Euclidean cameras and strong (Euclidean) calibration

- Linear least-squares methods
- Linear calibration
- Degenerate point configurations
- Analytical photogrammetry
- A quick detour through stereopsis

Planches:

- http://www.di.ens.fr/~ponce/geomvis/lect2.pptx
- http://www.di.ens.fr/~ponce/geomvis/lect2.pdf

The Intrinsic Parameters of a Camera

Calibration Matrix

$$
\boldsymbol{p}=\mathcal{K} \hat{\boldsymbol{p}}, \quad \text { where } \quad \boldsymbol{p}=\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right) \quad \text { and } \quad \mathcal{K} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\alpha & -\alpha \cot \theta & u_{0} \\
0 & \frac{\beta}{\sin \theta} & v_{0} \\
0 & 0 & 1
\end{array}\right)
$$

The Perspective Projection Equation

$$
\boldsymbol{p}=\frac{1}{z} \mathcal{M} \boldsymbol{P}, \quad \text { where } \quad \mathcal{M} \stackrel{\text { def }}{=}\left(\begin{array}{ll}
\mathcal{K} & \mathbf{0}
\end{array}\right)
$$

The Extrinsic Parameters of a Camera

- When the camera frame (C) is different from the world frame (W),

$$
\binom{{ }^{C} P}{1}=\left(\begin{array}{cc}
{ }_{W}^{W} \mathcal{R} & { }^{C} O_{W} \\
\mathbf{0}^{T} & 1
\end{array}\right)\binom{{ }^{W} P}{1}
$$

- Thus,

$$
p \approx M P
$$

$$
\begin{aligned}
& \boldsymbol{p}=\frac{1}{z} \mathcal{M} \boldsymbol{P}, \\
& \boldsymbol{M} \boldsymbol{D}
\end{aligned} \text { where }\left\{\begin{array}{l}
\mathcal{M}=\mathcal{K}(\mathcal{R} \quad \boldsymbol{t}), \\
\mathcal{R}={ }_{W}^{C} \mathcal{R}, \\
\boldsymbol{t}={ }^{C} O_{W}, \\
\boldsymbol{P}=\binom{W_{P}}{1} .
\end{array}\right.
$$

- Note: z is not independent of \mathcal{M} and \boldsymbol{P} :

$$
\mathcal{M}=\left(\begin{array}{l}
\boldsymbol{m}_{1}^{T} \\
\boldsymbol{m}_{2}^{T} \\
\boldsymbol{m}_{3}^{T}
\end{array}\right) \Longrightarrow z=\boldsymbol{m}_{3} \cdot \boldsymbol{P}, \quad \text { or } \quad\left\{\begin{array}{l}
u=\frac{\boldsymbol{m}_{1} \cdot \boldsymbol{P}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}}, \\
v=\frac{\boldsymbol{m}_{2} \cdot \boldsymbol{P}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}}
\end{array}\right.
$$

Explicit Form of the Projection Matrix

$$
\mathcal{M}=\left(\begin{array}{cc}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{0} \boldsymbol{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
\boldsymbol{r}_{3}^{T} & t_{z}
\end{array}\right)
$$

Note:
If $\mathcal{M}=\left(\begin{array}{ll}\mathcal{A} & \boldsymbol{b}\end{array}\right)$ then $\left|\boldsymbol{a}_{3}\right|=1$.
Replacing \mathcal{M} by $\lambda \mathcal{M}$ in

$$
\left\{\begin{aligned}
u & =\frac{\boldsymbol{m}_{1} \cdot \boldsymbol{P}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}} \\
v & =\frac{\boldsymbol{m}_{2} \cdot \boldsymbol{P}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}}
\end{aligned}\right.
$$

does not change u and v.
M is only defined up to scale in this setting!!

Linear Camera Calibration

Given n points P_{1}, \ldots, P_{n} with known positions and their images p_{1}, \ldots, p_{n}

$$
\binom{u_{i}}{v_{i}}=\binom{\frac{\boldsymbol{m}_{1} \cdot \boldsymbol{P}_{i}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}_{i}}}{\frac{\boldsymbol{m}_{2} \cdot \boldsymbol{P}_{i}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}_{i}}} \Longleftrightarrow\binom{\boldsymbol{m}_{1}-u_{i} \boldsymbol{m}_{3}}{\boldsymbol{m}_{2}-v_{i} \boldsymbol{m}_{3}} \boldsymbol{P}_{i}=0
$$

$$
\mathcal{P} \boldsymbol{m}=0 \text { with } \mathcal{P} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\boldsymbol{P}_{1}^{T} & \mathbf{0}^{T} & -u_{1} \boldsymbol{P}_{1}^{T} \\
\mathbf{0}^{T} & \boldsymbol{P}_{1}^{T} & -v_{1} \boldsymbol{P}_{1}^{T} \\
\ldots & \ldots & \ldots \\
\boldsymbol{P}_{n}^{T} & \mathbf{0}^{T} & -u_{n} \boldsymbol{P}_{n}^{T} \\
\mathbf{0}^{T} & \boldsymbol{P}_{n}^{T} & -v_{n} \boldsymbol{P}_{n}^{T}
\end{array}\right) \text { and } \boldsymbol{m} \stackrel{\text { def }}{=}\left(\begin{array}{l}
\boldsymbol{m}_{1} \\
\boldsymbol{m}_{2} \\
\boldsymbol{m}_{3}
\end{array}\right)=0
$$

How do you solve overconstrained homogeneous linear equations ??

$$
E=|\mathcal{U} \boldsymbol{x}|^{2}=\boldsymbol{x}^{T}\left(\mathcal{U}^{T} \mathcal{U}\right) \boldsymbol{x}
$$

- Orthonormal basis of eigenvectors: $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{q}$.
- Associated eigenvalues: $0 \leq \lambda_{1} \leq \ldots \leq \lambda_{q}$.
- Any vector can be written as

$$
\boldsymbol{x}=\mu_{1} \boldsymbol{e}_{1}+\ldots+\mu_{q} \boldsymbol{e}_{q}
$$

for some $\mu_{i}(i=1, \ldots, q)$ such that $\mu_{1}^{2}+\ldots+\mu_{q}^{2}=1$.

$$
\begin{aligned}
E(\boldsymbol{x})-E\left(\boldsymbol{e}_{l}\right) & =\boldsymbol{x}^{T}\left(U^{T} U\right) \boldsymbol{x}-\boldsymbol{e}_{I}^{T}\left(U^{T} U\right) \boldsymbol{e}_{I} \\
& =\lambda_{I} \mu_{I}^{2}+\ldots+\lambda_{q} \mu_{q}^{2}-\lambda_{I} \\
& \geqslant \lambda_{I}\left(\mu_{I}^{2}+\ldots+\mu_{q}^{2}-1\right)=0
\end{aligned}
$$

$$
\text { The solution is } \boldsymbol{e}_{1} \text {. }
$$

Example: Line Fitting

Problem: minimize

$$
E(a, b, d)=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}
$$

with respect to (a, b, d).

- Minimize E with respect to d:

$$
\frac{\partial E}{\partial d}=0 \Longrightarrow d=\sum_{i=1}^{n} \frac{a x_{i}+b y_{i}}{n}=a \bar{x}+b \bar{y}
$$

- Minimize E with respect to a, b :

$$
E=\sum_{i=1}^{n}\left[a\left(x_{i}-\bar{x}\right)+b\left(y_{i}-\bar{y}\right)\right]^{2}=|\mathcal{U} \boldsymbol{n}|^{2} \quad \text { where } \boldsymbol{U}=\left(\begin{array}{cc}
x_{1}-\bar{x} & y_{1}-\bar{y} \\
\cdots & \ldots \\
x_{n}-\bar{x} & y_{n}-\bar{y}
\end{array}\right)
$$

- Done !!

Note:

$$
\mathcal{U}^{T} \mathcal{U}=\left(\begin{array}{cc}
\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2} & \sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y} \\
\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y} & \sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}
\end{array}\right)
$$

- Matrix of second moments of inertia
- Axis of least inertia

Linear Camera Calibration

Given n points P_{1}, \ldots, P_{n} with known positions and their images p_{1}, \ldots, p_{n}

$$
\left.\sum_{u_{i}}^{v_{i}}\right)=\binom{\frac{\boldsymbol{m}_{1} \cdot \boldsymbol{P}_{i}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}_{i}}}{\frac{\boldsymbol{m}_{2} \cdot \boldsymbol{P}_{i}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}_{i}}} \Longleftrightarrow\binom{\boldsymbol{m}_{1}-u_{i} \boldsymbol{m}_{3}}{\boldsymbol{m}_{2}-v_{i} \boldsymbol{m}_{3}} \boldsymbol{P}_{i}=0
$$

Linear least squares for $n>5$!

$$
\left(\begin{array}{ccc}
\boldsymbol{P}_{1}^{T} & \mathbf{0}^{T} & -u_{1} \boldsymbol{P}_{1}^{T} \\
\mathbf{0}^{T} & \boldsymbol{P}_{1}^{T} & -v_{1} \boldsymbol{P}_{1}^{T} \\
\ldots & \ldots & \ldots \\
\boldsymbol{P}_{n}^{T} & \mathbf{0}^{T} & -u_{n} \boldsymbol{P}_{n}^{T} \\
\mathbf{0}^{T} & \boldsymbol{P}_{n}^{T} & -v_{n} \boldsymbol{P}_{n}^{T}
\end{array}\right) \text { and } \boldsymbol{m} \stackrel{\text { def }}{=}\left(\begin{array}{l}
\boldsymbol{m}_{1} \\
\boldsymbol{m}_{2} \\
\boldsymbol{m}_{3}
\end{array}\right)=0
$$

Once M is known, you still got to recover the intrinsic and extrinsic parameters !!!

This is a decomposition problem, not an estimation problem.

$$
\rho \mathcal{M}=\left(\begin{array}{cc}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{0} \boldsymbol{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
\boldsymbol{r}_{3}^{T} & t_{z}
\end{array}\right)
$$

- Intrinsic parameters
- Extrinsic parameters

Degenerate Point Configurations

Are there other solutions besides M ??

$$
\begin{aligned}
& \mathbf{0}=\mathcal{P} \boldsymbol{l}=\left(\begin{array}{ccc}
\boldsymbol{P}_{1}^{T} & \mathbf{0}^{T} & -u_{1} \boldsymbol{P}_{1}^{T} \\
\mathbf{0}^{T} & \boldsymbol{P}_{1}^{T} & -v_{1} \boldsymbol{P}_{1}^{T} \\
\ldots & \ldots & \ldots \\
\boldsymbol{P}_{n}^{T} & \mathbf{0}^{T} & -u_{n} \boldsymbol{P}_{n}^{T} \\
\mathbf{0}^{T} & \boldsymbol{P}_{n}^{T} & -v_{n} \boldsymbol{P}_{n}^{T}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{\lambda} \\
\boldsymbol{\mu} \\
\boldsymbol{\nu}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{P}_{1}^{T} \boldsymbol{\lambda}-u_{1} \boldsymbol{P}_{1}^{T} \boldsymbol{\nu} \\
\boldsymbol{P}_{1}^{T} \boldsymbol{\mu}-v_{1} \boldsymbol{P}_{1}^{T} \boldsymbol{\nu} \\
\ldots \\
\boldsymbol{P}_{n}^{T} \boldsymbol{\lambda}-u_{n} \boldsymbol{P}_{n}^{T} \boldsymbol{\nu} \\
\boldsymbol{P}_{n}^{T} \boldsymbol{\mu}-v_{n} \boldsymbol{P}_{n}^{T} \boldsymbol{\nu}
\end{array}\right) \\
& \left\{\begin{array} { c }
{ \boldsymbol { P } _ { i } ^ { T } \boldsymbol { \lambda } - \frac { \boldsymbol { m } _ { 1 } ^ { T } \boldsymbol { P } _ { i } } { \boldsymbol { m } _ { 3 } ^ { T } \boldsymbol { P } _ { i } ^ { T } } \boldsymbol { \nu } = 0 } \\
{ \boldsymbol { P } _ { i } ^ { T } \boldsymbol { \mu } - \frac { \boldsymbol { m } _ { 2 } ^ { T } \boldsymbol { P } _ { i } } { \boldsymbol { m } _ { 3 } ^ { T } \boldsymbol { P } _ { i } } \boldsymbol { P } _ { i } ^ { T } \boldsymbol { \nu } = 0 }
\end{array} \longrightarrow \left\{\begin{array}{c}
\boldsymbol{P}_{i}^{T}\left(\boldsymbol{\lambda} \boldsymbol{\lambda}_{3}^{T}-\boldsymbol{m}_{1} \boldsymbol{\nu}^{T}\right) \boldsymbol{P}_{i}=0 \\
\boldsymbol{P}_{i}^{T}\left(\boldsymbol{\mu} \boldsymbol{m}_{3}^{T}-\boldsymbol{m}_{2} \boldsymbol{\nu}^{T}\right) \boldsymbol{P}_{i}=0
\end{array}\right.\right.
\end{aligned}
$$

- Coplanar points: $(\lambda, \mu, v)=(\Pi, 0,0)$ or $(0, \Pi, 0)$ or $(0,0, \Pi)$
- Points lying on the intersection curve of two quadric surfaces = straight line + twisted cubic

Does not happen for 6 or more random points!

Analytical Photogrammetry

Given n points P_{1}, \ldots, P_{n} with known positions and their images p_{1}, \ldots, p_{n}

Find \boldsymbol{i} and \boldsymbol{e} such that

$$
\sum_{i=1}^{n}\left[\left(u_{i}-\frac{\boldsymbol{m}_{1}(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_{i}}{\boldsymbol{m}_{3}(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_{i}}\right)^{2}+\left(v_{i}-\frac{\boldsymbol{m}_{2}(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_{i}}{\boldsymbol{m}_{3}(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_{i}}\right)^{2}\right] \text { is minimized }
$$

Non-Linear Least-Squares Methods

- Newton
- Gauss-Newton
- Levenberg-Marquardt

Iterative, quadratically convergent in favorable situations

Triangulation

Figure extraite de "US Navy Manual of Basic Optics and Optical Instruments", Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.

Triangulation

Figure extraite de "US Navy Manual of Basic Optics and Optical Instruments", Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.

Why movies look "flat" on TV

Figure extraite de "US Navy Manual of Basic Optics and Optical Instruments", Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.

Why movies look "flat" on TV

Figure extraite de "US Navy Manual of Basic Optics and Optical Instruments", Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.

Reconstruction from Rectified Images

Disparity: $\mathrm{d}=\mathrm{u}^{\prime}-\mathrm{u}$.
Depth: $z=-B / d$.

Triangulation for human eyes

In 3D, the horopter.

Triangulation for "uncalibrated" human eyes

What if F is not known?

Helmholtz (1909):

- There is evidence showing that the vergence angles cannot be measured precisely.
- People get fooled by bas-relief sculptures.
- There is an analytical explanation for this.
- Relative depth can be judged accurately.

Movies look "flat" on TV

Figure extraite de "US Navy Manual of Basic Optics and Optical Instruments", Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.

This is why people make 3D movies

But do we really need two eyes to

 "see in 3D" ?

Jan J. Koenderink Univ. de Delft, NL

But do we really need two eyes to

 "see in 3D" ?

Figure from "Pictorial Relief", J.J. Koenderink, Phil. Trans. R. Soc. Lond. A (1998) 356, 1071-1086.
@ 1998 The Royal Society.

Comment "sonder" notre perception de l'orientation d'une surface.

Figure from "Pictorial Relief", J.J. Koenderink, Phil. Trans. R. Soc. Lond. A (1998) 356, 1071-1086.
@ 1998 The Royal Society.

How to "probe" our perception of surface orientation

Figure from "Pictorial Relief", J.J. Koenderink, Phil. Trans. R. Soc. Lond. A (1998) 356, 1071-1086.
@ 1998 The Royal Society.

How to "probe" our perception of surface orientation

Figure from "Pictorial Relief", J.J. Koenderink, Phil. Trans. R. Soc. Lond. A (1998) 356, 1071-1086.
@ 1998 The Royal Society.

How to "probe" our perception of surface orientation

Figure from "Pictorial Relief", J.J. Koenderink, Phil. Trans. R. Soc. Lond. A (1998) 356, 1071-1086.
@ 1998 The Royal Society.

Zeiss's synopter (1907)

Figure from "Pictorial Relief", J.J. Koenderink, Phil. Trans. R. Soc. Lond. A (1998) 356, 1071-1086.
@ 1998 The Royal Society.

Affine cameras

- Affine cameras
- Elements of affine geometry
- Affine structure from motion
- Two-view affine geometry
- Affine SFM revisited

Affine Cameras

Weak-Perspective Projection

Paraperspective Projection

More Affine Cameras

Orthographic Projection

Parallel Projection

Weak-Perspective Projection Model

$\boldsymbol{p}=\frac{1}{z_{\mathrm{r}}} \mathcal{M} \boldsymbol{P}$
 (p and P are in homogeneous coordinates)

$p=M P$
(P is in homogeneous coordinates)
$p=A \boldsymbol{P}+\boldsymbol{b} \quad$ (neither p nor \boldsymbol{P} is in hom. coordinates)

Definition: $A 2 \times 4$ matrix $M=[A b]$, where A is a rank- 22×3 matrix, is called an affine projection matrix.

Theorem: All affine projection models can be represented by affine projection matrices.

General form of the weak-perspective projection equation:

$$
\mathbf{M}=\frac{1}{z_{r}}\left[\begin{array}{ll}
k & s \tag{1}\\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathbf{R}_{2} & \mathbf{t}_{2}
\end{array}\right]
$$

Theorem: An affine projection matrix can be written uniquely (up to a sign amibguity) as a weak perspective projection matrix as defined by (1).

Affine cameras and affine geometry

Affine projections induce affine transformations from planes onto their images.

Affine Structure from Motion

Reprinted with permission from "Affine Structure from Motion," by J.J. (Koenderink and A.J.Van Doorn, Journal of the Optical Society of America A, 8:377-385 (1990). © 1990 Optical Society of America.

Given m pictures of n points, can we recover

- the three-dimensional configuration of these points? (structure)
- the camera configurations?

The Affine Structure-from-Motion Problem
Given m images of n fixed points P_{j} we can write

$$
\boldsymbol{p}_{i j}=\mathcal{M}_{i}\binom{\boldsymbol{P}_{j}}{1}=\mathcal{A}_{i} \boldsymbol{P}_{j}+\boldsymbol{b}_{i} \text { for } i=1, \ldots, m \text { and } j=1, \ldots, n \text {. }
$$

Problem: estimate the $m 2 \times 4$ matrices M_{i} and the n positions P_{j} from the $m n$ correspondences $p_{i j}$.
$2 m n$ equations in $8 m+3 n$ unknowns

Overconstrained problem, that can be solved using (non-linear) least squares!

The Affine Ambiguity of Affine SFM
When the intrinsic and extrinsic parameters are unknown If M_{i} and P_{j} are solutions,

$$
\boldsymbol{p}_{i j}=\mathcal{M}_{i}\binom{\boldsymbol{P}_{j}}{1}=\left(\mathcal{M}_{i} \mathcal{Q}\right)\left(\mathcal{Q}^{-1}\binom{\boldsymbol{P}_{j}}{1}\right)=\mathcal{M}_{i}^{\prime}\binom{\boldsymbol{P}_{j}^{\prime}}{1}
$$

So are M_{i}^{\prime} and P_{j}^{\prime} where

$$
\mathcal{M}_{i}^{\prime}=\mathcal{M}_{i} \mathcal{Q} \quad \text { and } \quad\binom{\boldsymbol{P}_{j}^{\prime}}{1}=\mathcal{Q}^{-1}\binom{\boldsymbol{P}_{j}}{1}
$$

and

$$
\mathcal{Q}=\left(\begin{array}{cc}
\mathcal{C} & \boldsymbol{d} \\
\mathbf{0}^{T} & 1
\end{array}\right) \text { with } \quad \mathcal{Q}^{-1}=\left(\begin{array}{cc}
\mathcal{C}^{-1} & -\mathcal{C}^{-1} \boldsymbol{d} \\
\mathbf{0}^{T} & 1
\end{array}\right) \quad \begin{aligned}
& Q \text { is an affine } \\
& \text { transformation. }
\end{aligned}
$$

Affine cameras and affine geometry

Affine Spaces: (Semi-Formal) Definition

X set of points
\vec{X} underlying vector space
$\phi \quad$ action of the additive group of \vec{X} on X
ϕ maps elements \boldsymbol{u} of \vec{X} onto bijections $\phi \boldsymbol{u}: X \rightarrow X$ such that

$$
\begin{aligned}
& \forall P \in X \quad \phi_{\mathbf{0}}(P)=P \\
& \forall P \in X \quad \forall \boldsymbol{u}, \boldsymbol{v} \in X \quad \phi \boldsymbol{u}+\boldsymbol{v}(P)=\phi \boldsymbol{u}(\phi \boldsymbol{v}(P)) \\
& \forall P, Q \in X \quad \exists \exists \boldsymbol{u} \in \vec{X} \quad \phi \boldsymbol{u}(P)=Q
\end{aligned}
$$

$$
\begin{aligned}
& P+\boldsymbol{u} \stackrel{\text { def }}{=} \phi \boldsymbol{u}(P) \\
& \overrightarrow{P Q} \equiv Q-P \stackrel{\text { def }}{=} \boldsymbol{u} \quad \text { such that } \quad \phi \boldsymbol{u}(P)=Q
\end{aligned}
$$

Example: R^{2} as an Affine Space

$$
\begin{aligned}
& P+\boldsymbol{u} \stackrel{\text { def }}{=} \phi \boldsymbol{u}(P) \\
& \overrightarrow{P Q} \equiv Q-P \stackrel{\text { def }}{=} \boldsymbol{u} \text { such that } \phi \boldsymbol{u}(P)=Q
\end{aligned}
$$

In General

The notation

$$
\begin{aligned}
& P+\boldsymbol{u} \stackrel{\text { def }}{=} \phi \boldsymbol{u}(P) \\
& \overrightarrow{P Q} \equiv Q-P \stackrel{\text { def }}{=} \boldsymbol{u} \quad \text { such that } \quad \phi \boldsymbol{u}(P)=Q
\end{aligned}
$$

is justified by the fact that choosing some origin Q in X allows us to identify the point P with the vector $\overrightarrow{O P}$.

$$
\left\{\begin{array} { l }
{ Q = P + \vec { P Q } , } \\
{ Q - P = \vec { P Q } , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\overrightarrow{O Q}=\overrightarrow{O P}+\overrightarrow{P Q}, \\
\overrightarrow{O Q}-\overrightarrow{O P}=\overrightarrow{P Q} .
\end{array}\right.\right.
$$

NOTE: $P+\boldsymbol{u}$ and $Q-P$ are defined independently of $O!!$

Barycentric Combinations

- Can we add points? $R=R+Q \quad$ NO!
- But, when $\alpha_{0}+\alpha_{1}+\ldots+\alpha_{m}=1$ we can define

$$
\sum_{i=0}^{m} \alpha_{i} A_{i} \stackrel{\text { def }}{=} A_{j}+\sum_{i=0, i \neq j}^{m} \alpha_{i}\left(A_{i}-A_{j}\right)
$$

- Note:

$$
\sum_{i=0}^{m} \alpha_{i} \overrightarrow{O A}_{i}=\overrightarrow{O A}_{j}+\sum_{i=0, i \neq j}^{m} \alpha_{i}\left(\overrightarrow{O A}_{i}-\overrightarrow{O A}_{j}\right)
$$

Affine Subspaces

$$
O+U \stackrel{\text { def }}{=}\{O+\boldsymbol{u}, \boldsymbol{u} \in U\}
$$

$$
S\left(A_{0}, A_{1} \ldots, A_{m}\right)=\left\{\sum_{i=0}^{m} \alpha_{i} A_{i}, \alpha_{0}+\ldots+\alpha_{m}=1\right\}
$$

Affine Coordinates

- Coordinate system for U :

$$
\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right)
$$

- Coordinate system for $Y=\mathrm{A}_{0}+U:\left(A_{0}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right)$
- Affine coordinates:

$$
P=A_{0}+\alpha_{1} \boldsymbol{u}_{1}+\ldots+\alpha_{m} \boldsymbol{u}_{m}
$$

- Coordinate system for Y :
- Barycentric coordinates:

$$
P=\alpha_{0} A_{0}+\alpha_{1} A_{1}+\ldots+\alpha_{m} A_{m}
$$

$$
\begin{aligned}
P & =\alpha_{0} A_{0}+\alpha_{1} A_{1}+\ldots+\alpha_{m} A_{m} \\
& =A_{0}+\alpha_{1}\left(A_{1}-A_{0}\right)+\ldots+\alpha_{m}\left(A_{m}-A_{0}\right)
\end{aligned}
$$

Affine Transformations

Bijections from X to Y that:

- map m-dimensional subspaces of X onto m-dimensional subspaces of Y;
- map parallel subspaces onto parallel subspaces; and
- preserve affine (or barycentric) coordinates.

In E^{3} they are combinations of rigid transformations, non-uniform scalings and shears.

Affine Transformations

Bijections from X to Y that:

- map lines of X onto lines of Y; and
- preserve the ratios of signed lengths of line segments.

In E^{3} they are combinations of rigid transformations, non-uniform scalings and shears.

Affine Transformations II

- Given two affine spaces X and Y of dimension m, and two coordinate frames (A) and (B) for these spaces, there exists a unique affine transformation mapping (A) onto (B).
- Given an affine transformation from X to Y, one can always write:

$$
\psi(P)=\psi(O)+\vec{\psi}(P-O)
$$

- When coordinate frames have been chosen for X and Y, this translates into:

$$
\psi(\boldsymbol{P})=\boldsymbol{d}+\mathcal{C} \boldsymbol{P}=\mathcal{C} \boldsymbol{P}+\boldsymbol{d}
$$

Affine projections induce affine transformations from planes onto their images.

Affine Shape

Two point sets S and S^{\prime} in some affine space X are affinely equivalent when there exists an affine transformation $\psi: X \rightarrow X$ such that $X^{\prime}=\psi(X)$.

Affine structure from motion = affine shape recovery.
= recovery of the corresponding motion equivalence classes.

Affine Structure from Motion

Reprinted with permission from "Affine Structure from Motion," by J.J. (Koenderink and A.J.Van Doorn, Journal of the Optical Society of America A, 8:377-385 (1990). © 1990 Optical Society of America.

Given m pictures of n points, can we recover

- the three-dimensional configuration of these points? (structure)
- the camera configurations?

Geometric affine scene reconstruction from two images (Koenderink and Van Doorn, 1991).

$$
\left\{\begin{array}{l}
\alpha_{q^{\prime}}=\alpha_{Q} \\
\beta_{q^{\prime}}=\beta_{Q}
\end{array}\right.
$$

$$
\lambda=\frac{\overline{q^{\prime \prime} p^{\prime \prime}}}{\overline{e^{\prime \prime} d^{\prime \prime}}}=\frac{\overline{Q P}}{\overline{E D}}
$$

$$
\begin{aligned}
\overrightarrow{A P} & =\overrightarrow{A Q}+\overrightarrow{Q P} \\
& =\alpha_{p^{\prime}} \overrightarrow{A B}+\beta_{p^{\prime}} \overrightarrow{A C}+\lambda \overrightarrow{E D} \\
& =\left(\alpha_{p^{\prime}}-\lambda \alpha_{d^{\prime}}\right) \overrightarrow{A B}+\left(\beta_{p^{\prime}}-\lambda \beta_{d^{\prime}}\right) \overrightarrow{A C}+\lambda \overrightarrow{A D}
\end{aligned}
$$

