III - Signatures

David Pointcheval
MPRI - Paris
Ecole normale supéieurePSSL, CNRS \& INRIA
ENS \mid PSL

1/51ENS/CNRS/INRIA Cascade

Outline

Basic Security Notions

Public-Key Encryption
Signatures

Advanced Security for Signature

Forking Lemma

Conclusion

Public-Key Encryption

$\operatorname{Succ}_{\mathcal{S}}^{\mathrm{ow}}(\mathcal{A})=\operatorname{Pr}\left[(s k, p k) \leftarrow \mathcal{K}() ; m \stackrel{R}{\leftarrow} \mathcal{M} ; c=\mathcal{E}_{p k}(m): \mathcal{A}(p k, c) \rightarrow m\right]$

Goal: Privacy/Secrecy of the plaintext

IND - CPA Security Game

$$
\begin{aligned}
& (s k, p k) \leftarrow \mathcal{K}() ;\left(m_{0}, m_{1}, \text { state }\right) \leftarrow \mathcal{A}(p k) ; \\
& \quad b \stackrel{R}{\leftarrow}\{0,1\} ; c=\mathcal{E}_{p k}\left(m_{b}\right) ; b^{\prime} \leftarrow \mathcal{A}(\text { state }, c)
\end{aligned}
$$

Basic Security Notions

Public-Key Encryption
Signatures

Advanced Security for Signature

Forking Lemma

Conclusion
$\operatorname{Adv}_{\mathcal{S}}^{\text {ind }-\mathrm{cpa}}(\mathcal{A})=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]\right|=\left|2 \times \operatorname{Pr}\left[b^{\prime}=b\right]-1\right|$

Goal: Authentication of the sender

Outline

Basic Security Notions

Advanced Security for Signature

Advanced Security Notions
Hash-then-Invert Paradigm

Forking Lemma

Conclusion

The adversary knows the public key only, whereas signatures are not private!

Goal: Authentication of the sender

The adversary has access to any signature of its choice: Chosen-Message Attacks (oracle access):

$$
\operatorname{Succ}_{\mathcal{S G}}^{\text {euf-cma }}(\mathcal{A})=\operatorname{Pr}\left[\begin{array}{l}
(s k, p k) \leftarrow \mathcal{K}() ;(m, \sigma) \leftarrow \mathcal{A}^{\mathcal{S}}(p k): \\
\forall i, m \neq m_{i} \wedge \mathcal{V}_{p k}(m, \sigma)=1
\end{array}\right]
$$

The notion is even stronger (in case of probabilistic signature): also known as non-malleability:

$$
\operatorname{Succ}_{\mathcal{S G}}^{\text {suf-cma }}(\mathcal{A})=\operatorname{Pr}\left[\begin{array}{l}
(s k, p k) \leftarrow \mathcal{K}() ;(m, \sigma) \leftarrow \mathcal{A}^{\mathcal{S}}(p k): \\
\forall i,(m, \sigma) \neq\left(m_{i}, \sigma_{i}\right) \wedge \mathcal{V}_{p k}(m, \sigma)=1
\end{array}\right]
$$

Outline

Full-Domain Hash Signature

Basic Security Notions

Advanced Security for Signature

Advanced Security Notions
Hash-then-Invert Paradigm

Forking Lemma

Signature Scheme

- Key generation: the public key $f \stackrel{R}{\leftarrow} \mathcal{P}$ is a trapdoor one-way bijection from X onto Y; the private key is the inverse $g: Y \rightarrow X$;
- Signature of $M \in Y: \sigma=g(M)$;
- Verification of (M, σ) : check $f(\sigma)=M$

Full-Domain Hash (Hash-and-Invert)

$$
\mathcal{H}:\{0,1\}^{\star} \rightarrow Y
$$

- in order to sign m, one computes $M=\mathcal{H}(m) \in Y$, and $\sigma=g(M)$
- and the verification consists in checking whether $f(\sigma)=H(m)$

Random Oracle Model

Random Oracle

- \mathcal{H} is modelled as a truly random function, from $\{0,1\}^{*}$ into Y.
- Formally, \mathcal{H} is chosen at random at the beginning of the game.
- More concretely, for any new query, a random element in Y is uniformly and independently drawn

Security of the FDH Signature

Theorem

The FDH signature achieves EUF - CMA security, under the One-Wayness of \mathcal{P}, in the Random Oracle Model:

$$
\operatorname{Succ}_{\mathcal{F D H}}^{\mathrm{euf}-\mathrm{cma}}(t) \leq q_{H} \times \operatorname{Succ}_{\mathcal{P}}^{\mathrm{ow}}\left(t+q_{H} \tau_{f}\right)
$$

Assumptions:

- any signing query has been first asked to \mathcal{H}
- the forgery has been asked to \mathcal{H}
- τ_{f} is the maximal time to evaluate $f \in \mathcal{P}$

Any security game becomes:
$\operatorname{Succ}_{\mathcal{S G}}^{\text {euf-cma }}(\mathcal{A})=\operatorname{Pr}\left[\begin{array}{l}\mathcal{H} \stackrel{R}{\leftarrow} Y^{\infty} ;(s k, p k) \leftarrow \mathcal{K}() ;(m, \sigma) \leftarrow \mathcal{A}^{\mathcal{S}, \mathcal{H}}(p k): \\ \forall i, m \neq m_{i} \wedge \mathcal{V}_{p k}(m, \sigma)=1\end{array}\right]$

Simulations

Random Oracle	Key Generation Oracle
$\mathcal{H}(m): M \stackrel{R}{\leftarrow} Y$, output M	$\mathcal{K}():(f, g) \stackrel{R}{\leftarrow} \mathcal{P}, s k \leftarrow g, p k \leftarrow f$

Signing Oracle

$\mathcal{S}(m): M=\mathcal{H}(m)$, output $\sigma=g(M)$

- Game ${ }_{0}$: use of the oracles \mathcal{K}, \mathcal{S} and \mathcal{H}
- Game 1_{1} : use of the simulation of the Random Oracle

Simulation of \mathcal{H}

$$
\mathcal{H}(m): \mu \stackrel{R}{\leftarrow} X, \text { output } M=f(\mu)
$$

\Longrightarrow Hop-D-Perfect: $\operatorname{Pr}_{\text {Game }_{1}}[1]=\operatorname{Pr}_{\text {Game }_{0}}[1]$

- Game $_{2}$: use of the simulation of the Signing Oracle

Simulation of \mathcal{S}

$\mathcal{S}(m)$: find μ such that $M=\mathcal{H}(m)=f(\mu)$, output $\sigma=\mu$
\Longrightarrow Hop-S-Perfect: $\operatorname{Pr}_{\text {Game }_{2}}[1]=\operatorname{Pr}_{\text {Game }_{1}}[1]$

\mathcal{H}-Query Selection

- Game $_{3}:$ random index $t \stackrel{R}{\leftarrow}\left\{1, \ldots, q_{H}\right\}$

Event Ev

If the t-th query to \mathcal{H} is not the output forgery
We terminate the game and output 0 if Ev happens
\Longrightarrow Hop-S-Non-Negl
Then, clearly

$$
\begin{gathered}
\underset{\operatorname{Grame}_{3}}{\operatorname{Pr}}[1]=\underset{\text { Grame }_{2}}{\operatorname{Pr}}[1] \times \operatorname{Pr}[\neg \mathbf{E v}] \quad \operatorname{Pr}[\mathbf{E v}]=1-1 / q_{H} \\
\underset{\text { Game }_{3}}{\operatorname{Pr}}[1]=\operatorname{Pr}_{\text {Game }_{2}}[1] \times \frac{1}{q_{H}}
\end{gathered}
$$

OW Instance

- Game ${ }_{4}: \mathcal{P}$ - OW instance $(f, y)($ where $f \stackrel{R}{\leftarrow} \mathcal{P}, x \stackrel{R}{\leftarrow} X, y=f(x))$ Use of the simulation of the Key Generation Oracle

Simulation of \mathcal{K}

$\mathcal{K}()$: set $p k \leftarrow f$
Modification of the simulation of the Random Oracle

Simulation of \mathcal{H}

If this is the t-th query, $\mathcal{H}(m): M \leftarrow y$, output M
The unique difference is for the t-th simulation of the random oracle, for which we cannot compute a signature.
But since it corresponds to the forgery output, it cannot be queried to the signing oracle:

$$
\Longrightarrow \text { Hop-S-Perfect: } \operatorname{Pr}_{\text {Game }_{4}}[1]=\operatorname{Pr}_{\text {Game }_{3}}[1]
$$

In Game ${ }_{4}$, when the output is $1, \sigma=g(y)=g(f(x))=x$ and the simulator computes one exponentiation per hashing:

$$
\begin{aligned}
& \underset{\text { Game }_{4}}{\operatorname{Pr}}[1] \leq \operatorname{Succ}_{\mathcal{P}}^{\mathrm{OW}}\left(t+q_{H} \tau_{f}\right) \\
& \underset{\text { Grame }_{4}}{\operatorname{Pr}}[1]=\operatorname{Pr}_{\text {Game }_{3}}[1] \\
& \underset{\text { Game }_{3}}{\text { Grame }_{4}}[1]=\underset{\operatorname{Grame}_{2}}{\operatorname{Pr}}[1] \times \frac{1}{q_{H}} \\
& \underset{\text { Game }_{2}}{\operatorname{Pr}}[1]=\underset{\operatorname{Came}_{1}}{ }[1] \\
& \underset{\text { Game }_{1}}{\operatorname{Pr}}[1]=\underset{\text { Game }_{0}}{\operatorname{Pr}}[1] \\
& \underset{\operatorname{Game}_{0}}{\operatorname{Pr}}[1]=\operatorname{Succ}_{\mathcal{F D H}}^{\text {euf-cma }}(\mathcal{A}) \\
& \operatorname{Succ}_{\mathcal{F D H}}^{\text {euf-cma }}(\mathcal{A}) \leq q_{H} \times \operatorname{Succ}_{\mathcal{P}}^{\text {ow }}\left(t+q_{H} \tau_{f}\right)
\end{aligned}
$$

$$
\operatorname{Succ}_{\mathcal{F D H}}^{\text {euf-cma }}(\mathcal{A}) \leq q_{H} \times \operatorname{Succ}_{\mathcal{P}}^{\mathrm{ow}}\left(t+q_{H} \tau_{f}\right)
$$

- If one wants $\operatorname{Succ}_{\mathcal{F D H}}^{\mathrm{euf}-\mathrm{cma}}(t) \leq \varepsilon$ with $t / \varepsilon \approx 2^{80}$
- If one allows q_{H} up to 2^{60}

Then one needs $\operatorname{Succ}_{\mathcal{P}}^{\text {ow }}(t) \leq \varepsilon$ with $t / \varepsilon \geq 2^{140}$.

If one uses FDH-RSA: at least 3072 bit keys are needed.

Improvement

Signature Oracle

- Game ${ }_{3}$: use of the simulation of the Signing Oracle

Simulation of \mathcal{S}

$\mathcal{S}(m)$: find μ such that $M=\mathcal{H}(m)=f(\mu)$, output $\sigma=\mu$
Fails (with output 0) if $\mathcal{H}(m)=M=y \times f(\mu)$:
but with probability $p^{q_{s}}$
\Longrightarrow Hop-S-Non-NegI: $\operatorname{Pr}_{\text {Game }_{3}}[1]=\operatorname{Pr}_{\text {Game }_{2}}[1] \times p^{q_{s}}$
(

- Game $_{2}$: use of the homomorphic property \mathcal{P} - OW instance (f, y) (where $f \stackrel{R}{\leftarrow} \mathcal{P}, x \stackrel{R}{\leftarrow} X, y=f(x)$)

Simulation of \mathcal{H}

$\mathcal{H}(m)$: flip a biased coin b (with $\operatorname{Pr}[b=0]=p$), $\mu \stackrel{R}{\leftarrow} X$.
If $b=0$, output $M=f(\mu)$, otherwise output $M=y \times f(\mu)$
\Longrightarrow Hop-D-Perfect: $\operatorname{Pr}_{\text {Game }_{2}}[1]=\operatorname{Pr}_{\text {Game }_{1}}[1]$

Key Size

In Game $_{3}$, when the output is 1 , with probability $1-p$:

$$
\sigma=g(M)=g(y \times f(\mu))=g(y) \times g(f(\mu))=g(f(x)) \times \mu=x \times \mu
$$

$$
\underset{\operatorname{Game}_{3}}{\operatorname{Pr}}[1] \leq \operatorname{Succ}_{\mathcal{P}}^{\text {ow }}\left(t+q_{H} \tau_{f}\right) /(1-p)
$$

$$
\underset{\text { Grame }_{3}}{\operatorname{Pr}}[1]=\operatorname{Pr}_{\text {Game }_{2}}[1] \times p^{q_{S}}
$$

$$
\underset{\text { Game }_{2}}{\operatorname{Pr}}[1]=\underset{\text { Grame }_{1}}{\operatorname{Pr}}[1]
$$

$$
\operatorname{Pr}_{\operatorname{Game}_{1}}[1]=\operatorname{Pr}_{\text {Game }_{0}}[1]
$$

$$
\operatorname{Pr}_{\text {Game }_{0}}[1]=\operatorname{Succ}_{\mathcal{F D} \mathcal{H}}^{\text {euf }} \mathrm{cma}(\mathcal{A})
$$

$$
\operatorname{Succ}_{\mathcal{F D H}}^{\text {euf-cma }}(\mathcal{A}) \leq \frac{1}{(1-p) p^{q_{S}}} \times \operatorname{Succ}_{\mathcal{P}}^{\mathrm{ow}}\left(t+q_{H} \tau_{f}\right)
$$

$$
\operatorname{Succ}_{\mathcal{F D H}}^{\text {euf-cma }}(\mathcal{A}) \leq \frac{1}{(1-p) p^{q_{S}}} \times \operatorname{Succ}_{\mathcal{P}}^{\text {ow }}\left(t+q_{H} \tau_{f}\right)
$$

The maximal for $p \mapsto(1-p) p^{q_{s}}$ is reached for

$$
p=1-\frac{1}{q_{s}+1} \rightarrow \frac{1}{q_{s}+1} \times\left(1-\frac{1}{q_{s}+1}\right)^{q_{s}} \approx \frac{e^{-1}}{q_{s}}
$$

- If one wants $\operatorname{Succ}_{\mathcal{F D \mathcal { D H }}}^{\mathrm{euf}-\mathrm{cma}}(t) \leq \varepsilon$ with $t / \varepsilon \approx 2^{80}$
- If one allows q_{s} up to 2^{30}

Then one needs $\operatorname{Succ}_{\mathcal{P}}^{\text {ow }}(t) \leq \varepsilon$ with $t / \varepsilon \geq 2^{110}$.

If one uses FDH-RSA: 2048 bit keys are enough.
27/51ENS/CNRS/INRIA Cascade David Pointcheval

Outline

Basic Security Notions

Advanced Security for Signature

Forking Lemma

Zero-Knowledge Proofs

The Forking Lemma

Conclusion

Proof of Knowledge

Proof of Knowledge: Soundness

How do I prove that I know a solution s to a problem P ?
If I can be accepted, I really know a solution: extractor

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P ?
I reveal the solution...
How can do it without revealing any information?
Zero-knowledge: simulator

If there exists an efficient adversary,
then one can solve the underlying problem:

Zero-Knowledge Proof

- Setting: $(\mathbb{G}=\langle g\rangle)$ of order q \mathcal{P} knows x, such that $y=g^{-x}$ and wants to prove it to \mathcal{V}
- \mathcal{P} chooses $K \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{\star}$ sets and sends $r=g^{K}$
- \mathcal{V} chooses $h \stackrel{R}{\leftarrow}\{0,1\}^{k}$ and sends it to \mathcal{P}
- \mathcal{P} computes and sends $s=K+x h \bmod q$
- \mathcal{V} checks whether $r \stackrel{?}{=} g^{s} y^{h}$

Signature

- $(\mathbb{G}=\langle g\rangle)$ of order q $\mathcal{H}:\{0,1\}^{\star} \rightarrow \mathbb{Z}_{q}$
- Key Generation $\rightarrow(y, x)$ private key $\quad x \in \mathbb{Z}_{q}^{\star}$ public key $\quad y=g^{-x}$
- Signature of $m \rightarrow(r, h, s)$
$K \stackrel{R}{\leftarrow} \mathbb{Z}_{a}^{\star} \quad r=g^{K}$
$h=\mathcal{H}(m, r)$ and $s=K+x h \bmod q$
- Verification of (m, r, s) compute $h=\mathcal{H}(m, r)$ and check $r \stackrel{?}{=} g^{s} y^{h}$

Generic Zero-Knowledge Proofs

Zero-Knowledge Proof

- Proof of knowledge of x, such that $\mathcal{R}(x, y)$
- \mathcal{P} builds a commitment r and sends it to \mathcal{V}
- \mathcal{V} chooses a challenge $h \stackrel{R}{\leftarrow}\{0,1\}^{k}$ for \mathcal{P}
- \mathcal{P} computes and sends the answer s
- \mathcal{V} checks (r, h, s)

Signature

\mathcal{H} viewed as a random oracle

- Key Generation $\rightarrow(y, x)$ private: x public: y
- Signature of $m \rightarrow(r, h, s)$ Commitment r
Challenge $h=\mathcal{H}(m, r)$ Answer s
- Verification of (m, r, s) compute $h=\mathcal{H}(m, r)$ and check (r, h, s)

Σ Protocols

Zero-Knowledge Proof

- Proof of knowledge of x
- \mathcal{P} sends a commitment r
- \mathcal{V} sends a challenge h
- \mathcal{P} sends the answer s
- \mathcal{V} checks (r, h, s)

Signature

- Key Generation $\rightarrow(y, x)$
- Signature of $m \rightarrow(r, h, s)$ Commitment r Challenge $h=\mathcal{H}(m, r)$ Answer s
- Verification of (m, r, s) compute $h=\mathcal{H}(m, r)$ and check (r, h, s)

Special soundness

If one can answer to two different challenges $h \neq h^{\prime}: s$ and s^{\prime} for a unique commitment r, one can extract x

When a subset A is "large" in a product space $X \times Y$,

Let $A \subset X \times Y$ such that $\operatorname{Pr}[(x, y) \in A] \geq \varepsilon$. For any $\alpha<\varepsilon$, define

$$
B_{\alpha}=\left\{(x, y) \in X \times Y \mid \operatorname{Pr}_{y^{\prime} \in Y}\left[\left(x, y^{\prime}\right) \in A\right] \geq \varepsilon-\alpha\right\}, \quad \text { then }
$$

(ii) $\forall(x, y) \in B_{\alpha}, \operatorname{Pr}_{y^{\prime} \in Y}\left[\left(x, y^{\prime}\right) \in A\right] \geq \varepsilon-\alpha$.
(iii) $\operatorname{Pr}\left[B_{\alpha} \mid A\right] \geq \alpha / \varepsilon$.

Outline

Splitting Lemma

Idea

 it has many "large" sections.
The Splitting Lemma

(i) $\operatorname{Pr}\left[B_{\alpha}\right] \geq \alpha$

Basic Security Notions

Advanced Security for Signature

Forking Lemma

Zero-Knowledge Proofs
The Forking Lemma

Forking Lemma - Proof

Forking Lemma - Proof

- \mathcal{A} is a PPTM with random tape ω.
- During the attack, \mathcal{A} asks a polynomial number of queries to \mathcal{H}.
- We may assume that these questions are distinct:
- $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{q_{H}}$ are the q_{H} distinct questions
- and let $H=\left(h_{1}, \ldots, h_{q_{H}}\right)$ be the list of the q_{H} answers of \mathcal{H}. Note: a random choice of $\mathcal{H}=$ a random choice of H.
- For a random choice of (ω, \mathcal{H}), with probability ε, \mathcal{A} outputs a valid signature (m, r, h, s).
- Since \mathcal{H} is a random oracle, the probability for h to be equal to $\mathcal{H}(m, r)$ is less than $1 / 2^{k}$, unless it has been asked during the attack.

Accordingly, we define $\operatorname{Ind} \mathcal{H}_{\mathcal{H}}(\omega)$ to be the index of this question: $(m, r)=\mathcal{Q}_{\operatorname{Ind} d_{\mathcal{H}}(\omega)} \quad\left(\operatorname{Ind_{\mathcal {H}}}(\omega)=\infty\right.$ if the question is never asked $)$.

We then define the sets
$\mathcal{S}=\left\{(\omega, \mathcal{H}) \mid \mathcal{A}^{\mathcal{H}}(\omega)\right.$ succeeds $\left.\& \operatorname{Ind}_{\mathcal{H}}(\omega) \neq \infty\right\}$,
$\mathcal{S}_{i}=\left\{(\omega, \mathcal{H}) \mid \mathcal{A}^{\mathcal{H}}(\omega)\right.$ succeeds $\left.\& \operatorname{Ind}_{\mathcal{H}}(\omega)=i\right\} \quad i \in\left\{1, \ldots, q_{H}\right\}$.

Note: the set $\left\{\mathcal{S}_{i}\right\}$ is a partition of \mathcal{S}.

$$
\nu=\operatorname{Pr}[\mathcal{S}] \geq \varepsilon-1 / 2^{k}
$$

Since $\varepsilon \geq 7 q_{H} / 2^{k} \geq 7 / 2^{k}$, then

$$
\nu \geq 6 \varepsilon / 7
$$

Forking Lemma - Proof

Let I be the set consisting of the most likely indices i,

$$
I=\left\{i \mid \operatorname{Pr}\left[\mathcal{S}_{i} \mid \mathcal{S}\right] \geq 1 / 2 q_{H}\right\}
$$

Lemma

$$
\operatorname{Pr}\left[\operatorname{lnd} d_{\mathcal{H}}(\omega) \in I \mid \mathcal{S}\right] \geq \frac{1}{2} .
$$

By definition of \mathcal{S}_{i},

$$
\operatorname{Pr}\left[\ln d_{\mathcal{H}}(\omega) \in I \mid \mathcal{S}\right]=\sum_{i \in I} \operatorname{Pr}\left[\mathcal{S}_{i} \mid \mathcal{S}\right]=1-\sum_{i \notin I} \operatorname{Pr}\left[\mathcal{S}_{i} \mid \mathcal{S}\right] .
$$

- Run $2 / \varepsilon$ times \mathcal{A}, with independent random ω and random \mathcal{H}. Since $\nu=\operatorname{Pr}[\mathcal{S}] \geq 6 \varepsilon / 7$, with probability greater than $1-(1-\nu)^{2 / \varepsilon} \geq 4 / 5$, we get at least one pair (ω, \mathcal{H}) in \mathcal{S}.
- Apply the Splitting Lemma, with $\varepsilon=\nu / 2 q_{h}$ and $\alpha=\varepsilon / 2$, for $i \in I$. We denote by $\mathcal{H}_{j i}$ the restriction of \mathcal{H} to queries of index $<i$. Since $\operatorname{Pr}\left[\mathcal{S}_{i}\right] \geq \nu / 2 q_{H}$, there exists a subset Ω_{i} such that,

$$
\begin{aligned}
\forall(\omega, \mathcal{H}) \in \Omega_{i}, \quad \underset{\mathcal{H}^{\prime}}{ }\left[\left(\omega, \mathcal{H}^{\prime}\right) \in \mathcal{S}_{i} \mid \mathcal{H}_{\mid i}^{\prime}=\mathcal{H}_{\mid i}\right] & \geq \frac{\nu}{4 q_{H}} \\
\operatorname{Pr}\left[\Omega_{i} \mid \mathcal{S}_{i}\right] & \geq \frac{1}{2} .
\end{aligned}
$$

Since the complement of $/$ contains fewer than q_{H} elements,

$$
\sum_{i \notin l} \operatorname{Pr}\left[\mathcal{S}_{i} \mid \mathcal{S}\right] \leq q_{H} \times 1 / 2 q_{H} \leq 1 / 2
$$

Forking Lemma - Proof

Forking Lemma - Proof

Since all the subsets \mathcal{S}_{i} are disjoint,

$$
\underset{\omega, \mathcal{H}}{\operatorname{Pr}}\left[(\exists i \in I)(\omega, \mathcal{H}) \in \Omega_{i} \cap \mathcal{S}_{i} \mid \mathcal{S}\right]
$$

$$
=\operatorname{Pr}\left[\bigcup_{i \in I}\left(\Omega_{i} \cap \mathcal{S}_{i}\right) \mid \mathcal{S}\right]=\sum_{i \in I} \operatorname{Pr}\left[\Omega_{i} \cap \mathcal{S}_{i} \mid \mathcal{S}\right]
$$

$$
=\sum_{i \in I} \operatorname{Pr}\left[\Omega_{i} \mid \mathcal{S}_{i}\right] \cdot \operatorname{Pr}\left[\mathcal{S}_{i} \mid \mathcal{S}\right] \geq\left(\sum_{i \in I} \operatorname{Pr}\left[\mathcal{S}_{i} \mid \mathcal{S}\right]\right) / 2 \geq \frac{1}{4}
$$

Let β denote the index $\operatorname{Ind} \mathcal{H}_{\mathcal{H}}(\omega)$ of to the successful pair.
With prob. at least $1 / 4, \beta \in I$ and $(\omega, \mathcal{H}) \in \mathcal{S}_{\beta} \cap \Omega_{\beta}$.
With prob. greater than $4 / 5 \times 1 / 4=1 / 5$, the $2 / \varepsilon$ attacks provided a successful pair (ω, \mathcal{H}), with $\beta=\operatorname{Ind}_{\mathcal{H}}(\omega) \in I$ and $(\omega, \mathcal{H}) \in \mathcal{S}_{\beta}$.

We know that $\operatorname{Pr}_{\mathcal{H}^{\prime}}\left[\left(\omega, \mathcal{H}^{\prime}\right) \in \mathcal{S}_{\beta} \mid \mathcal{H}_{\mid \beta}^{\prime}=\mathcal{H}_{\mid \beta}\right] \geq \nu / 4 q_{H}$. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[\left(\omega, \mathcal{H}^{\prime}\right) \in \mathcal{S}_{\beta} \text { and } h_{\beta} \neq h_{\beta}^{\prime} \mid \mathcal{H}_{\mid \beta}^{\prime}=\mathcal{H}_{\mid \beta}\right] \\
& \geq \operatorname{Pr}_{\mathcal{H}^{\prime}}\left[\left(\omega, \mathcal{H}^{\prime}\right) \in \mathcal{S}_{\beta} \mid \mathcal{H}_{\mid \beta}^{\prime}=\mathcal{H}_{\mid \beta}\right]-\underset{\mathcal{H}^{\prime}}{\operatorname{Pr}}\left[h_{\beta}^{\prime}=h_{\beta}\right] \geq \nu / 4 q_{H}-1 / 2^{k}
\end{aligned}
$$

where $h_{\beta}=\mathcal{H}\left(\mathcal{Q}_{\beta}\right)$ and $h_{\beta}^{\prime}=\mathcal{H}^{\prime}\left(\mathcal{Q}_{\beta}\right)$.

Using the assumption that $\varepsilon \geq 7 q_{H} / 2^{k}$, the above prob. is $\geq \varepsilon / 14 q_{H}$.

Replay the attack $14 q_{H} / \varepsilon$ times with a new random oracle \mathcal{H}^{\prime} such that $\mathcal{H}_{\mid \beta}^{\prime}=\mathcal{H}_{\mid \beta}$, and get another success with probability greater than

$$
1-\left(1-\varepsilon / 14 q_{H}\right)^{14 q_{H} / \varepsilon} \geq 3 / 5
$$

Forking Lemma - Proof

Finally, after less than $2 / \varepsilon+14 q_{H} / \varepsilon$ repetitions of the attack, with probability greater than $1 / 5 \times 3 / 5 \geq 1 / 9$, we have obtained two signatures (m, r, h, s) and $\left(m, r, h^{\prime}, s^{\prime}\right)$, both valid w.r.t. their specific random oracle \mathcal{H} or \mathcal{H}^{\prime} :

$$
\mathcal{Q}_{\beta}=(m, r) \text { and } h=\mathcal{H}\left(\mathcal{Q}_{\beta}\right) \neq \mathcal{H}^{\prime}\left(\mathcal{Q}_{\beta}\right)=h^{\prime}
$$

Chosen-Message Attacks

In order to answer signing queries, one simply uses the simulator of the zero-knowledge proof: (r, h, s), and we set $\mathcal{H}(m, r) \leftarrow h$.
The random oracle programming may fail, but with negligible probability.

Outline

Conclusion

Basic Security Notions

Advanced Security for Signature

Forking Lemma

Conclusion

Conclusion

Two generic methodologies for signatures

- hash and invert
- the Forking Lemma

Both in the random-oracle model

- Cramer-Shoup: based on the flexible RSA problem
- Based on Pairings
- etc

