
Euclidean cameras and 
strong (Euclidean) calibration 

•  Linear least-squares methods 
•  Linear calibration  
•  Degenerate point configurations 
•  Analytical photogrammetry 
•  A quick detour through stereopsis 

Planches : 
–  http://www.di.ens.fr/~ponce/geomvis/lect2.pptx  
–  http://www.di.ens.fr/~ponce/geomvis/lect2.pdf 

 
 



The Intrinsic Parameters of a Camera 

Calibration Matrix 

The Perspective 
Projection Equation 



The Extrinsic Parameters of a Camera 

p ≈ M P 



Explicit Form of the Projection Matrix 

Note: 

M is only defined up to scale in this setting !! 



Linear Camera Calibration 



How do you solve overconstrained  homogeneous  
linear equations ?? 

The solution is e   . 1 
E(x)-E(e1) = xT(UTU)x-e1

T(UTU)e1 
       = λ1µ1

2+ … +λqµq
2-λ1 

                  > λ1(µ1
2+ … +µq

2-1)=0 



Example: Line Fitting 

Problem: minimize 
 
 
 
with respect to (a,b,d). 

•  Minimize E with respect to d: 

•  Minimize E with respect to  a,b: 
where 

•  Done !! 

n 



Note: 

•  Matrix of second moments of inertia 
 
 
•  Axis of least inertia 



Linear Camera Calibration 

Linear least squares for n > 5 ! 



Once M is known, you still got to recover the intrinsic and 
extrinsic parameters  !!! 

This is a decomposition problem, not an estimation 
problem. 

•   Intrinsic parameters 
 
•   Extrinsic parameters 

ρ 



Degenerate Point Configurations 
Are there other solutions besides M ?? 

•  Coplanar points: (λ,µ,ν )=(Π,0,0) or (0,Π,0) or (0,0,Π ) 

•  Points lying on the intersection curve of two quadric 
surfaces = straight line + twisted cubic 

Does not happen for 6 or more random points! 



Analytical Photogrammetry 

Non-Linear Least-Squares Methods 

•  Newton 
•  Gauss-Newton 
•  Levenberg-Marquardt 

Iterative, quadratically convergent in favorable situations 



Figure extraite de “US Navy Manual of Basic Optics and Optical Instruments”, 
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969. 

Triangulation 



Figure extraite de “US Navy Manual of Basic Optics and Optical Instruments”, 
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969. 

Triangulation 



Figure extraite de “US Navy Manual of Basic Optics and Optical Instruments”, 
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969. 

Why movies look “flat” on TV 



Figure extraite de “US Navy Manual of Basic Optics and Optical Instruments”, 
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969. 

Why movies look “flat” on TV 



Reconstruction from Rectified Images 

Disparity: d=u’-u. Depth: z = -B/d. 



Triangulation for human eyes 

Disparity:    d =  r-l =  D-F. 

d=0 

d<0 
In 3D, the horopter. 



What if   F  is not known? 

Helmholtz (1909): 
 
•  There is evidence showing that the vergence angles 
   cannot be measured precisely. 
 
•  People get fooled by bas-relief sculptures. 
 
•  There is an analytical explanation for this. 

•  Relative depth can be judged accurately. 

Triangulation for “uncalibrated” human eyes 



Figure extraite de “US Navy Manual of Basic Optics and Optical Instruments”, 
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969. 

Movies look “flat” on TV 



Courtesy of Steve Seitz 

This is why people make 3D movies 



But do we really need two eyes to  
“see in 3D” ? 

Jan J. Koenderink 
Univ. de Delft, NL 



Figure from “Pictorial Relief”, J.J. Koenderink, Phil.  
Trans. R. Soc. Lond. A (1998) 356, 1071-1086. 
@ 1998 The Royal Society. 

But do we really need two eyes to  
“see in 3D” ? 



Comment “sonder” notre perception de  
l’orientation d’une surface. 

Figure from “Pictorial Relief”, J.J. Koenderink, Phil.  
Trans. R. Soc. Lond. A (1998) 356, 1071-1086. 
@ 1998 The Royal Society. 



How to “probe” our perception of surface 
orientation 

Figure from “Pictorial Relief”, J.J. Koenderink, Phil.  
Trans. R. Soc. Lond. A (1998) 356, 1071-1086. 
@ 1998 The Royal Society. 



Figure from “Pictorial Relief”, J.J. Koenderink, Phil.  
Trans. R. Soc. Lond. A (1998) 356, 1071-1086. 
@ 1998 The Royal Society. 

How to “probe” our perception of surface 
orientation 



Figure from “Pictorial Relief”, J.J. Koenderink, Phil.  
Trans. R. Soc. Lond. A (1998) 356, 1071-1086. 
@ 1998 The Royal Society. 

How to “probe” our perception of surface 
orientation 



Zeiss’s synopter (1907) 

Figure from “Pictorial Relief”, J.J. Koenderink, Phil.  
Trans. R. Soc. Lond. A (1998) 356, 1071-1086. 
@ 1998 The Royal Society. 



Affine cameras 

•  Affine cameras 
•  Elements of affine geometry 
•  Affine structure from motion 
•  Two-view affine geometry 
•  Affine SFM revisited 



Weak-Perspective Projection 

Paraperspective Projection 

Affine Cameras 



Orthographic Projection 

Parallel Projection 

More Affine Cameras 



Weak-Perspective Projection Model 

r 
( p and P are in homogeneous coordinates) 

p = A P + b  (neither p nor P is in hom. coordinates) 

p = M P (P is in homogeneous coordinates) 



Theorem: All affine projection models can be  
represented by affine projection matrices. 

Definition: A 2x4 matrix M = [A b], where 
A is a rank-2 2x3 matrix, is called an 
affine projection matrix. 
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General form of the weak-perspective  
projection equation: 

Theorem: An affine projection matrix can be 
written uniquely (up to a sign amibguity) as a 
weak perspective projection matrix as 
defined by (1). 

(1) 



Affine cameras and affine geometry 



Affine projections induce affine transformations from planes 
onto their images. 



Affine Structure from Motion 

Reprinted with permission from “Affine Structure from Motion,” by J.J. (Koenderink and  A.J.Van Doorn, Journal of the Optical Society of America A, 
8:377-385 (1990). ©  1990 Optical Society of America. 

Given m pictures of n points, can we recover 
•  the three-dimensional configuration of these points? 
•  the camera configurations? 

(structure) 
(motion) 



The Affine Structure-from-Motion Problem 

Given m images of n fixed points Pj  we can write 

Problem: estimate the m 2x4 matrices Mi   and the  
n positions Pj  from the mn correspondences pij . 

2mn equations in 8m+3n unknowns 

Overconstrained problem, that can be solved 
using (non-linear) least squares! 



The Affine Ambiguity of Affine SFM 

If M  and  P  are solutions,  i j 

So are M ’  and  P ’  where i j 

and 

Q is an affine 
transformation. 

When the intrinsic and extrinsic parameters are unknown 



Affine cameras and affine geometry 



Affine Spaces: (Semi-Formal) Definition 



Example: R    as an Affine Space 2 



In General 

The notation 

is justified by the fact that choosing  some origin O in X 
allows us to identify the point P with the vector OP. 

NOTE:  P+u and Q-P are defined independently of O!! 



Barycentric Combinations 

•  Can we add points?  R=P+Q NO! 

•  But, when we can define 

•  Note: 



Affine Subspaces 



Affine Coordinates 

•  Coordinate system for U :  

•  Coordinate system for  Y=A +U : 

•  Coordinate system for  Y :  

•  Affine coordinates: 

•  Barycentric 
  coordinates: 

0 



Affine Transformations 

Bijections from X to Y that: 
•  map m-dimensional subspaces of X onto m-dimensional 
  subspaces of Y; 
•  map parallel subspaces onto parallel subspaces; and 
•  preserve affine  (or barycentric) coordinates. 

In E   they are combinations of rigid transformations,  
non-uniform scalings and shears. 

3 



Affine Transformations 

In E   they are combinations of rigid transformations,  
non-uniform scalings and shears. 

Bijections from X to Y that: 
•   map lines of X onto lines of Y; and 
•   preserve the ratios of signed lengths of  
   line segments. 

3 



Affine Transformations II 

•  Given two affine spaces X and Y of dimension m, and two  
coordinate frames (A) and (B) for these spaces, there exists  
a unique affine transformation mapping (A) onto (B). 

•  Given an affine transformation from X to Y,  one can always  
write: 

•  When coordinate frames have been chosen for X and Y, 
this translates into: 



Affine projections induce affine transformations from planes 
onto their images. 



Affine Shape 

Two point sets S and S’ in some affine space X are  
affinely equivalent when there exists an affine  
transformation  ψ:  X      X such that  X’  = ψ ( X ). 

Affine structure from motion = affine shape recovery. 

= recovery of the corresponding motion equivalence classes. 



Affine Structure from Motion 

Reprinted with permission from “Affine Structure from Motion,” by J.J. (Koenderink and  A.J.Van Doorn, Journal of the Optical Society of America A, 
8:377-385 (1990). ©  1990 Optical Society of America. 

Given m pictures of n points, can we recover 
•  the three-dimensional configuration of these points? 
•  the camera configurations? 

(structure) 
(motion) 



Geometric affine scene reconstruction from two images 
(Koenderink and Van Doorn, 1991). 


