
Provable Security in the Computational Model

IV – Protocols

David Pointcheval

MPRI – Paris

Ecole normale supérieure/PSL, CNRS & INRIA

ENS/CNRS/INRIA Cascade David Pointcheval 1/62

Outline

Game-based Security

Simulation-based Security

Encrypted Key Exchange

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 2/62

Game-based Security

Outline

Game-based Security

Key Exchange

Authenticated Key Exchange

Explicit Authentication

Simulation-based Security

Encrypted Key Exchange

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 3/62

Key-Exchange Protocols

A fundamental problem in cryptography:
Enable secure communication over insecure channels

A classical scenario: Users encrypt and authenticate their messages
using a common secret key

mA

−−−−−−→
m′B

←−−−−−−

mA

−−−−−−→
m′B
←−−−−−−

m′A
−−−−−−→

mB

←−−−−−−

m′A
−−−−−−→

mB

←−−−−−−
Alice Bob

How to establish such a common secret?
−→ Key-exchange protocols

ENS/CNRS/INRIA Cascade David Pointcheval 4/62

Diffie-Hellman Key-Exchange

G = ⟨g⟩ a group, of prime order q, in which the CDH problem is hard

Alice Bob

x R← Zq y R← Zq

X = gx X−−−−−−−−→
Y←−−−−−−−− Y = gy

Y x = gxy = X y

Allows two parties to establish a common secret:

• The session key should only be known to the involved parties

• The session key should be indistinguishable
from a random string for others

ENS/CNRS/INRIA Cascade David Pointcheval 5/62

Communication Model

• Users can participate in several executions of the protocol
in parallel: Each user’s instance is associated to an oracle

(C i for the client, and Sj for the server)

• The adversary controls all the communications:
It can create, modify, transfer, alter, delete messages

This is modeled by various oracle accesses given to oracles

• to let it choose when and what to transmit,

• but also the leakage of information

ENS/CNRS/INRIA Cascade David Pointcheval 6/62

Security Game: Oracle Accesses

The adversary has access to the oracles:

• Execute(C i ,Sj)

A gets the transcript of an execution between C and S
It models passive attacks (eavesdropping)

• Send(U i ,m)

A sends the message m to the instance U i

It models active attacks against U i

• Reveal(U i)

A gets the session key established by U i and its partner
It models the leakage of the session key, due to a misuse

• Test(U i) a random bit b is chosen.
• If b = 0, A gets the session key (Reveal(U i))
• If b = 1, it gets a random key

Constraint: no Test-query to a partner of a Reveal-query
ENS/CNRS/INRIA Cascade David Pointcheval 7/62

Security Game: Some Terminology

Partnership

• two instances are partners
if they have the same sid (session identity)

• the sid is set in such a way that two different sessions
have the same sid with negligible probability

Usually, sid is the (partial) transcript of the protocol

Freshness

• a user’s instance is fresh if a key has been established,
and it is not trivially known to the adversary
(a Reveal query has been asked to this instance or its partner)

ENS/CNRS/INRIA Cascade David Pointcheval 8/62

Security Game: Find-then-Guess

Privacy of the key: modeled by a find-then-guess security game

A has to guess the bit b involved in the Test-query:
is the obtained key real or random?

ENS/CNRS/INRIA Cascade David Pointcheval 9/62

Semantic Security: Find-then-Guess

The semantic security is characterized by

Advftg(A) = 2× Succ(A)− 1

Advftg(t ,qexecute,qsend ,qreveal) = max{Advftg(A)}

• where the adversary wins if it correctly guesses the bit b involved
in the Test-query

• qexe, qsend and qreveal are the numbers of Execute, Send and
Reveal-queries resp.

Definition
A Key Exchange Scheme is FtG-Semantically Secure if

Advftg(t) ≤ negl()

ENS/CNRS/INRIA Cascade David Pointcheval 10/62

Security Game: Real-or-Random

Privacy of the key: modeled by a real-or-random security game

A has to guess the bit b involved in the Test-queries:
are they all real or random keys?

ENS/CNRS/INRIA Cascade David Pointcheval 11/62

Semantic Security: Real-or-Random

We can even drop the Reveal-Oracle:

• A random bit b is chosen

• Execute(C i ,Sj)

A gets the transcript of an execution between C and S
It models passive attacks (eavesdropping)

• Send(U i ,m)

A sends the message m to the instance U i

It models active attacks against U i

• Test(U i) If U i is not fresh: same answer as for its partner
Otherwise

• If b = 0, A gets the session key
• If b = 1, it gets a random key

ENS/CNRS/INRIA Cascade David Pointcheval 12/62

Semantic Security: Real-or-Random

The semantic security is characterized by

Advror(A) = 2× Succ(A)− 1

Advror(t ,qexecute,qsend ,qtest) = max{Advror(A)}

Definition
A Key Exchange Scheme is RoR-Semantically Secure if

Advror(t ,qexecute,qsend ,qtest) ≤ negl()

ENS/CNRS/INRIA Cascade David Pointcheval 13/62

Real-or-Random vs. Find-then-Guess

Theorem

Advftg(t ,qexecute,qsend ,qreveal) ≤ 2×Advror(t ,qexecute,qsend ,qreveal +1)

Let A be a FtG-adversary
We build an adversary B against the RoR security game:

• A random bit b is chosen by the RoR challenger

• Execute(C i ,Sj) and Send(U i ,m) queries are forwarded by B
• Reveal(U i) is answered Test(U i)

• Test(U i) If U i is not fresh: same answer as for its partner
Otherwise, B chooses a random bit β

• If β = 0, one answers Test(U i)

• If β = 1, one answers a random key

• From A’s answer β′, B outputs (β = β′)
ENS/CNRS/INRIA Cascade David Pointcheval 14/62

Real-or-Random vs. Find-then-Guess

If b is the Real choice, then the view of A is

• Execute(C i ,Sj) and Send(U i ,m) queries: correct

• Reveal(U i): Test(U i) with Real

• Test(U i) If U i is not fresh: same answer as for its partner
Otherwise, a random bit β is drawn

• If β = 0, one answers Test(U i) with Real
• If β = 1, one answers a random key

This is the FtG game

2× Pr[β′ = β |b = 0]− 1 = Advftg(A)

ENS/CNRS/INRIA Cascade David Pointcheval 15/62

Real-or-Random vs. Find-then-Guess

If b is the Random choice, then the view of A is

• Execute(C i ,Sj) and Send(U i ,m) queries: correct
• Reveal(U i): Test(U i) with Random
• Test(U i) If U i is not fresh: same answer as for its partner

Otherwise, one answers a random key

The view is independent of β

2× Pr[β′ = β |b = 1]− 1 = 0

Advror(B) = 2× Pr[β′ = β]− 1 = Advftg(A)/2

≤ Advror(t ,qexecute,qsend ,qreveal + 1)

Advftg(t ,qexecute,qsend ,qreveal) ≤ 2×Advror(t ,qexecute,qsend ,qreveal +1)
ENS/CNRS/INRIA Cascade David Pointcheval 16/62

Real-or-Random vs. Find-then-Guess

Theorem

Advror(t ,qexecute,qsend ,qtest) ≤ qtest ×Advftg(t ,qexecute,qsend ,qtest −1)

Let A be a RoR-adversary
We build an adversary B against the FtG security game:

• A random bit b is chosen by the FtG challenger

• B chooses a random index J

• Execute(C i ,Sj) and Send(U i ,m) queries are forwarded by B
• The j-th Test(U i) query:

• If j < J, one answers Reveal(U i)

• If j = J, one answers Test(U i)

• If j > J, one answers a random key

• From A’s answer b′, B forwards b′
ENS/CNRS/INRIA Cascade David Pointcheval 17/62

Real-or-Random vs. Find-then-Guess

This is a sequence of hybrid games GJ :

• G1, with b Random, is the RoR game with Random

• Gqtest , with b Real, is the RoR game with Real

• GJ−1 with b Real is identical to GJ with b Random

|Pr
1
[b′ = 1 |b = 1]− Pr

qtest
[b′ = 1 |b = 0]|=Advror(A)

|Pr
J
[b′ = 1 |b = 0]− Pr

J
[b′ = 1 |b = 1]|≤Advftg(t ,qexecute,qsend , J − 1)

≤Advftg(t ,qexecute,qsend ,qtest − 1)

Advror(t ,qexecute,qsend ,qtest) ≤ qtest ×Advftg(t ,qexecute,qsend ,qtest −1)

ENS/CNRS/INRIA Cascade David Pointcheval 18/62

Outline

Game-based Security

Key Exchange

Authenticated Key Exchange

Explicit Authentication

Simulation-based Security

Encrypted Key Exchange

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 19/62

Man-in-the-Middle Attacks

The Diffie-Hellman key-exchange, without authentication is insecure,
because of the malleability of the CDH problem:

Client C Server S

x ← Zq
Send(C,start)←−−−−−−−−

X ← gx −→ X
Send(S,Xg)−−−−−−−−→ y ← Zq

skC ← Y x Send(C,Y)←−−−−−−−− Y ←− Y ← gy

Test(C)←−−−−−−−− Reveal(S)−−−−−−−−→ skS ← (Xg)y

−→
{

skC

$
skS ←−

skS
?
= skC × Y

No authentication provided!

ENS/CNRS/INRIA Cascade David Pointcheval 20/62

Authenticated Key-Exchange

Allow two parties to establish a common secret
in an authenticated way

• The session key should only be known to the involved parties

• The session key should be indistinguishable
from a random string for others

ENS/CNRS/INRIA Cascade David Pointcheval 21/62

Authentication Techniques: PKI

If one assumes a PKI (public-key infrastructure),
any user owns a pair of keys, certified by a CA.

By simply signing the flows, one gets an authenticated key-exchange:
G = ⟨g⟩ a group, of prime order q, in which the DDH problem is hard

Alice Bob

x R← Zq y R← Zq

X = gx SignA(B,X)−−−−−−−−→
SignB(A,X ,Y)←−−−−−−−−−− Y = gy

Y x = gxy = X y

ENS/CNRS/INRIA Cascade David Pointcheval 22/62

Signed Diffie-Hellman and DDH

Theorem
The Signed Diffie-Hellman key exchange is secure under the DDH
assumption and the security of the signature scheme

Advror(t ,quser ,qexecute,qsend ,qtest)

≤ quser × Succeuf−cma

(
t + (3qexecute + qsend + qtest)τexp,

qsend + qexecute (signing queries)

)

+ Advddh(t + (7qexecute + 2qsend + 4qtest)τexp)

Let A be a RoR-adversary, we use it to break
either the signature scheme or the DDH.

ENS/CNRS/INRIA Cascade David Pointcheval 23/62

Signed Diffie-Hellman: Signature

If the adversary can generate a flow in the name of a user,
we can break the signature scheme:

• We are given a verification key for a user A

• Execute(A,Bj) or Execute(Bi ,A): we use the signing oracle

• Send(A,m): we use the signing oracle

• Send(B,SignA(m)): if not signed by the signing oracle, we reject

• Test(U): as usual

If we reject a valid signature, this signature is a forgery:
all the signatures are oracle generated but with probability less than

quser × Succeuf−cma

(
t + (3qexecute + qsend + qtest)τexp,

qsend + qexecute (signing queries)

)

ENS/CNRS/INRIA Cascade David Pointcheval 24/62

Signed Diffie-Hellman: DDH

Given a triple (X = gx ,Y = gy ,Z = gz), we can derive a list of triples:

Xi = gxi = X · gαi Zi,j = gzi,j = Zβi,j · X γi,j · Yαiβi,j · gαiγi,j

Yi,j = gyi,j = Y βi,j · gγi,j

We thus have
xi = x + αi yi,j = yβi,j + γi,j zi,j = xiyi + (z − xy)βi,j

If (X ,Y ,Z) is a Diffie-Hellman triple (i.e., z = xy),
all the triples are random and independent Diffie-Hellman triples

ENS/CNRS/INRIA Cascade David Pointcheval 25/62

Signed Diffie-Hellman and DDH

Given a triple (X = gx ,Y = gy ,Z = gz)

xi = x + αi yi,j = yβi,j + γi,j zi,j = xiyi + (z − xy)βi,j

For any random list of triples (Xi = gxi ,Yi,j = gyi,j ,Zi,j = gzi,j),
if d = z − xy ̸= 0, we can define

αi = xi − x βi,j = (zi,j − xiyi,j)/d γi,j = yi,j − yβi,j

If (X ,Y ,Z) is not a Diffie-Hellman triple (i.e., z ̸= xy),
all the triples are independent random triples

ENS/CNRS/INRIA Cascade David Pointcheval 26/62

Signed Diffie-Hellman: DDH

We now assume that all the flows are oracle generated

• We are given a triple (X ,Y ,Z)

• Execute(Ai ,Bj): we use a fresh Xi but Y ′ = gy ′
for a known y ′

We can compute Z ′

• Send(A,Start): we use a fresh Xi

• Send(B,SignA(B,X)): if valid, we look for Xi = X , use a fresh Yi,j

The associated key is Zi,j

• Send(A,SignB(A,X ,Y)): if valid, we look for Xi = X ,Yi,j = Y .
The associated key is Zi,j

• Test(U): the associated key is outputted

ENS/CNRS/INRIA Cascade David Pointcheval 27/62

Signed Diffie-Hellman: DDH

If the triple (X ,Y ,Z) is a DDH triple, we are in the Real case
since all the keys are correctly computed

If the triple (X ,Y ,Z) is not a DDH triple, we are in the Random case
since all the keys are independent random values

ENS/CNRS/INRIA Cascade David Pointcheval 28/62

Authentication Techniques: Symmetric

Users share a common secret k of high entropy
A MAC can be used for authenticating the flows.

Alice Bob

x R← Zq y R← Zq

X = gx MACk (A,B,X)−−−−−−−−−−→
MACk (B,A,X ,Y)←−−−−−−−−−−−−− Y = gy

Y x = gxy = X y

The same security result holds

ENS/CNRS/INRIA Cascade David Pointcheval 29/62

Password-Based AKE

Realistic: Real-life applications
usually rely on weak passwords

Convenient to use: Users do not
need to store a long secret

Subject to on-line dictionary attacks:
Non-negligible probability of success due to the small dictionary

On-line Dictionary Attacks

• the adversary chooses a password pw

• tries to authenticate to the server

• in case of failure, it starts over

ENS/CNRS/INRIA Cascade David Pointcheval 30/62

Find-then-Guess vs. Real-or-Random

Definition
A PAKE scheme is Semantically Secure if the best attack is the
online dictionary attack:

Advftg(t) ≤ qsend/|D|+ negl()

or even better
Advror(t) ≤ qsend/|D|+ negl()

We cannot get better than the former, but we can expect the latter.

ENS/CNRS/INRIA Cascade David Pointcheval 31/62

Outline

Game-based Security

Key Exchange

Authenticated Key Exchange

Explicit Authentication

Simulation-based Security

Encrypted Key Exchange

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 32/62

Mutual Authentication

The Semantic Security tells that the session key should be
indistinguishable from a random string for others

What about the case where the key is random for everybody,
and then, no key is shared at all!

Client Authentication
If the server accepts a key, then a client has the material to compute
the same key.

Mutual Authentication
If a party accepts a key, then its partner has the material to compute
the same key.

ENS/CNRS/INRIA Cascade David Pointcheval 33/62

Explicit Authentication: Game-based Definition

The session-ID should determine the session-key (not in a
computable way): this formally determines partnership.

Definition (Client Authentication)
The attacker wins the client authentication game if a server instance
terminates, without exactly one accepting client partner.

Flags

• the flag Accept means that
the player has enough material to compute the key

• the flag Terminate means that
the player thinks that its partners has accepted

ENS/CNRS/INRIA Cascade David Pointcheval 34/62

Corruption

In the previous model, all the players are honest,
and the adversary is not registered (no signing keys)

Wa can add a Corrupt query,
which gives the long-term secret to the adversary

Forward-Secrecy
The security of the current session key is preserved even if the
long-term secrets (authentication means) are exposed in the future

ENS/CNRS/INRIA Cascade David Pointcheval 35/62

Simulation-based Security

Outline

Game-based Security

Simulation-based Security

Simulation-based Security

Universal Composability

Password-based Key Exchange

Encrypted Key Exchange

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 36/62

Ideal Functionality – Real Protocol

Real Protocol
The real protocol P is run by players P1, . . . , Pn, with their own
private inputs x1, . . . , xn. After interactions, they get outputs
y1, . . . , yn.

Ideal Functionality
An ideal function F is defined:

• it takes as input x1, . . . , xn, the private information of each
players,

• and outputs y1, . . . , yn, given privately to each player.

The players get their results, without interacting:
this is a “by definition” secure primitive.

ENS/CNRS/INRIA Cascade David Pointcheval 37/62

Simulator

For any environment Z, for any adversary A,
there exists a simulator S so that, the view of Z is the same for

• A attacking the real protocol

• S attacking the ideal functionality

ENS/CNRS/INRIA Cascade David Pointcheval 38/62

Emulation

Protocol P emulates
the ideal process for F if

• for any adversary A
• there exists a simulator S
• such that no environment Z can make the difference between

the ideal process and the protocol execution

ENS/CNRS/INRIA Cascade David Pointcheval 39/62

Emulation

Protocol P emulates the ideal process for F if

• for any adversary A
• there exists a simulator S
• such that for every environment Z

the views are indistinguishable:

∀A,∃S, ∀Z,EXECF ,S,Z ≈ EXECP ,A,Z

ENS/CNRS/INRIA Cascade David Pointcheval 40/62

Equivalent Formulations

∀A,∃S, ∀Z,EXECF ,S,Z ≈ EXECP ,A,Z

∀A,∀Z,∃S,EXECF ,S,Z ≈ EXECP ,A,Z

∃S,∀Z,EXECF ,S,Z ≈ EXECP ,Ad ,Z

where Ad is the dummy adversary: under the control of the
environment (forwards every input/output).

ENS/CNRS/INRIA Cascade David Pointcheval 41/62

Security

• Everything that the adversary A
can do against P can be done by
the simulator S against F

• But the ideal functionality F is
perfectly secure: nothing can be
done against F

Then, nothing can be done against P

ENS/CNRS/INRIA Cascade David Pointcheval 42/62

Outline

Game-based Security

Simulation-based Security

Simulation-based Security

Universal Composability

Password-based Key Exchange

Encrypted Key Exchange

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 43/62

Implications of UC

Can design and analyze protocols in a modular way:

• Divide a given task F into sub-tasks F1, . . . ,Fn

F is equivalent to F1 ∪ F2 ∪ F3 ∪ F4

• Construct protocols π1, . . . , πn emulating F1, . . . ,Fn

• Combine them into a protocol π

• Composition theorem: π emulates F

Can be done concurrently and in parallel

ENS/CNRS/INRIA Cascade David Pointcheval 44/62

Composition of Ideal Functionalities

ENS/CNRS/INRIA Cascade David Pointcheval 45/62

Composition of Real Protocols

ENS/CNRS/INRIA Cascade David Pointcheval 46/62

UC Security

Theorem (Universal Composition)
If each ideal functionality Fi is emulated by πi , then the composition
of the πi ’s emulates the composition of the Fi ’s

ENS/CNRS/INRIA Cascade David Pointcheval 47/62

Outline

Game-based Security

Simulation-based Security

Simulation-based Security

Universal Composability

Password-based Key Exchange

Encrypted Key Exchange

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 48/62

Ideal Functionality of PAKE

Session key:

• no corrupted players, same passwords
⇒ same key sk uniformly chosen

• no corrupted players, different passwords
⇒ independent keys uniformly chosen

• a corrupted player
⇒ key chosen by the adversary

• correct password guess
⇒ key chosen by the adversary

• incorrect password guess
⇒ independent keys uniformly chosen

ENS/CNRS/INRIA Cascade David Pointcheval 49/62

Ideal Functionality of PAKE

Queries

• NewSession = a player initializes the protocol
The passwords are chosen by the environment.

• TestPwd = A attempts to guess a password (one per session)
In case of correct guess, the adversary is allowed to choose the
session key.
⇒ models the on-line dictionary attacks

• NewKey = A asks for the key sk to be delivered to a player
The key sk is ignored except in case of corruption or correct
password guess.

ENS/CNRS/INRIA Cascade David Pointcheval 50/62

Ideal Functionality of PAKE

Improvements

• No assumption on the relations between the passwords of the
different players (can be different, identical, or the same for
different protocols)

• It provides forward secrecy, since corruption of players is
available

ENS/CNRS/INRIA Cascade David Pointcheval 51/62

Encrypted Key Exchange

Outline

Game-based Security

Simulation-based Security

Encrypted Key Exchange

Description

Semantic Security

Simulation-based Security

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 52/62

Setup

• The arithmetic is in a finite cyclic group G = ⟨g⟩
• of order a ℓ-bit prime number q

• Hash functions

H0 : {0,1}⋆ → {0,1}ℓ0 H1 : {0,1}⋆ → {0,1}ℓ1

• A block cipher (Ek ,Dk) where k ∈ Password, onto G.

• Ḡ = G\{1}, thus Ḡ = {gx | x ∈ Z⋆
q}.

Client and server initially share a low-quality password pw ,
uniformly drawn from the dictionary Password.

The session-key space SK is {0,1}ℓ0

equipped with a uniform distribution.

ENS/CNRS/INRIA Cascade David Pointcheval 53/62

(One) Encrypted Key Exchange

Client U (pw) Server S (pw)

accept← false accept← false
terminate← false terminate← false

x R← [1, q − 1] y R← [1, q − 1]

X ← gx U,X−−−−−−−→ Y ← gy

Y ← Dpw (Y⋆)
S,Y⋆

←−−−−−−− Y⋆ ← Epw (Y)

KU ← Y x KS ← X y

Auth←H1(U∥S∥X∥Y∥KU)

skU ←H0(U∥S∥X∥Y∥KU)

accept← true Auth−−−−−−−→ Auth ?
= H1(U∥S∥X∥Y∥KS)

if true, accept← true
skS ←H0(U∥S∥X∥Y∥KS)

terminate← true terminate← true

ENS/CNRS/INRIA Cascade David Pointcheval 54/62

Outline

Game-based Security

Simulation-based Security

Encrypted Key Exchange

Description

Semantic Security

Simulation-based Security

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 55/62

Security Result [Bresson–Chevassut–Pointcheval – ACM CCS 2003]

Theorem
Let A be an adversary against the RoR security within a time bound
t, with less than qs interactions with the parties and qp passive
eavesdroppings, and, asking qh hash-queries and qe

encryption/decryption queries. Then we have

Advror (A) ≤ 3× qs

N
+ 8qh × Succcdh

G (t ′)

+
(2qe + 3qs + 3qp)

2

q − 1
+

q2
h + 4qs

2ℓ1
.

where t ′ ≤ t + (qs + qp + qe + 1) · τe,
with τe the computational time for an exponentiation in G.

ENS/CNRS/INRIA Cascade David Pointcheval 56/62

Outline

Game-based Security

Simulation-based Security

Encrypted Key Exchange

Description

Semantic Security

Simulation-based Security

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 57/62

(One) Encrypted Key Exchange

Client U Server S

x R← Z⋆
q y R← Z⋆

q

(U1) X ← gx U,X−−→ (S2) Y ← gy

Y∗ ← Essid∥pw (Y)

(U3) Y = Dssid∥pw (Y∗)
S,Y∗
←−−− KS ← X y

KU ← Y x

Auth←H1(ssid∥U∥S∥X∥Y∥KU)

skU ←H0(ssid∥U∥S∥X∥Y∥KU)

completed Auth−−−→ (S4) if (Auth = H1(ssid∥U∥S∥X∥Y∥KS))

then completed
skS ←H0(ssid∥U∥S∥X∥Y∥KS)

else error

ENS/CNRS/INRIA Cascade David Pointcheval 58/62

Security Result [Abdalla–Catalano–Chevalier–Pointcheval – CT-RSA 2008]

Theorem
The above protocol securely realizes F in the random oracle and
ideal cipher models (in the presence of adaptive adversaries).

In order to show that the protocol UC-realizes the functionality F , we
need to show that for all environments and all adversaries, we can
construct a simulator such that the interactions,

• between the environment, the players (say, Alice and Bob) and
the adversary (the real world);

• and between the environment, the ideal functionality and the
simulator (the ideal world)

are indistinguishable for the environment.

ENS/CNRS/INRIA Cascade David Pointcheval 59/62

Security Proof

• G0: real game

• G1: S simulates the ideal cipher and the random oracle

• G2: we get rid off such a situation in which the adversary wins by
chance

• G3: passive case, in which no corruption occurs before the end
of the protocol

• G4: complete simulation of the client, whatever corruption may
occur

• G5: simulation of the server, in the last step of the protocol

• G6: complete simulation of the server

These games are sequential and built on each other

ENS/CNRS/INRIA Cascade David Pointcheval 60/62

Conclusion

Outline

Game-based Security

Simulation-based Security

Encrypted Key Exchange

Conclusion

ENS/CNRS/INRIA Cascade David Pointcheval 61/62

Conclusion

Simulation-based Methodology:

• Universal Composability introduced by [Canetti – FOCS 2001]

• allows to define the security properties of one functionality

• a unique proof is enough

• the protocol can then be composed

ENS/CNRS/INRIA Cascade David Pointcheval 62/62

