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Public-Key Encryption OW — CPA Security Game

K G — &

ke kd m* random l
l l r rand(l);l *
m —. & - B A
r B 1D X —
l m =m
m Suce(A) = Pr{(sk, pk) < K();m & M; c = & (m) : A(pk,c) — m

Goal: Privacy/Secrecy of the plaintext

Outline
e G kd
»0{0,1} |
r random my Basic Security Notions
m;
"B A Signatures
r —
P :
* b -——
b’=b

(sk, pk) < K();(mg, my, state) <+ A(pk);
bl {0,1};c = Epk(mp); b’ < A(state, c)

Advg® = PA(A)=|Pr[b' = 1]b=1]-Pr[t/ = 1]b=0]|=|2 x Pr[t/ = b] 1|
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Signature EUF — NMA

K, K,
| | G
|
m— 8] —°
\Y4 A
m (m’ol)%
l V(K,m,0)?
011 Succglg(A) = Pr[(sk, pk) < K(); (m, o) + A(pk) : Vpk(m, o) = 1]
Goal: Authentication of the sender
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Signature EUF — NMA

K, K, =
| | |
m_ .| 2
V (m.o)~— A
m
: Vik,m,c)?

011 The adversary knows the public key only,
whereas signatures are not private!

Goal: Authentication of the sender

NRS/INRIA Cascade avid Poi eva NRS/INRIA Cascade

EUF — CMA SUF — CMA

(m,O) I A (m,G) D A
Vi, m#m, Vi, (m,0)#(m,0)
V(k,m,c)? V(k,m,c)?
The adversary has access to any signature of its choice: The notion is even stronger (in case of probabilistic signature):
Chosen-Message Attacks (oracle access): also known as non-malleability:

(sk, pk) < K(); (m, o) < A°(pkK) :
Vi,m# mi A Vpx(m, o) =1

[ sk, k) k() (m, o) < AS(pK) -

Succédf—cmas 4y — p Succid—cma(4) = P
uccgg - (A) = Pr neesg T (A) = Pr Vi, (m, o) # (mj,0i) A Vpk(m, o) =1
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Outline

Advanced Security for Signature

Hash-then-Invert Paradigm

Random Oracle Model

Full-Domain Hash Signature

[Bellare-Rogaway — Eurocrypt *94]
Signature Scheme

» Key generation: the public key f B pisa trapdoor one-way
bijection from X onto Y; the private key is the inverse g : Y — X;
 Signature of M € Y: 0 = g(M);

« Verification of (M, o): check f(c) = M
Full-Domain Hash (Hash-and-Invert)
H:{0,1}* =Y

« in order to sign m, one computes M = H(m) € Y, and o = g(M)
« and the verification consists in checking whether f(o) = H(m)

Security of the FDH Signature

Random Oracle

« H is modelled as a truly random function, from {0,1}* into Y.

- Formally, # is chosen at random at the beginning of the game.

« More concretely, for any new query, a random element in Y is
uniformly and independently drawn

Any security game becomes:

R voo. . SH .
Succgugf—cma(A):Pr HEY v(Skvpk)H’C()'(ma J)HA (pk) '
Vi,m# m; A Vpk(m, o) =1

ENS/CNRS/INRIA Cascade David Pointcheval

Theorem
The FDH signature achieves EUF — CMA security, under the
One-Wayness of P, in the Random Oracle Model:

euf—cma

Succ DU

(t) < g x Suce (t + quy)

Assumptions:

« any signing query has been first asked to ‘H
« the forgery has been asked to H

77 is the maximal time to evaluate f € P
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Game 0 Oracles

00
/ N\

Challenger
* (pk, sk) < K()

« Checks (m,o)
- if new and valid: 1 |:> 0/1
* else 0

Random Oracle Key Generation Oracle

H(m): M vl Y, output M K(): (f,9) vl P, sk« g, pk < f

Signing Oracle
S(m): M = H(m), output o = g(M)

NRBS/INRIA C3

H-Query Selection

- Gamey: use of the oracles K, S and ‘H

« Game;: use of the simulation of the Random Oracle
Simulation of %
H(m): p vl X, output M = f(p)

— Hop-D-Perfect: Prgame, [1] = Prgame,[1]

« Gamey: use of the simulation of the Signing Oracle
Simulation of S
S(m): find p such that M = H(m) = f(u), output o = p

—> Hop-S-Perfect: Prgame,[1] = Prgame, [1]

OW Instance

« Games: random index t vl {1,...,94}

Event Ev
If the t-th query to # is not the output forgery

We terminate the game and output 0 if Ev happens

—> Hop-S-Non-Negl

Then, clearly

Pr [1] = Pr [1] x Pr[-EV] Prl[Ev]=1—-1/qy
Game,

Game;

Pr [1]= Pr [1]><q1H

Game; Game,

ENS/CNRS/INRIA Cascade David Pointcheval

« Game,: P — OW instance (f, y) (where f vl P, x vl X,y = f(x))
Use of the simulation of the Key Generation Oracle
Simulation of
KC(): set pk « f

Modification of the simulation of the Random Oracle
Simulation of H
If this is the t-th query, #(m): M « y, output M

The unique difference is for the t-th simulation of the random
oracle, for which we cannot compute a signature.

But since it corresponds to the forgery output, it cannot be
queried to the signing oracle:

—> Hop-S-Perfect: Prgame,[1] = Prgame,[1]
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Summary Key Size

In Gamey, when the outputis 1, 0 = g(y) = g(f(x)) = x

and the simulator computes one exponentiation per hashing: Succ-CMa(A) < gy x Suce' (t + quy)
< ow

GaF;:ellm < Sucep (14 ) « If one wants SuccS-S™3(t) < e with t/e ~ 280
Pr [1] = _Pr [1 . 60

Ganfe4[ ] Gamres[ ] If one allows gy up to 2

Ga*?nrea[ﬂ = Ga'?nrez[ﬂ X Then one needs Succy (t) < & with t/e > 2140,
Pr [1] = Pr [1]

Game; Game If one uses FDH-RSA: at least 3072 bit keys are needed.
Pr [1] = Pr [1]

Game; Game
Pr 1 — S euf—cma

Gan:eo[ ] UeCron (A)

euf—cma

Suce,iM(A) < gy x SueeRy' (t + guy)

Improvement [Coron — Crypto *00] Signature Oracle

In the case that f is homomorphic (as RSA): f(ab) = f(a)f(b) . Games: use of the simulation of the Signing Oracle

« Game,: use of the oracles K, S and H
« Game;: use of the simulation of the Random Oracle

Simulation of S
S(m): find p such that M = H(m) = f(u), output o = p
Simulation of H
Fails (with output 0) if H(m) = M =y x f(p):
but with probability p9s

— Hop'D'PerfeCt: PrGame_l [1] = PrGameo[1] —> Hop-S-Non-Negl: PrGames[1] — PrGame2[1] X pqs
« Game,: use of the homomorphic property

P — OW instance (f, y) (where f & P, x & X,y = f(x))

Simulation of 4

H(m): u Vily'g output M = f(u)

#(m): flip a biased coin b (with Pr[b = 0] = p), u & X.
If b= 0, output M = f(u), otherwise output M = y x f(u)

—> Hop-D-Perfect: Prgame,[1] = Prgame, [1]
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Summary Key Size

In Games, when the output is 1, with probability 1 — p:

Succeuf—cma(A) < ; « SuccOW(t+ q T)
o =9g(M) = g(y x (1)) = 9(y) x g(f(1)) = g(F(x)) x pu = x x s (1 - p)p9s P T AT

. s
Pr 1] < Succ%“(t+ aur)/(1 = p) The maximal for p — (1 — p)p9s is reached for

Game;

Pr 1] = Pr [1]xp% pet— o ><(1_ L )qsze__1
Game; Game;, Qs + 1 Qs + 1 gs + 1 ds
Pr 1] = Pr [1]
Game, Game;
Ga|:|)11re1 1 = Gal::]1re0[1] « If one wants SuccS-S™3(t) < ¢ with t/e ~ 280
Pr [1] = Succ®¥-cma( g « If one allows to 230
Garrfeo[ ] ucCrpy - (A) WS gs up
_ 1 Then one needs Succ®Y(t) < e with t/e > 2110,
Suecipi(4) < A= pypre ~ Suecp (1 + Qi) P= =
If one uses FDH-RSA: 2048 bit keys are enough.
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Forking Lemma

Forking Lemma

Zero-Knowledge Proofs
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Proof of Knowledge Proof of Knowledge: Soundness

How do | prove that | know a solution s to a problem P? If I can be accepted, | really know a solution: exiractor
Public Data P
Public Data P
Prover Verifier d l
A communication Prover Extractor
B communication
| Wg Tl A Iw_ E
W Secret s 1 = We
Polynomial wA
Size Polynomial Time $

Proof of Knowledge: Zero-Knowledge Proof of Knowledge

- ?
How do | prove that | know a solution s to a problem P~ How do | prove that | know a 3-color covering,

| reveal the solution. .. without revealing any information?

How can do it without revealing any information?

Zero-knowledge: simulator

Public Data P —‘
[ ()

Prover

A communication
TI [, \ Verifier
Indistinguishable B | choose a random permutation on the colors
Simulator I and | apply it to the vertices | mask the vertices
S IT communication |T and send it to thg verifier The verlflgr choo§es an edge | open it
- - The verifier checks the validity: 2 different colors
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Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary,
then one can solve the underlying problem:

Cheater
C w

communication

1

Simulator

S
o]

Public Data P

Hist l

Cheater
Clw

communication
wz

2

Generic Zero-Knowledge Proofs

Extractor

E

We
S

Schnorr Proofs

[Schnorr — Eurocrypt *89 - Crypto *89]

Zero-Knowledge Proof Signature

« Setting: (G = (g)) of order g * (G=(g)) of order g

P knows x, such thaty = g=* H: {0, 1} = Zg
and wants to prove it to V « Key Generation — (y, x)
. P chooses K & Zg private key  x € Zg

sets and sends r = g¥ publickey y=g*
V chooses h & {0, 1}k Signature of m — (r, h, s)
and sends it to P K& zy r=g~
h=H(m,r)and
s =K+ xhmod q

P computes and sends
s=K+ xhmod q

Verification of (m, r, s)
compute h=H(m,r)
and check r = gSy"

V checks whether r = gSy”

Y Protocols

Zero-Knowledge Proof

 Proof of knowledge of x,
such that R(x, y)

‘P builds a commitment r
and sends itto V

V chooses a challenge
h& 0,11 for P

Signature
H viewed as a random oracle

 Key Generation — (y, x)
private: x

public: y

« Signature of m — (r, h, s)
Commitment r
Challenge h = H(m,r)

Answer s

P computes and sends
the answer s

V checks (r, h, s)

ENS/CNRS/INRIA Cascade David Pointcheval

« Verification of (m, r, s)
compute h = H(m,r)

and check (r, h, s)

Zero-Knowledge Proof Signature

« Proof of knowledge of x » Key Generation — (y, x)

- Signature of m — (r, h, s)
Commitment r
Challenge h = #H(m,r)
Answer s

« P sends a commitment r

« V sends a challenge h

P sends the answer s
V checks (r, h, s)

« Verification of (m, r, s)
compute h=H(m,r)
and check (r, h, s)

Special soundness
If one can answer to two different challenges h # h': sand s’
for a unique commitment r, one can extract x
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Outline Splitting Lemma

Idea
When a subset Ais “large” in a product space X x Y,
it has many “large” sections.

Let AC X x Y such that Pr[(x,y) € A] > . For any a < ¢, define

Forking Lemma
Ba:{(x,y)eXx Y| Pry[(x,y’)eA]zs—a}, then
y'e

The Forking Lemma ] e
V(Xu}/) € B,, Pry’eY[(X,y/) € A] > e — .
Pr[B. | Al > a/e.

Spllttlng Lemma - Proof Forking Lemma [Pointcheval-Stern — Eurocrypt *96]

Theorem (The Forking Lemma)

Let (KC,S,V) be a digital signature scheme with security
parameter k, with a signature as above, of the form (m,r, h, s),
e < Pr[B] - Pr[A| B] + P,—[B] - PrlA| 1‘3] <a-14+1.-(e—a)==. where h = H(m, r) and s depends on r and h only.

(/) we argue by contradiction, using the notation B for the
complement of B in X x Y. Assume that Pr[B,] < a. Then,

Let A be a probabilistic polynomial time Turing machine whose
input only consists of public data and which can ask qn queries to
the random oracle, with qy > 0.

(i) straightforward.

(i) using Bayes’ law:

Pr[B|A] = 1—Pr[B|A] We assume that, within the time bound T, A produces, with
= 1—Pr[A|B]-Pr[B]/Prl[A] > 1 — (¢ — &) /e = a/e. probability ¢ > 7qy/2%, a valid signature (m, r, h, s).
Then, within time T' < 16qu T /<, and with probability ' > 1/9, a
replay of this machine outputs two valid signatures (m, r, h, s)
and (m,r,h' s") such thath # H.
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Forking Lemma — Proof Forking Lemma - Proof

« Ais a PPTM with random tape w.

 During the attack, A asks a polynomial number of queries to H.

« We may assume that these questions are distinct:

« Q1,...,Qq, are the gy distinct questions
« andlet H = (hy,..., hg,) be the list of the gy answers of #.

Note: a random choice of ‘H = a random choice of H.

« For a random choice of (w, ), with probability ¢, .A outputs a
valid signature (m, r, h, s).

« Since H is a random oracle, the probability for h to be equal to
H(m, r) is less than 1/2k, unless it has been asked during the
attack.

Accordingly, we define Indy(w) to be the index of this question:

(m,r) = Q,ndﬂ(w) (Indy(w) = oo if the questlon is never asked).

Forking Lemma — Proof

We then define the sets

S =
S =

{(w, H) | A™(w) succeeds & Indy(w) # oo},

{(w,H) | A*(w) succeeds & Indy(w) =i} i€ {1,...,qu}

Note: the set {S;} is a partition of S.

v =Pr[S] >e—1/2k

Since £ > 7qy /2% > 7/2%, then

v >6¢e/7.

Forking Lemma — Proof

Let / be the set consisting of the most likely indices /,
I'={il Pr[Si| 5] = 1/2q4} -
Lemma

Prlindsy(w) € 18] > %

By definition of S;,

Pr{indy(w) € 1]S] =

D PSS =1-) Pr[Si|S].

iel il
Since the complement of / contains fewer than qy elements,
D PriSi|S] < gy x 1/2qy < 1/2.
igl

ENS/CNRS/INRIA Cascade David Pointcheval

« Run 2/¢ times A, with independent random w and random H.
Since v = Pr[S] > 6¢/7, with probability greater than
1— (1 —v)? > 4/5, we get at least one pair (w, ) in S.
 Apply the Splitting Lemma, with ¢ = v/2q, and aw = ¢/2, for i € I.
We denote by #,; the restriction of H to queries of index < /.
Since Pr[Sj] > v/2qy, there exists a subset Q; such that,

E

V(w, M) € Qj, 5;[(W,H/) eS| H;=H] >

N = B

Pr[Q;|Si] >
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Forking Lemma — Proof Forking Lemma - Proof

Since all the subsets S; are disjoint, We know that Pry/[(w, H') € Ss | H|’B = H 5] > v/4gn. Then
P7r_[[(5|i el)(w,H) e QinSi|S] 7F;;[(w,’H’) € Sgand hg # Wy | Hjs = H)g]
> Pri(w, H') € Sg | Hig = Hig] — Prlhg = hg] > v/4qy —1/2%,
= PrilJ@ins)IS| =Y PrnSi|S] 7 7
iel iel where hs = H(Qp) and hy = H'(Qg).
1

el icl Using the assumption that e > 7qy /2", the above prob. is > ¢/14qy.
Let 3 denote the index Indy(w) of to the successful pair. Replay the attack 14qy /e times with a new random oracle #’ such
With prob. at least 1/4, 5 € I and (w, M) € Sg N Q. that Hfﬁ = H,g, and get another success with probability greater than
With prob. greater than 4/5 x 1/4 = 1/5, the 2/¢ attacks provided a 1 (1 —¢/14qy) 14/ > 3/5.

successful pair (w, #), with 8 = Indy(w) € land (w, H) € Sg.

Chosen-Message Attacks

(n”{i r) In order to answer signing queries, one simply uses the simulator of
A 9919 ... 9 B0 S the zero-knowledge proof: (r, h, s), and we set H(m, r) < h.
e The random oracle programming may fail, but with negligible
' h...o b ili
H i J - (m, 1, H,8) probability.

Finally, after less than 2/ + 14qy /< repetitions of the attack, with
probability greater than 1/5 x 3/5 > 1/9, we have obtained two
signatures (m, r, h,s) and (m, r, i, s"), both valid w.r.t. their specific
random oracle H or H':

Q; = (m,r) and h=H(Qy) # H'(Qs) = .

ENS/CNRS/INRIA Cascade David Pointcheval 48/51ENS/CNRS/INRIA Cascade David Pointcheval 49/51



Conclusion

Conclusion

Two generic methodologies for signatures

 hash and invert
« the Forking Lemma

Both in the random-oracle model

« Cramer-Shoup: based on the flexible RSA problem
» Based on Pairings

* etc
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