Provable Security in the Computational Model

III – Signatures

David Pointcheval
Ecole normale supérieure, CNRS & INRIA
MPRI – Paris

Outline

1 Basic Security Notions
- Public-Key Encryption
- Signatures

2 Advanced Security for Signature
- Advanced Security Notions
- Hash-then-Invert Paradigm

3 Forking Lemma
- Zero-Knowledge Proofs
- The Forking Lemma

4 Conclusion

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext
OW – CPA Security Game

\[m^* \overset{?}{=} m \]

\[\text{Succ}^\text{OW}_S(A) = \Pr[(sk, pk) \leftarrow \mathcal{K}(); m \overset{R}{\leftarrow} \mathcal{M}; c = \varepsilon_{pk}(m) : A(pk, c) \rightarrow m] \]

IND – CPA Security Game

\[b' \overset{?}{=} b \]

\[\text{Adv}^\text{ind-\text{cpa}}_S(A) = \Pr[b' = 1|b = 1] - \Pr[b' = 1|b = 0] = 2 \times \Pr[b' = b] - 1 \]

Outline

1. **Basic Security Notions**
 - Public-Key Encryption
 - Signatures

2. **Advanced Security for Signature**

3. **Forking Lemma**

4. **Conclusion**

Signature

- **Goal:** Authentication of the sender
Signature

Goal: Authentication of the sender

The adversary knows the public key only, whereas signatures are not private!
H-Query Selection

- **Game**: random index \(t \in \{1, \ldots, q_H \} \)

Event \(Ev \)

If the \(t \)-th query to \(H \) is not the output forgery

\[\Rightarrow \text{Hop-S-Non-Negl} \]

Then, clearly

\[
\Pr_{Game_3}[1] = \Pr_{Game_2}[1] \times \Pr[\neg Ev] = 1 - 1/q_H
\]

\[
\Pr_{Game_3}[1] = \Pr_{Game_2}[1] \times \frac{1}{q_H}
\]

Summary

In **Game**\(_4\), when the output is 1, \(\sigma = g(y) = g(f(x)) = x \)

and the simulator computes one exponentiation per hashing:

\[
\Pr_{Game_4}[1] \leq \text{Succ}_{FDH}^{euf-cma}(A) \leq q_H \times \text{Succ}_{P}^{ow}(t + q_H \tau_f)
\]

- If one wants \(\text{Succ}_{FDH}^{euf-cma}(A) \leq \varepsilon \) with \(t/\varepsilon \approx 2^{80} \)
- If one allows \(q_H \) up to \(2^{60} \)

Then one needs \(\text{Succ}_{P}^{ow}(t) \leq \varepsilon \) with \(t/\varepsilon \geq 2^{140} \).

If one uses FDH-RSA: at least 3072 bit keys are needed.
Signature Oracle

Game$_3$: use of the simulation of the Signing Oracle

Simulation of S

$S(m)$: find μ such that $M = H(m) = f(\mu)$, output $\sigma = \mu$

Fails (with output 0) if $H(m) = M = y \times f(\mu)$:

$$\implies \text{Hop-S-Non-Negl: } \Pr_{\text{Game}_3}[1] = \Pr_{\text{Game}_2}[1] \times p^{q_S}$$

Summary

In Game$_3$, when the output is 1, with probability $1 - p$:

$$\sigma = g(M) = g(y \times f(\mu)) = g(y) \times g(f(\mu)) = g(f(x)) \times \mu = x \times \mu$$

$$\Pr_{\text{Game}_3}[1] \leq \text{Succ}^{ow}(t + q_H \tau_f) / (1 - p)$$

$$\Pr_{\text{Game}_3}[1] = \Pr_{\text{Game}_2}[1] \times p^{q_S}$$

$$\Pr_{\text{Game}_2}[1] = \Pr_{\text{Game}_1}[1]$$

$$\Pr_{\text{Game}_1}[1] = \Pr_{\text{Game}_0}[1]$$

$$\Pr_{\text{Game}_0}[1] = \text{Succ}^{\text{euf-cma}}(A)$$

$$\text{Succ}^{\text{euf-cma}}_\text{FDH}(A) \leq \frac{1}{(1 - p)p^{q_S}} \times \text{Succ}^{ow}_P(t + q_H \tau_f)$$

The maximal for $p \mapsto (1 - p)p^{q_S}$ is reached for

$$p = 1 - \frac{1}{q_S + 1} \implies \frac{1}{q_S + 1} \times \left(1 - \frac{1}{q_S + 1}\right)^{q_S} \approx e^{-1}$$

Key Size

If one wants $\text{Succ}^{\text{euf-cma}}(t) \leq \varepsilon$ with $t/\varepsilon \approx 2^{80}$

If one allows q_S up to 2^{30}

Then one needs $\text{Succ}^{ow}_P(t) \leq \varepsilon$ with $t/\varepsilon \geq 2^{110}$.

If one uses FDH-RSA: 2048 bit keys are enough.
Proof of Knowledge

How do I prove that I know a solution \(s \) to a problem \(P \)?

Proof of Knowledge: Soundness

If I can be accepted, I really know a solution: extractor

Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution \(s \) to a problem \(P \)?

I reveal the solution . . .

How can do it without revealing any information?

Zero-knowledge: simulator
Proof of Knowledge

How do I prove that I know a 3-color covering, without revealing any information?

(a)
I choose a random permutation on the colors and I apply it to the vertices I mask the vertices and send it to the verifier. The verifier chooses an edge I open it. The verifier checks the validity: 2 different colors.

Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary, then one can solve the underlying problem:

Schnorr Proofs

Zero-Knowledge Proof

Setting: \((G = \langle g \rangle) \) of order \(q \)
\(P \) knows \(x \), such that \(y = g^{-x} \) and wants to prove it to \(V \)
- \(P \) chooses \(K \sim \mathbb{Z}_q \)
- \(P \) computes and sends \(r = g^K \)
- \(V \) chooses \(h \sim \{0, 1\}^k \)
- \(V \) checks whether \(r \equiv g^{xy} \)

Signature

H: \(\{0, 1\} \rightarrow \mathbb{Z}_q \)
- Key Generation \(\rightarrow (y, x) \)
 - private key \(x \in \mathbb{Z}_q \)
 - public key \(y = g^{-x} \)
- Signature of \(m \rightarrow (r, h, s) \)
 - \(K \sim \mathbb{Z}_q \)
 - \(r = g^K \)
 - \(h = H(m, r) \)
 - \(s = K + xh \mod q \)
- Verification of \((m, r, s) \)
 - compute \(h = H(m, r) \)
 - and check \(r \equiv g^s y^h \)

Generic Zero-Knowledge Proofs

Zero-Knowledge Proof

- Proof of knowledge of \(x \), such that \(R(x, y) \)
- \(P \) builds a commitment \(r \) and sends it to \(V \)
- \(V \) chooses a challenge \(h \sim \{0, 1\}^k \) for \(P \)
- \(P \) computes and sends the answer \(s \)
- \(V \) checks \((r, h, s) \)

Signature

- \(H \) viewed as a random oracle
- Key Generation \(\rightarrow (y, x) \)
 - private: \(x \)
 - public: \(y \)
- Signature of \(m \rightarrow (r, h, s) \)
 - Commitment \(r \)
 - Challenge \(h = H(m, r) \)
 - Answer \(s \)
- Verification of \((m, r, s) \)
 - compute \(h = H(m, r) \)
 - and check \((r, h, s) \)
Zero-Knowledge Proof
- Proof of knowledge of x
- P sends a commitment r
- V sends a challenge h
- P sends the answer s
- V checks (r, h, s)

Signature
- Key Generation $\rightarrow (y, x)$
- Signature of $m \rightarrow (r, h, s)$
 - Commitment r
 - Challenge $h = H(m, r)$
 - Answer s
- Verification of (m, r, s)
 - compute $h = H(m, r)$
 - and check (r, h, s)

Special soundness
If one can answer to two different challenges $h \neq h'$: s and s' for a unique commitment r, one can extract x.

Splitting Lemma

Idea
When a subset A is “large” in a product space $X \times Y$, it has many “large” sections.

The Splitting Lemma
Let $A \subseteq X \times Y$ such that $\Pr[(x, y) \in A] \geq \varepsilon$. For any $\alpha < \varepsilon$, define

$$B = \left\{(x, y) \in X \times Y \mid \Pr_{y \in Y}[x, y] \in A] \geq \varepsilon - \alpha \right\},$$

then

(i) $\Pr[B] \geq \alpha$

(ii) $\forall (x, y) \in B, \Pr_{y \in Y}[x, y] \in A] \geq \varepsilon - \alpha$.

(iii) $\Pr[B \mid A] \geq \alpha / \varepsilon$.

Splitting Lemma – Proof

(i) we argue by contradiction, using the notation \bar{B} for the complement of B in $X \times Y$. Assume that $\Pr[\bar{B}] < \alpha$. Then,

$$\varepsilon \leq \Pr[B] \cdot \Pr[A \mid B] + \Pr[\bar{B}] \cdot \Pr[A \mid \bar{B}] < \alpha \cdot 1 + 1 \cdot (\varepsilon - \alpha) = \varepsilon.$$

(ii) straightforward.

(iii) using Bayes’ law:

$$\Pr[B \mid A] = 1 - \Pr[\bar{B} \mid A]$$
$$= 1 - \Pr[A \mid \bar{B}] \cdot \Pr[\bar{B}] / \Pr[A] \geq 1 - (\varepsilon - \alpha) / \varepsilon = \alpha / \varepsilon.$$
Theorem (The Forking Lemma)

Let \((K,S,V)\) be a digital signature scheme with security parameter \(k\), with a signature as above, of the form \((m,r,h,s)\), where \(h = \mathcal{H}(m,r)\) and \(s\) depends on \(r\) and \(h\) only.

Let \(A\) be a probabilistic polynomial time Turing machine whose input only consists of public data and which can ask \(q_H\) queries to the random oracle, with \(q_H > 0\).

We assume that, within the time bound \(T\), \(A\) produces, with probability \(\varepsilon \geq 7q_H/2^k\), a valid signature \((m,r,h,s)\).

Then, within time \(T' \leq 16q_HT/\varepsilon\), and with probability \(\varepsilon' \geq 1/9\), a replay of this machine outputs two valid signatures \((m,r,h,s)\) and \((m,r,h',s')\) such that \(h \neq h'\).

Accordingly, we define \(\text{Ind}_\mathcal{H}(\omega)\) to be the index of this question:

\((m,r) = Q_{\text{Ind}_\mathcal{H}(\omega)} \) \((\text{Ind}_\mathcal{H}(\omega) = \infty\) if the question is never asked).

Forking Lemma – Proof

- We run $2/\varepsilon$ times A, with independent random ω and random H.
 Since $\nu = \Pr[S] \geq 6\varepsilon/7$, with probability greater than $1 - (1 - \nu)^2 \geq 4/5$, we get at least one pair (ω, H) in S.
- We apply the Splitting Lemma, with $\varepsilon = \nu/2q_H$ and $\alpha = \varepsilon/2$, for $i \in I$. We denote by $H|_i$ the restriction of H to queries of index $< i$.
 Since $\Pr[S_i] \geq \nu/2q_H$, there exists a subset Ω_i such that,
 \[\forall (\omega, H') \in \Omega_i, \quad \Pr_{H^0}[(\omega, H') \in S_i | H'|_i = H|_i] \geq \frac{\nu}{4q_H}, \]
 \[\Pr[\Omega_i | S_i] \geq \frac{1}{2}. \]

Finally, after less than $2/\varepsilon + 14q_H/\varepsilon$ repetitions of the attack, with probability greater than $1/5 \times 3/5 \geq 1/9$, we have obtained two signatures (m, r, h, s) and (m, r, h', s'), both valid w.r.t. their specific random oracle H or H':

\[Q = (m, r) \text{ and } h = H(Q) \neq H'(Q) = h'. \]
Chosen-Message Attacks

In order to answer signing queries, one simply uses the simulator of the zero-knowledge proof: \((r, h, s)\), and we set \(h(m, r) \leftarrow h\). The random oracle programming may fail, but with negligible probability.

Conclusion

Two generic methodologies for signatures

- hash and invert
- the Forking Lemma

Both in the random-oracle model

- Cramer-Shoup: based on the flexible RSA problem
- Based on Pairings
- etc