=0$.

Meusnier's theorem: $\kappa_{t}=-\kappa \cos \varphi$.

The local shape of a smooth surface

Hyperbolic point

$$
K<0
$$

Parabolic point $\quad K=0$

Parabolic lines marked on the Apollo Belvedere by Felix Klein

$\boldsymbol{N} \cdot \boldsymbol{v}=0 \Rightarrow \mathrm{II}(\boldsymbol{t}, \boldsymbol{v})=0$

Asymptotic directions:

The contour cusps when when a viewing ray grazes the surface along an asymptotic direction $\nu=a$.

The Gauss map

The Gauss map folds at parabolic points.

$$
K=d A^{\prime} / d A
$$

Reprinted from "On Computing Structural Changes in Evolving Surfaces and their Appearance," By S. Pae and J. Ponce, the International Journal of Computer Vision, 43(2):113-131 (2001). © 2001 Kluwer Academic Publishers.

Smooth Shapes and their Outlines

Can we say anything about a 3D shape from the shape of its contour?

After Marr (1977) and Koenderink (1984).

Theorem [Koenderink, 1984]: the inflections of the silhouette are the projections of parabolic points.

Koenderink's Theorem (1984)

$$
K=\kappa_{r} \kappa_{c}
$$

Note: $\kappa_{r}>0$.
Corollary: K and κ_{c} have the same sign!

Proof: Based on the idea that, given two conjugated directions,

$$
K \sin ^{2} \theta=\kappa_{u} \kappa_{v}
$$

What are the contour stable features??

Reprinted from "Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces," by S. Petitjean, J. Ponce, and D.J. Kriegman, the International Journal of Computer Vision, 9(3):231-255 (1992). © 1992 Kluwer Academic Publishers.

How does the appearance of an object change with viewpoint?

Contacts between lines and smooth curves

Exceptional and Generic Curves

The Aspect Graph In Flatland

The Geometry of the Gauss Map

Asymptotic directions at ordinary hyperbolic points

The integral curves of the asymptotic directions form two families of asymptotic curves (red and blue)

Parabolic curve

Asymptotic curves' images

- Asymptotic directions are self conjugate: $\boldsymbol{a} \cdot d \boldsymbol{N}(\boldsymbol{a})=0$
- At a parabolic point $d \boldsymbol{N}(\boldsymbol{a})=0$, so for any curve

$$
\boldsymbol{t} \cdot \mathrm{d} \boldsymbol{N}(\boldsymbol{a})=\boldsymbol{a} \cdot d \boldsymbol{N}(\boldsymbol{t})=0
$$

- In particular, the Gaussian images of the asymptotic and parabolic curves are both orthogonal to a.

The Geometry of the Gauss Map

The Lip Event
$v . d N(a)=0 \Rightarrow v \approx a$

B

C

Reprinted from "On Computing Structural Changes in Evolving Surfaces and their Appearance," By S. Pae and J. Ponce, the International Journal of Computer Vision, 43(2):113-131 (2001). © 2001 Kluwer Academic Publishers.

The Beak-to-Beak Event
$v . d N(a)=0 \Rightarrow v \approx a$

Reprinted from "On Computing
Structural Changes in Evolving
Surfaces and their Appearance," By S. Pae and J. Ponce, the International Journal of Computer Vision, 43(2):113-131 (2001). © 2001 Kluwer Academic Publishers.

Ordinary Hyperbolic Point

International Journal of Computer
Vision, 43(2):113-131 (2001).
© 2001 Kluwer Academic

Cusp pairs appear or disappear as one crosses the fold of the asymptotic spherical map.
This happens at asymptotic directions along parabolic curves, and asymptotic directions along flecnodal curves.

The Swallowtail Event

B
C

Reprinted from "On Computing Structural Changes in Evolving Surfaces and their Appearance," by S. Pae and J. Ponce, the International Journal of Computer Vision, 43(2):113-131 (2001). © 2001 Kluwer Academic Publishers.

The Bitangent Ray Manifold:

Ordinary bitangents..

..and exceptional (limiting) ones.

The Tangent Crossing Event

The Cusp Crossing Event

After "Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces," by S. Petitjean, J. Ponce, and D.J. Kriegman, the International Journal of Computer Vision, 9(3):231-255 (1992). © 1992 Kluwer Academic Publishers.

The Triple Point Event

After "Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces," by S. Petitjean, J. Ponce, and D.J. Kriegman,
the International Journal of Computer Vision, 9(3):231-255 (1992). © 1992 Kluwer Academic Publishers.

Tracing Visual Events

Computing the Aspect Graph

- Curve Tracing

After "Computing Exact Aspect Graphs of Curved Objects: Algebraic Surfaces," by S. Petitjean, J. Ponce, and D.J. Kriegman, the International Journal of Computer Vision, 9(3):231-255 (1992). © 1992 Kluwer Academic Publishers.

- Cell Decomposition

An Example

Approximate Aspect Graphs（Ikeuchi \＆Kanade，1987）

Aspect7 - 00000000
Aspect7 - 00000000
nil
nil
Aspect6 - 00010000
Aspect6 - 00010000
(4)
(4)
Aspect5 - 00001100
Aspect5 - 00001100
(5) (6)
(5) (6)
Aspect4 - 11000001
Aspect4 - 11000001
(1) (2) (8)
(1) (2) (8)
Aspect3 - 11000010
Aspect3 - 11000010
(1) (2) (7)
(1) (2) (7)
Aspect2 - 11000000
Aspect2 - 11000000
(1) (2)
(1) (2)
Aspect1 - 11100000
Aspect1 - 11100000
(1) (2) (3)
(1) (2) (3)

68									
20	5	可可	［日	（－9	\cdots	\square			
095108	\bigcirc	＋00	0	∞	68	88			
易	\％	\square	昆	咙	（s）	0			
氟 ${ }^{\text {and }}$	［1］	通	家	（1）	T	遈			
U 4	\％	\％	皟	（5）	（	左		（1）18	全包
友枵	「	${ }^{3}$	\％	，	\％	\square		§	

Reprinted from＂Automatic Generation of Object Recognition Programs，＂by K．Ikeuchi and T．Kanade，Proc．of the IEEE，76（8）：1016－1035（1988）． © 1988 IEEE．

Approximate Aspect Graphs II: Object Localization (Ikeuchi \& Kanade, 1987)

Reprinted from "Precompiling a Geometrical
Model into an Interpretation Tree for Object
Recognition in Bin-Picking Tasks," by K. Ikeuchi, Proc. DARPA Image Understanding Workshop, 1987.

