Euclidean cameras and
strong (Euclidean) calibration

* Linear least-squares methods

* Linear calibration

» Degenerate point configurations

* Analytical photogrammetry

* A quick detour through stereopsis

Planches :

— http://www.di.ens.fr/~ponce/geomvis/lect2.pptx

— http://www.di.ens.fr/~ponce/geomvis/lect2.pdf




The Intrinsic Parameters of a Camera
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The Extrinsic Parameters of a Camera

e When the camera frame (C) is different from the world frame
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e Thus,

where

p=MP

e Note: z is not independent of M and P:




Explicit Form of the Projection Matrix
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Linear Camera Calibration

. P, with known positions and their images
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How do you solve overconstrained homogeneous
linear equations ??

e Orthonormal basis of eigenvectors: ey,
e Associated eigenvalues: 0 < A\; <

eAny vector can be written as
= [he] + ...+ [1s€,

: 2 _
for some p; (1 ....,q) such that uf +... + fy =

E(x)-E(e) =x"(U'U)x-e,"(U'U)e,
= AU+ . FAu? The solution is e,

> hlu .




Example: Line Fitting

Problem: minimize

n

E(a,b,d) = 3 (az; + by; — d)?
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* Matrix of second moments of inertia

- Axis of least inertia




Linear Camera Calibration

m,

. lof lof
with P=E | ... ... and m = | my

my




Once M is known, you still got to recover the intrinsic and
extrinsic parameters |l

This is a decomposition problem, an estimation
problem.
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» Intrinsic parameters

- Extrinsic parameters




Degenerate Point Configurations
Are there other solutions besides M ??

P’{‘)\ - 'U»IP'{V
P{u — 'z_,.'lP’{l/
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T T
Pnu‘ o 'U"Pnl/

« Coplanar points: (A,u,v )=(I1,0,0) or (0,IL,0) or (0,0,IT)

* Points lying on the intersection curve of two quadric
surfaces = straight line + twisted cubic

Does happen for 6 or more random points!




Analytical Photogrammetry

P, with known positions and their images

1S minimized

Non-Linear Least-Squares Methods

- Newton
» Gauss-Newton
» Levenberg-Marquardt

Iterative, quadratically convergent in favorable situations




Triangulation
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Figure extraite de "US Navy Manual of Basic Optics and Optical Instruments”,
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.




Triangulation
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Figure extraite de "US Navy Manual of Basic Optics and Optical Instruments”,
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.




Why movies look "flat" on TV
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Figure extraite de "US Navy Manual of Basic Optics and Optical Instruments”,
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.




Why movies look "flat" on TV
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Figure extraite de "US Navy Manual of Basic Optics and Optical Instruments”,
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.




Reconstruction from Rectified Images

Disparity: d=u'-u. Depth: z = -B/d.




Triangulation for human eyes

Vieth-Muller Circle

Disparity: d= r-I= D-F.

In 3D, the horopter.



Triangulation for "uncalibrated” human eyes

What if F is not known?

Helmholtz (1909):.

* There is evidence showing that the vergence angles
cannot be measured precisely.

* People get fooled by bas-relief sculptures.
* There is an analytical explanation for this.

* Relative depth can be judged accurately.




Movies look "flat" on TV
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Figure extraite de "US Navy Manual of Basic Optics and Optical Instruments”,
Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.




This is why people make 3D movies

Courtesy of Steve Seitz




But do we really need two eyes to
"see in 3D" ?

Jan J. Koenderink
Univ. de Delft, NL




But do we really need two eyes to
"see in 3D" ?

E
- Y
Figure from "Pictorial Relief”, J.J. Koenderink, Phil.

Trans. R. Soc. Lond. A (1998) 356, 1071-1086.
@ 1998 The Royal Society.




Comment “sonder” notre perception de
I'orientation d'une surface.

&

Figure from "Pictorial Relief”, J.J. Koenderink, Phil.
Trans. R. Soc. Lond. A (1998) 356, 1071-1086.
@ 1998 The Royal Society.




How to "probe” our perception of surface

orientation
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Figure from "Pictorial Relief”, J.J. Koenderink, Phil.
Trans. R. Soc. Lond. A (1998) 356, 1071-1086.
@ 1998 The Royal Society.




How to "probe” our perception of surface

orientation
- -Y
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Figure from "Pictorial Relief”, J.J. Koenderink, Phil.
Trans. R. Soc. Lond. A (1998) 356, 1071-1086.
@ 1998 The Royal Society.




How to "probe” our perception of surface
orientation
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Figure from "Pictorial Relief”, J.J. Koenderink, Phil.
Trans. R. Soc. Lond. A (1998) 356, 1071-1086.
@ 1998 The Royal Society.




Zeiss's synopter (1907)

@ binocular depth

(O synoptical depth

monocular depth
100 200
Figure from "Pictorial Relief”, J.J. Koenderink, Phil.

Trans. R. Soc. Lond. A (1998) 356, 1071-1086.
@ 1998 The Royal Society.




Affine cameras

- Affine cameras

+ Elements of affine geometry
- Affine structure from motion
» Two-view affine geometry

- Affine SFM revisited




Affine Cameras

Weak-Perspective Projection




More Affine Cameras

Orthographic Projection




Weak-Perspective Projection Model

P = — B\ ¥ 2 (pand P are in homogeneous coordinates)

(P is in homogeneous coordinates)

p =A P + b (neither p nor P is in hom. coordinates)




Definition: A 2x4 matrix M = /A b], where
A is a rank-2 2x3 matrix, is called an
affine projection matrix.

Theorem: All affine projection models can be
represented by affine projection matrices.




General form of the weak-perspective
projection equation:
k

) R, ¢, O
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Theorem: An affine projection matrix can be
written uniquely (up to a sign amibguity) as a
weak perspective projection matrix as
defined by (1).




Affine cameras and affine geometry




Affine projections induce affine transformations from planes
onto their images.

Projection
direction

Projection
direction




Affine Structure from Motion

Reprinted with permission from “Affine Structure from Motion,” by J.J. (Koenderink and A.J.Van Doorn, Journal of the Optical Society of America A,
8:377-385 (1990). © 1990 Optical Society of America.

Given m pictures of n points, can we recover
* the three-dimensional configuration of these points? (structure)
* the camera configurations? (motion)




The Affine Structure-from-Motion Problem

Given m images of n fixed points P; we can write

m and j=1,...,n.

Problem: estimate the m 2x4 matrices M. and the
n positions P, from the mn correspondences p;; .

2mn equations in 8 m+3n unknowns

b Overconstrained problem, that can be solved
using (non-linear) least squares!




The Affine Ambiguity of Affine SFM
When the intrinsic and extrinsic parameters are unknown

If M. and /J’ are solutions,

Q is an affine
transformation.




Affine cameras and affine geometry




Affine Spaces: (Semi-Formal) Definition

X set of points
X underlying vector space
¢ action of the additive group of X on X

¢ maps elements u of X onto bijections ¢q : X — X such that

VPe X ¢g(P)=P
VP e X \V/'U, vEX (buyv(P)

= pu(ov(P))
VP,QeX FueX o¢ulP)=Q

P+u®® a;u(P)
1@ =Q—-P° id such that ¢y (P)




Example: R? as an Affine Space

P+u® ¢u(P)
P_(j =Q—P 44 % such that du(P




In General

The notation
P+ u % ¢y(P)

1@ =Q—P det v such that du(P) =@

is justified by the fact that choosing some origin Qin X
allows us to identify the point P with the vector OP.

0-P=T3, ‘:"O—@O—]z_,)—@

P+u and O-P are defined independently of O!!




Barycentric Combinations

* Can we add points? R=P*+(Q

g BUT, when ag+a; + ...+ an =1 KRS define

§5(1x5;Ké2125;;j4‘ gi Cﬁ(aizi‘—iiizj)

i=() i=0,i#j




Affine Subspaces
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Affine Coordinates

» Coordinate system for U :

‘| Barycentric

coordinates: 040 T Q1AL T+ ...+ QmAm

— OI()A{) + O,'lf'il] + ... + Of;’)'ziqyr‘z
f'l() + (1'1("41 — xq(j)) + ... T Qo (*’4711 o *’4())




Affine Transformations

Bijections from X to Y that:

* map m-dimensional subspaces of X onto m-dimensional
subspaces of Y.

* map parallel subspaces onto parallel subspaces; and

* preserve affine (or barycentric) coordinates.

In E° they are combinations of rigid transformations,
non-uniform scalings and shears.




Affine Transformations

Bijections from X to Y that:

* map lines of X onto lines of Y. and

+ preserve the ratios of signed lengths of
line segments.

In E° they are combinations of rigid transformations,
non-uniform scalings and shears.




Affine Transformations IT

» Given two affine spaces X and Y of dimension m, and two
coordinate frames (A)and (B) for these spaces, there exists
a unique affine transformation mapping (A4) onto (B).

» Given an affine transformation from X to Y, one can always
write:

¥(P) = ¢(0) + (P — 0)

- When coordinate frames have been chosen for X and Y,
this translates into:

V(P)=d+CP =CP +d




Affine projections induce affine transformations from planes
onto their images.

Projection
direction

Projection
direction




Affine Shape

Two point sets Sand S’ in some affine space X are
affinely equivalent when there exists an affine
transformation y: X — X such that X* =y (X).

Affine structure from motion = affine shape recovery.

= recovery of the corresponding motion equivalence classes.




Affine Structure from Motion

Reprinted with permission from “Affine Structure from Motion,” by J.J. (Koenderink and A.J.Van Doorn, Journal of the Optical Society of America A,
8:377-385 (1990). © 1990 Optical Society of America.

Given m pictures of n points, can we recover
* the three-dimensional configuration of these points? (structure)
* the camera configurations? (motion)




Geometric affine scene reconstruction from two images
(Koenderink and Van Doorn, 1991).

AQ + QP
- ij'/ﬁ + ,31,//@ 4 /\ﬁ
(0 — M) AB + (By — A\3#)AC + AAD




