Outline

II – **Encryption**

David Pointcheval MPRI – Paris

Ecole normale supérieure/PSL, CNRS & INRIA

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade

David Pointcheval

1/68ENS/CNRS/INRIA Cascade	David Pointcheval
Outline	

Basic Security Notions

Game-based Proofs

Basic Security Notions

Public-Key Encryption

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade

2/68

$$\mathbf{Succ}^{\mathsf{ow}}_{\mathcal{S}}(\mathcal{A}) = \mathsf{Pr}[(\mathbf{s}k, \mathbf{p}k) \leftarrow \mathcal{K}(); \mathbf{m} \xleftarrow{\mathsf{R}} \mathcal{M}; \mathbf{c} = \mathcal{E}_{\mathbf{p}k}(\mathbf{m}) : \mathcal{A}(\mathbf{p}k, \mathbf{c}) \rightarrow \mathbf{m}]$$

Goal: Privacy/Secrecy of the plaintext

ENS/CNRS/INRIA Cascade	David Pointcheval	4/68ENS/CNRS/INRIA Cascade	David Pointcheval	5/68
IND – CPA Security (Game	Outline		
$b \in \{0,1\}$ r random $m_b - r - r - r$	$m_0 \leftarrow m_1 $	k _d Basic Security Notions Public-Key Encryptic Signatures		
$b' \stackrel{?}{=} b$	b'	Game-based Proofs		
$(\textit{sk},\textit{pk}) \leftarrow $	$\mathcal{K}(); (m_0, m_1, \text{state}) \leftarrow \mathcal{A}(pk);$	Advanced Security for	r Encryption	
$b \stackrel{R}{\leftarrow} \{0$	$\{1\}; c = \mathcal{E}_{pk}(m_b); b' \leftarrow \mathcal{A}(\text{state}, c)$	Conclusion		
$\mathrm{Adv}^{ind-cpa}_{\mathcal{S}}(\mathcal{A}) \!=\! ig Pr[b'=$	$1 b = 1] - \Pr[b' = 1 b = 0] = 2 \times b b = 0$	$\operatorname{Pr}[b'=b]-1$		
ENS/CNRS/INRIA Cascade	David Pointcheval	6/68ENS/CNRS/INRIA Cascade	David Pointcheval	7/68

ENS/CNRS/INRIA Cascade

David Pointcheval

Goal: Authentication of the sender

$$\mathbf{Succ}^{\mathsf{euf}}_{\mathcal{SG}}(\mathcal{A}) = \Pr[(\mathbf{sk}, \mathbf{pk}) \leftarrow \mathcal{K}(); (\mathbf{m}, \sigma) \leftarrow \mathcal{A}(\mathbf{pk}) : \mathcal{V}_{\mathbf{pk}}(\mathbf{m}, \sigma) = 1]$$

8/68 ENS/CNRS/INRIA Cascade	David Pointcheval	9/68
Outline		

Basic Security Notions

Game-based Proofs

Provable Security

Game-based Approach

Transition Hops

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade

Game-based Proofs

Provable Security

Direct Reduction

One can prove that:

- if an adversary is able to break the cryptographic scheme
- then one can break the underlying problem (integer factoring, discrete logarithm, 3-SAT, etc)

Unfortunately

- Security may rely on several assumptions
- Proving that the view of the adversary, generated by the simulator, in the reduction is the same as in the real attack game is not easy to do in such a one big step

ENS/CNRS/INRIA Cascade David Pointche	eval 11/68ENS/CNRS/INRIA Cascade	David Pointcheval	12/68
Outline	Sequence of Games		
	Real Attack Game		
Basic Security Notions	The adversary plays a ga	ame, against a challenger (sec	urity notion)
Game-based Proofs	Game 0	Oraclas	

Game-based Proofs

Provable Security

Game-based Approach

Transition Hops

Advanced Security for Encryption

Conclusion

Sequence of Games

Sequence of Games

Simulation

The adversary plays a game, against a sequence of simulators

Simulation

The adversary plays a game, against a sequence of simulators

ENS/CNRS/INRIA Cascade	David Pointcheval	15/68ENS/CNRS/INRIA Cascade	David Pointcheval	16/68
Sequence of Games		Output		

Simulation

Game 3 Oracles Similator 3 Distribution 3 Adversary Challenger 0 / 1

The adversary plays a game, against a sequence of simulators

- The output of the simulator in Game 1 is related to the output of the challenger in Game 0 (adversary's winning probability)
- The output of the simulator in Game 3 is easy to evaluate (e.g. always zero, always 1, probability of one-half)
- The gaps (Game 1 ↔ Game 2, Game 2 ↔ Game 3, etc) are clearly identified with specific events

Two Simulators

Basic Security Notions

Game-based Proofs

Provable Security

Game-based Approach

Transition Hops

Advanced Security for Encryption

Conclusion

ENS/CNRS/INRIA Cascade	David Pointcheval	19/68E	NS/CNRS/INRIA Cascade	David Pointcheval	20/68
Game A Oracles Challenger	Game B Oracles Oracles Oracles Adversary	Challenger	 The behavious Ev is not shoup's 	whaviors: $\Pr[Game_A] - \Pr[Game_B] = 0$ ors differ only if Ev happens: egligible, one can ignore it is Lemma: $ \Pr[Game_A] - \Pr[Game_B] \le \Pr[Ev]$ $\Pr[Game_A] - \Pr[Game_B] $	
 perfectly identical in different distributions		[Hop-D-Perfect]	=	$\Pr[\operatorname{Game}_{A} \operatorname{Ev}] \Pr[\operatorname{Ev}] + \Pr[\operatorname{Game}_{A} \neg \operatorname{Ev}] \Pr[\neg \operatorname{Ev}] \\ - \Pr[\operatorname{Game}_{B} \operatorname{Ev}] \Pr[\operatorname{Ev}] - \Pr[\operatorname{Game}_{B} \neg \operatorname{Ev}] \Pr[\neg \operatorname{Ev}] \\ (\Pr[\operatorname{Game}_{A} \operatorname{Ev}] - \Pr[\operatorname{Game}_{B} \operatorname{Ev}]) \times \Pr[\operatorname{Ev}] $	
statistically closecomputationally close		[Hop-D-Stat] [Hop-D-Comp]	=	$\begin{array}{l} (\Pr[\textbf{Game}_{A} \textbf{Ev}] - \Pr[\textbf{Game}_{B} \textbf{Ev}]) \times \Pr[\textbf{Ev}] \\ + (\Pr[\textbf{Game}_{A} \neg\textbf{Ev}] - \Pr[\textbf{Game}_{B} \neg\textbf{Ev}]) \times \Pr[\neg\textbf{Ev}] \\ 1 \times \Pr[\textbf{Ev}] + 0 \times \Pr[\neg\textbf{Ev}] \le \Pr[\textbf{Ev}] \end{array}$	
				on-negligible and independent of the output in $Game_A$, or B terminates in case of event Ev	

Two Simulations

Two Simulations

- Identical behaviors: $Pr[Game_A] Pr[Game_B] = 0$
- The behaviors differ only if **Ev** happens:
 - Ev is negligible, one can ignore it
 - Ev is non-negligible and independent of the output in Game_A,
 Simulator B terminates and outputs 0, in case of event Ev:

 $\begin{aligned} \Pr[\mathbf{Game}_B] &= \Pr[\mathbf{Game}_B | \mathbf{Ev}] \Pr[\mathbf{Ev}] + \Pr[\mathbf{Game}_B | \neg \mathbf{Ev}] \Pr[\neg \mathbf{Ev}] \\ &= \mathbf{0} \times \Pr[\mathbf{Ev}] + \Pr[\mathbf{Game}_A | \neg \mathbf{Ev}] \times \Pr[\neg \mathbf{Ev}] \\ &= \Pr[\mathbf{Game}_A] \times \Pr[\neg \mathbf{Ev}] \end{aligned}$

Simulator B terminates and flips a coin, in case of event $\ensuremath{\text{Ev}}$:

$$\begin{aligned} \Pr[\mathbf{Game}_B] &= \Pr[\mathbf{Game}_B | \mathbf{Ev}] \Pr[\mathbf{Ev}] + \Pr[\mathbf{Game}_B | \neg \mathbf{Ev}] \Pr[\neg \mathbf{Ev}] \\ &= \frac{1}{2} \times \Pr[\mathbf{Ev}] + \Pr[\mathbf{Game}_A | \neg \mathbf{Ev}] \times \Pr[\neg \mathbf{Ev}] \\ &= \frac{1}{2} + \left(\Pr[\mathbf{Game}_A] - \frac{1}{2}\right) \times \Pr[\neg \mathbf{Ev}] \end{aligned}$$

- Identical behaviors: $\Pr[Game_A] \Pr[Game_B] = 0$
- The behaviors differ only if $\ensuremath{\text{Ev}}$ happens:
 - Ev is negligible, one can ignore it
 - Ev is non-negligible and independent of the output in Game_A,
 Simulator B terminates in case of event Ev

Event Ev

- Either Ev is negligible, or the output is independent of Ev
- For being able to terminate simulation B in case of event **Ev**, this event must be *efficiently* detectable
- For evaluating Pr[Ev], one re-iterates the above process, with an initial game that outputs 1 when event Ev happens

S/CNRS/INRIA Cascade	David Pointcheval	23/68ENS/CNRS/INRIA Cascade	David Pointcheval	24/6
Two Distributions		Two Distributions		

$$\mathsf{Pr}[\mathsf{Game}_{\mathcal{A}}] - \mathsf{Pr}[\mathsf{Game}_{\mathcal{B}}] \leq \mathrm{Adv}(\mathcal{D}^{\mathsf{oracles}})$$

• For identical/statistically close distributions, for any oracle:

 $\Pr[Game_A] - \Pr[Game_B] = Dist(Distrib_A, Distrib_B) = negl()$

• For computationally close distributions, in general, we need to exclude additional oracle access:

 $\Pr[\mathbf{Game}_{A}] - \Pr[\mathbf{Game}_{B}] \leq \mathbf{Adv}^{\mathbf{Distrib}}(t)$

where t is the computational time of the distinguisheur

ENS/CNRS/INRIA Cascade

David Pointcheval

 $\Pr[\operatorname{Game}_{A}] - \Pr[\operatorname{Game}_{B}] \leq \operatorname{Adv}(\mathcal{D}^{\operatorname{oracles}})$

Advanced Security for Encryption

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Advanced Security Notions

Cramer-Shoup Encryption Scheme

Generic Conversion

Conclusion

The adversary cannot get any information about a plaintext of a specific ciphertext (validity, partial value, etc)

Goal: Privacy/Secrecy of the plaintext

m

Malleability

Semantic security (ciphertext indistinguishability) guarantees that no information is leaked from c about the plaintext m

But it may be possible to derive a ciphertext c'such that the plaintext m' is related to m in a meaningful way:

- ElGamal ciphertext: $c_1 = g^r$ and $c_2 = m \times y^r$
- Malleability: $c_1' = c_1 = g^r$ and $c_2' = 2 \times c_2 = (2m) \times y^r$

From an encryption of m, one can build an encryption of 2m, or a random ciphertext of m, etc.

$$\mathbf{Adv}_{\mathcal{S}}^{\mathsf{nm-cpa}}(\mathcal{A}) = \left| \mathsf{Pr}[\mathcal{R}(m^*,m)] - \mathsf{Pr}[\mathcal{R}(m',m)] \right|$$

ENS/CNRS/INRIA Cascade	David Pointcheval	30/68	ENS/CNRS/INRIA Cascade	David Pointcheval	31/68
Additional Information	on		IND – CCA Security C	Game	
More information model	lled by oracle access		<i>b</i> ∈ {0,1}	$\begin{matrix} k_e \leftarrow \mathbf{G} \\ \downarrow \end{matrix} \qquad \downarrow \end{matrix}$	
	racle which answers, on a text <i>c</i> is valid or not	С,	<i>r</i> random	$m_0 \leftarrow m$	
	attacks: oracle which ans nether the plaintext m is r = $\mathcal{D}_{sk}(c)$)		$m_b - r - r - r$	$\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \end{array} \xrightarrow{c \neq c^{*}} \\ \bullet \\ \end{array} \xrightarrow{c \neq c^{*}} \\ \bullet \\ \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \end{array} \xrightarrow{c \neq c^{*}} \\ \bullet \\ \end{array} \begin{array}{c} \bullet \\ \bullet $	
(with the restriction	attacks (CCA): decryptio not to use it on the chall can obtain the plaintext o	enge ciphertext)	The adversary can ask a Chosen-Ciphertext Attac	any decryption of its choice: cks (oracle access)	
choice (excepted th • non-adaptive (C	8 /	[Naor-Yung – STOC '90]	$(m{sk},m{pk}) \leftarrow \mathcal{K} \ m{b} \stackrel{R}{\leftarrow} \{m{0}, \ m{c}$	$\mathcal{L}(); (m_0, m_1, ext{state}) \leftarrow \mathcal{A}^\mathcal{D}(pk); \\ 1\}; c = \mathcal{E}_{pk}(m_b); b' \leftarrow \mathcal{A}^\mathcal{D}(ext{state}, c) $	

32/68ENS/CNRS/INRIA Cascade

• non-adaptive (CCA - 1)only before receiving the challenge

David Pointcheval

 adaptive (CCA – 2) unlimited oracle access

ENS/CNRS/INRIA Cascade

[Rackoff-Simon – Crypto '91]

 $\operatorname{Adv}_{S}^{\operatorname{ind-cca}}(\mathcal{A}) = \left| \operatorname{Pr}[b' = 1 | b = 1] - \operatorname{Pr}[b' = 1 | b = 0] \right| = \left| 2 \times \operatorname{Pr}[b' = b] - 1 \right|$

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Advanced Security Notions

Cramer-Shoup Encryption Scheme

ENS/CNRS/INRIA Cascade David Pointcheva 34/68ENS/CNRS/INRIA Cascade **David Pointcheval Cramer-Shoup Encryption Scheme Cramer-Shoup Encryption Scheme vs. ElGamal** [Cramer-Shoup – Crypto '98] **Key Generation** $u_1 = q_1^r$, $u_2 = q_2^r$, $e = m \times h^r$, $v = c^r d^{r\alpha}$ where $\alpha = \mathcal{H}(u_1, u_2, e)$ • $\mathbb{G} = (\langle g \rangle, \times)$ group of order q• $sk = (x_1, x_2, y_1, y_2, z)$, where $x_1, x_2, y_1, y_2, z \stackrel{R}{\leftarrow} \mathbb{Z}_{\alpha}$ (u_1, e) is an ElGamal ciphertext, with public key $h = g_1^z$ • $pk = (q_1, q_2, \mathcal{H}, c, d, h)$, where Decryption • g_1, g_2 are independent elements in \mathbb{G} • since $h = g_1^z$, $h^r = u_1^z$, thus $m = e/u_1^z$ • \mathcal{H} a hash function (second-preimage resistant) • $c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}, and h = g_1^z$ • since $c = g_1^{x_1} g_2^{x_2}$ and $d = g_1^{y_1} g_2^{y_2}$ $c^{r} = g_{1}^{rx_{1}}g_{2}^{rx_{2}} = u_{1}^{x_{1}}u_{2}^{x_{2}} \quad d^{r} = u_{1}^{y_{1}}u_{2}^{y_{2}}$ Encryption $u_1 = g_1^r$, $u_2 = g_2^r$, $e = m \times h^r$, $v = c^r d^{r\alpha}$ where $\alpha = \mathcal{H}(u_1, u_2, e)$ One thus first checks whether

 $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$ where $\alpha = \mathcal{H}(u_1, u_2, e)$

Security of the Cramer-Shoup Encryption Scheme

Real Attack Game

Theorem

The Cramer-Shoup encryption scheme achieves IND - CCA security, under the **DDH** assumption, and the second-preimage resistance of \mathcal{H} :

$$\operatorname{Adv}_{\mathcal{CS}}^{\operatorname{ind-cca}}(t) \leq 2 imes \operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(t) + \operatorname{Succ}^{\mathcal{H}}(t) + 3q_D/q$$

Let us prove this theorem, with a sequence of games, in which \mathcal{A} is an **IND** – **CCA** adversary against the Cramer-Shoup encryption scheme.

Key Generation Oracle $x_1, x_2, y_1, y_2, z \stackrel{R}{\leftarrow} \mathbb{Z}_q, g_1, g_2 \stackrel{R}{\leftarrow} \mathbb{G}$: $sk = (x_1, x_2, y_1, y_2, z)$ $c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}, \text{ and } h = g_1^z$: $pk = (g_1, g_2, \mathcal{H}, c, d, h)$ Decryption Oracle

If
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$
 where $\alpha = \mathcal{H}(u_1, u_2, e)$: $m = e/u_1^z$

ENS/CNRS/INRIA Cascade	David Pointcheval	38/68ENS/CNRS/INRIA Cascade	David Pointcheval	39/68
Proof: Invalid ciphe	rtexts	Details: Sho	up's Lemma	
in case of bad (inv	e oracles \mathcal{K} , \mathcal{D} (with a random output b') valid) accepted ciphertext, hertext means $\log_{g_1} u_1 \neq \log_{g_2} u_2$	=	$= 2 \times \Pr_{\mathbf{Game}_{1}}[b' = b] - 1$ $= 2 \times \Pr_{\mathbf{Game}_{1}}[b' = b \neg \mathbf{F}] \Pr_{\mathbf{Game}_{1}}[\neg \mathbf{F}]$ $+ 2 \times \Pr_{\mathbf{Game}_{1}}[b' = b \mathbf{F}] \Pr_{\mathbf{Game}_{1}}[\mathbf{F}] - 1$	
Event F A submits a bad acce			$= 2 \times \Pr_{\mathbf{Game}_0}[b' = b \neg \mathbf{F}] \Pr_{\mathbf{Game}_0}[\neg \mathbf{F}] + \Pr_{\mathbf{Game}_0}[\mathbf{F}] - 1$ $= 2 \times \Pr_{\mathbf{Game}_0}[b' = b] - 2 \times \Pr_{\mathbf{Game}_0}[b' = b \mathbf{F}] \Pr_{\mathbf{Game}_0}[b' = b \mathbf{F}]$	
,	computationally detectable) Game ₁ is: $Pr_1[b' = b \mathbf{F}] = 1/2$		+ $\Pr_{\text{Game}_0}[\mathbf{F}] - 1$ = $\operatorname{Adv}_{\operatorname{Game}_0} - \Pr_{\operatorname{Game}_0}[\mathbf{F}](2 \times \Pr_{\operatorname{Game}_0}[b' = b \mathbf{F}] - 1)$	
	$\begin{aligned} & \operatorname{r}_{ne_{1}}[F] \operatorname{Pr}_{Game_{1}}[b'=b \negF] = \operatorname{Pr}_{Game_{0}}[b'=b \negF] \\ & \operatorname{\mathbf{Adv}}_{Game_{1}} \geq \operatorname{\mathbf{Adv}}_{Game_{0}} - \operatorname{Pr}[F] \end{aligned}$	2	$\mathbf{Adv}_{\mathbf{Game}_0} - \Pr_{\mathbf{Game}_0}[\mathbf{F}]$	

Details: Bad Accept

In order to evaluate $\Pr[\mathbf{F}]$, we study the probability that

- $r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$,
- whereas $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$

The adversary just knows the public key:

$$c = g_1^{x_1} g_2^{x_2} \qquad d = g_1^{y_1} g_2^{y_2}$$

Let us move to the exponents, in basis g_1 , with $g_2 = g_1^s$: log $c = x_1 + sx_2$

$$\log d = y_1 + sy_2$$

$$\log v = r_1(x_1 + \alpha y_1) + sr_2(x_2 + \alpha y_2)$$

The system is under-defined: for any v, there are (x_1, x_2, y_1, y_2) that satisfy the system $\implies v$ is unpredictable $\implies \Pr[\mathbf{F}] \leq q_D/q \implies \operatorname{Adv}_{\operatorname{Game}_1} \geq \operatorname{Adv}_{\operatorname{Game}_0} - q_D/q$ ENS/CNRS/INBIA Cascade David Pointcheval

Proof: Computable Adversary

• **Game**₂: we use the simulations

Key Generation Simulation

$$x_1, x_2, y_1, y_2, z_1, z_2 \xleftarrow{R} \mathbb{Z}_q, g_1, g_2 \xleftarrow{R} \mathbb{G}$$
: $sk = (x_1, x_2, y_1, y_2, z_1, z_2)$
 $g_2 = g_1^s$
 $c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}$, and $h = g_1^{z_1} g_2^{z_2}$: $pk = (g_1, g_2, \mathcal{H}, c, d, h)$
 $z = z_1 + sz_2$

Distribution of the public key: Identical

Decryption Simulation

f
$$v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$$
 where $\alpha = \mathcal{H}(u_1, u_2, e)$: $m = e/u_1^{z_1} u_2^{z_2}$

 $\label{eq:constraint} \begin{array}{l} \text{Under the assumption of } \neg \textbf{F} \text{, perfect simulation} \\ \Longrightarrow \textbf{Hop-S-Perfect: } \mathbf{Adv}_{\textbf{Game}_2} = \mathbf{Adv}_{\textbf{Game}_1} \end{array}$

Proof: DDH Assumption

42/68ENS/CNRS/INRIA Cascade

• **Game**₄: we modify the generation of the challenge ciphertext:

David Pointcheval

Original Challenge Random choice: $b \stackrel{R}{\leftarrow} \{0, 1\}, r \stackrel{R}{\leftarrow} \mathbb{Z}_q$ [$\alpha = \mathcal{H}(u_1, u_2, e)$] $u_1 = g_1^r, u_2 = g_2^r, e = m_b \times h^r, v = c^r d^{r\alpha}$

New Challenge 1

Given $(U = g_1^r, V = g_2^r)$ and random choice $b \stackrel{R}{\leftarrow} \{0, 1\}$ $u_1 = U, u_2 = V, e = m_b \times U^{z_1} V^{z_2}, v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$

With $(U = g_1^r, V = g_2^r)$: $U^{z_1}V^{z_2} = h^r$ and $U^{x_1 + \alpha y_1}V^{x_2 + \alpha y_2} = c^r d^{r\alpha}$ \implies Hop-S-Perfect: $Adv_{Game_4} = Adv_{Game_3}$

 Game₃: we do no longer exclude bad accepted ciphertexts → Hop-S-NegI:

 $\mathbf{Adv}_{\mathbf{Game}_3} \geq \mathbf{Adv}_{\mathbf{Game}_2} - \mathsf{Pr}[\mathbf{F}] \geq \mathbf{Adv}_{\mathbf{Game}_2} - q_D/q$

This is technical: to make the simulator/adversary computable

David Pointcheval

Proof: DDH Assumption

• **Game**₅: we modify the generation of the challenge ciphertext:

Previous Challenge 1

Given $(U = g_1^r, V = g_2^r)$ and random choice $b \stackrel{R}{\leftarrow} \{0, 1\}$ $u_1 = U, \ u_2 = V, \ e = m_b \times U^{z_1} V^{z_2}, \ v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$

New Challenge 2

Given $(U = g_1^{r_1}, V = g_2^{r_2})$ and random choice $b \leftarrow \{0, 1\}$ $u_1 = U, u_2 = V, e = m_b \times U^{z_1} V^{z_2}, v = U^{x_1 + \alpha y_1} V^{x_2 + \alpha y_2}$

The input changes from $(U = g_1^r, V = g_2^r)$ to $(U = g_1^{r_1}, V = g_2^{r_2})$: \implies Hop-D-Comp: Adv_{Game₅} \ge Adv_{Game₄} $- 2 \times Adv_{\mathbb{G}}^{ddh}(t)$ The input from outside changes from $(U = g_1^r, V = g_2^r)$ (a CDH tuple) to $(U = g_1^{r_1}, V = g_2^{r_2})$ (a random tuple):

$$\Pr_{\mathbf{Game}_4}[b'=b] - \Pr_{\mathbf{Game}_5}[b'=b] \leq \mathbf{Adv}^{\mathbf{ddh}}_{\mathbb{G}}(t)$$

 \implies Hop-D-Comp: $Adv_{Game_5} \ge Adv_{Game_4} - 2 \times Adv_{\mathbb{G}}^{ddh}(t)$ (Since $Adv = 2 \times Pr[b' = b] - 1$)

NS/CNRS/INRIA Cascade	David Pointcheval	46/68ENS/CNRS/INRIA Cascade	David Pointcheval	47/68
Proof: Collision		Proof: Invalid ciphertexts		

 Game₆: we abort (with a random output b') in case of second pre-image with a decryption query

Event F_H

 \mathcal{A} submits a ciphertext with the same α as the challenge ciphertext, but a different initial triple: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$, were "*" are for all the elements related to the challenge ciphertext.

Second pre-image of \mathcal{H} : $\Longrightarrow \Pr[\mathbf{F}_H] \leq \operatorname{Succ}^{\mathcal{H}}(t)$

The advantage in **Game**₆ is: $Pr_{Game_6}[b' = b|F_H] = 1/2$

 $\begin{aligned} & \Pr_{\mathbf{Game}_{5}}[\mathbf{F}_{H}] = \Pr_{\mathbf{Game}_{6}}[\mathbf{F}_{H}] & \Pr_{\mathbf{Game}_{6}}[b' = b | \neg \mathbf{F}_{H}] = \Pr_{\mathbf{Game}_{5}}[b' = b | \neg \mathbf{F}_{H}] \\ & \Longrightarrow \mathbf{Hop}\text{-}\mathbf{S}\text{-}\mathbf{Negl}: \mathbf{Adv}_{\mathbf{Game}_{6}} \geq \mathbf{Adv}_{\mathbf{Game}_{5}} - \Pr[\mathbf{F}_{H}] \\ & \mathbf{Adv}_{\mathbf{Game}_{6}} \geq \mathbf{Adv}_{\mathbf{Game}_{5}} - \mathbf{Succ}^{\mathcal{H}}(t) \end{aligned}$

 Game₇: we abort (with a random output b') in case of bad accepted ciphertext, we do as in Game₁

Event F'

A submits a bad accepted ciphertext (note: this is not computationally detectable)

The advantage in **Game**₇ is: $Pr_{Game_7}[b' = b|\mathbf{F}'] = 1/2$

 $\Pr_{\textbf{Game}_6}[\textbf{F}'] = \Pr_{\textbf{Game}_7}[\textbf{F}'] \quad \Pr_{\textbf{Game}_7}[b' = b | \neg \textbf{F}'] = \Pr_{\textbf{Game}_6}[b' = b | \neg \textbf{F}']$

 \implies Hop-S-Negl: $Adv_{Game_7} \ge Adv_{Game_6} - \Pr[F']$

Details: Bad Accept

In order to evaluate $\Pr[\mathbf{F}']$, we study the probability that

•
$$r_1 = \log_{g_1} u_1 \neq \log_{g_2} u_2 = r_2$$

• whereas $v = u_1^{x_1 + \alpha y_1} u_2^{x_2 + \alpha y_2}$

Let us use "*" for all the elements related to the challenge ciphertext. Three cases may appear:

• Case 1: $(u_1, u_2, e) = (u_1^*, u_2^*, e^*)$, then necessarily

$$v \neq v^* = U^{x_1 + \alpha^* y_1} V^{x_2 + \alpha^* y_2} = u_1^{*x_1 + \alpha^* y_1} u_2^{*x_2 + \alpha^* y_2}$$

Then, the ciphertext is rejected $\implies \Pr[\mathbf{F}'_1] = 0$

- Case 2: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, but $\alpha = \alpha^*$: From the previous game, Aborts $\implies \Pr[\mathbf{F}_2] = 0$
- Case 3: $(u_1, u_2, e) \neq (u_1^*, u_2^*, e^*)$, and $\alpha \neq \alpha^*$

ENS/CNRS/INRIA Ca

Details:

The determinant of the system is

$$\Delta = \begin{vmatrix} 1 & s & 0 & 0 \\ 0 & 0 & 1 & s \\ r_1^* & sr_2^* & r_1^*\alpha^* & sr_2^*\alpha^* \\ r_1 & sr_2 & r_1\alpha & sr_2\alpha \end{vmatrix}$$

= $s^2 \times ((r_2 - r_1) \times (r_2^* - r_1^*) \times \alpha^* - (r_2^* - r_1^*) \times (r_2 - r_1) \times \alpha)$
= $s^2 \times (r_2 - r_1) \times (r_2^* - r_1^*) \times (\alpha^* - \alpha)$
 $\neq 0$

The system is under-defined:

for any v, there are (x_1, x_2, y_1, y_2) that satisfy the system

 \implies *v* is unpredictable $\implies \Pr[\mathbf{F}'_3] \leq q_D/q$

 $\implies \mathrm{Adv}_{\mathsf{Game}_7} \geq \mathrm{Adv}_{\mathsf{Game}_6} - q_D/q$ ENS/CNRS/INRIA Cascade **David Pointcheval**

The adversary knows the public key, and the (invalid) challenge ciphertext:

$$c = g_1^{x_1} g_2^{x_2}$$
 $d = g_1^{y_1} g_2^{y_2}$
 $v^* = U^{x_1 + lpha^* y_1} V^{x_2 + lpha^* y_2} = g_1^{r_1^* (x_1 + lpha^* y_1)} g_2^{r_2^* (x_2 + lpha^* y_2)}$

Let us move to the exponents, in basis g_1 , with $g_2 = g_1^s$.

$$\log c = x_{1} + sx_{2}$$

$$\log d = y_{1} + sy_{2}$$

$$\log v^{*} = r_{1}^{*}(x_{1} + \alpha^{*}y_{1}) + sr_{2}^{*}(x_{2} + \alpha^{*}y_{2})$$

$$\log v = r_{1}(x_{1} + \alpha y_{1}) + sr_{2}(x_{2} + \alpha y_{2})$$

Bad Accept (Case 3) Proof: Analysis of the Final Game	
cascade David Pointcheval 50/68ENS/CNRS/INRIA Cascade David Pointcheval	51/

In the final Game₇:

- only valid ciphertexts are decrypted
- the challenge ciphertext contains

$$e = m_b imes U^{z_1} V^{z_2}$$

• the public key contains

$$h = g_1^{z_1} g_2^{z_2}$$

Again, the system is under-defined: for any m_b , there are (z_1, z_2) that satisfy the system \implies m_b is unpredictable \implies b is unpredictable $\implies \mathbf{Adv}_{\mathbf{Game}_7} = \mathbf{0}$

52/68ENS/CNRS/INRIA Cascade

David Pointcheval

53/68

$\mathbf{Adv}_{\mathbf{Game}_7} = 0$		Basic Security Notions	
$\mathrm{Adv}_{\mathrm{Game}_7} \geq \mathrm{Adv}_{\mathrm{Game}_6} - \mathrm{Adv}_{\mathrm{Game}_6}$		Game-based Proofs	
$egin{array}{rcl} {f Adv}_{{f Game}_6}&\geq&{f Adv}_{{f Game}_5}-S\ {f Adv}_{{f Game}_5}&\geq&{f Adv}_{{f Game}_4}-S\ {f Adv}_{{f Game}_5}&\geq&{f Adv}_{{f Game}_4}-S\ {f Adv}_{{f Adv}_4}-S\ {f Adv}_4-S\ {f Adv}_{{f Adv}_4}-S\ {f Adv}_4-S\ {f$		Advanced Security for Encryption	
$Adv_{Game_4} = Adv_{Game_3}$,	Advanced Security Notions	
$\operatorname{Adv}_{\operatorname{Game}_3} \geq \operatorname{Adv}_{\operatorname{Game}_2} - \alpha$	<i>д_D/q</i>	Cramer-Shoup Encryption Scheme	
$egin{array}{rcl} {f Adv_{{\sf Game}_2}}&=&{f Adv_{{\sf Game}_1}}\ {f Adv_{{\sf Game}_1}}&\geq&{f Adv_{{\sf Game}_0}}-a \end{array}$		Generic Conversion	
$\mathbf{Adv}_{\mathbf{Game}_0} ~=~ \mathbf{Adv}^{ind-cca}_{\mathcal{CS}}(\mathcal{A})$.)	Conclusion	
$\operatorname{Adv}^{\operatorname{ind-cca}}_{\mathcal{CS}}(\mathcal{A}) \leq 2 imes \operatorname{Adv}^{\operatorname{ddh}}_{\mathbb{G}}(t) +$ ENS/CNRS/INRIA Cascade David Pointche		i4/68ENS/CNRS/INRIA Cascade David Pointcheval	55/68
First Generic Conversion	[Bellare-Rogaway – Eurocrypt '93]	First Generic Conversion (Cont'ed)	33/00
For efficiency: random oracle model		Encryption	
Setup		One chooses a random element $r \in X$	
A trapdoor one-way permutation famil	y $\{(f,g)\}$ onto the set X	$a = f(r), b = m \oplus \mathcal{G}(r), c = \mathcal{H}(m, r)$	

- A trapdoor one-way permutation family $\{(f,g)\}$ onto the set X
- Two hash functions, for the security parameter k_1 ,

 $\mathcal{G}: X \longrightarrow \{0,1\}^n$ and $\mathcal{H}: \{0,1\}^* \longrightarrow \{0,1\}^{k_1}$, where *n* is the bit-length of the plaintexts.

Key Generation

One chooses a random element in the family

- f is the public key
- the inverse *g* is the private key

Decryption

Given (a, b, c), and the private key g,

- one first recovers r = g(a)
- one gets $m = b \oplus \mathcal{G}(r)$
- one then checks whether $c \stackrel{?}{=} \mathcal{H}(m, r)$

If the equality holds, one returns *m*, otherwise one rejects the ciphertext

Security of the Bellare-Rogaway Conversion

Real Attack Game

Theorem

The Bellare-Rogaway conversion achieves IND – CCA security, under the one-wayness of the trapdoor permutation f:

$$\operatorname{Adv}_{\mathcal{BR}}^{\operatorname{\mathsf{ind}-cca}}(t) \leq 2 imes \operatorname{\mathbf{Succ}}_{f}^{\operatorname{\mathsf{ow}}}(T) + rac{4q_D}{2^{k_1}},$$

where $T \leq t + (q_G + q_H) \cdot T_f$.

Let us prove this theorem, with a sequence of games, in which A is an **IND** – **CCA** adversary against the Bellare-Rogaway conversion.

Key Generation OracleRandom permutation *f*, and its inverse *g*

Decryption Oracle

Compute r = g(a), and then $m = b \oplus \mathcal{G}(r)$ if $c = \mathcal{H}(m, r)$, outputs *m*, otherwise reject

ENS/CNRS/INRIA Cascade	David Pointcheval	58/68ENS/CNRS/INRIA Cascade	David Pointcheval	59/68
Simulation of the Random Oracles		Simulation of the Challenge Ciphertext		

• **Game**₀: use of the perfect oracles

Challenge Ciphertext

Random *r*, random bit *b*: a = f(r), $b = m_b \oplus \mathcal{G}(r)$, $c = \mathcal{H}(m, r)$

 $\operatorname{Adv}_{\operatorname{Game}_0} = 2 \times \Pr_{\operatorname{Game}_0}[b' = b] - 1 = \varepsilon$

• Game1: use of the simulation of the random oracles

Random Oracles

For any new query, a new random output: management of lists

$$Adv_{Game_1} = Adv_{Game_0}$$

• **Game**₂: use of an independent random value *h*⁺

Challenge Ciphertext

Random *r*, random bit *b*: a = f(r), $b = m_b \oplus \mathcal{G}(r)$, $c = h^+$

This game is indistinguishable from the previous one, unless (m_b, r) is queried to \mathcal{H} : event **AskMR** (it can only be asked by the adversary, since such a query by the decryption oracle would be for the challenge ciphertext).

Note that in case of **AskMR**, we stop the simulation with a random output:

$$\mathbf{Adv}_{\mathbf{Game}_2} \geq \mathbf{Adv}_{\mathbf{Game}_1} - 2 imes \Pr_{\mathbf{Game}_2}[\mathbf{AskMR}]$$

David Pointcheval

• **Game**₃: reject if (m, r) not queried to \mathcal{H}

Decryption Oracle

Look in the \mathcal{H} -list for (m, r) such that $c = \mathcal{H}(m, r)$. If not found: reject, if for one pair, a = f(r) and $b = m \oplus \mathcal{G}(r)$, output m

This makes a difference if this value *c*, without having been asked to \mathcal{H} , is correct: for each attempt, the probability is bounded by $1/2^{k_1}$:

$$\begin{array}{rcl} \mathbf{Adv}_{\mathsf{Game}_3} & \geq & \mathbf{Adv}_{\mathsf{Game}_2} - 2q_D/2^{k_1} \\ & & & \\ \mathsf{Pr}\left[\mathbf{AskMR}\right] & \geq & & \\ & & & \\ \mathsf{Game}_3 \end{array} \overset{\mathsf{Pr}}{=} \begin{bmatrix} \mathbf{AskMR} \end{bmatrix} - q_D/2^{k_1} \\ & & \\ & & \\ & & \\ \mathsf{Game}_2 \end{array}$$

• **Game**₄: use of an independent random value g^+ (and h^+)

Challenge Ciphertext

Random *r*, random bit *b*: a = f(r), $b = m_b \oplus g^+$, $c = h^+$

This game is indistinguishable from the previous one, unless *r* is queried to \mathcal{G} by the adversary or by the decryption oracle. We denote by **AskR** the event that *r* is asked to \mathcal{G} or \mathcal{H} by the adversary (which includes **AskMR**). But *r* cannot be asked to \mathcal{G} by the decryption oracle without **AskR**: only possible if *r* is in the \mathcal{H} -list, and thus asked by the adversary:

$\mathbf{Adv}_{\mathbf{Game}_4}$	\geq	$\mathbf{Adv}_{\mathbf{Game}_3} - 2 \times \Pr_{\mathbf{Game}_3}[\mathbf{AskR} \land \neg \mathbf{AskMR}]$
Pr [AskR] Game₄	=	$\Pr_{\textbf{Game}_3}[\textbf{AskMR}] + \Pr_{\textbf{Game}_3}[\textbf{AskR} \land \neg \textbf{AskMR}]$

ENS/CNRS/INRIA Cascade	David Pointcheval	62/68ENS/CNRS/INRIA Cascade	David Pointcheval	63/68
Simulation of the Challenge Ciphertext		Inversion of the Permutation		

• **Game**₅: use of an independent random value a^+ (and g^+ , h^+)

Challenge Ciphertext

random bit *b*: $a = a^+$, $b = m_b \oplus g^+$, $c = h^+$

This determines *r*, the unique value such that $a^+ = f(r)$, which allows to detect event **AskR**.

This game is perfectly indistinguishable from the previous one:

 $\begin{array}{rcl} \mathbf{Adv}_{\text{Game}_5} &=& \mathbf{Adv}_{\text{Game}_4} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

Since we can assume that a^+ is a given challenge for inverting the permutation *f*, when one looks in the *G*-list or the *H*-list, one can find *r*, the pre-image of a^+ :

$$\Pr_{\mathsf{Game}_5}[\mathsf{AskR}] \leq \operatorname{Succ}_f^{\mathsf{ow}}(t + (q_G + q_H) \cdot T_f)$$

But clearly, in the last game, because of g^+ that perfectly hides m_b :

 $Adv_{Game_5} = 0$

Conclusion

As a	$\texttt{consequence, 0} = \mathbf{Adv}_{\textbf{Game}_5}$
=	$\mathbf{Adv}_{\mathbf{Game}_4} \geq \mathbf{Adv}_{\mathbf{Game}_3} - 2 \times \Pr_{\mathbf{Game}_3}[\mathbf{AskR} \land \neg \mathbf{AskMR}]$
\geq	$\mathbf{Adv}_{\mathbf{Game}_2} - 2 imes \Pr_{\mathbf{Game}_3}[\mathbf{AskR} \wedge \neg \mathbf{AskMR}] - 2q_D/2^{k_1}$
\geq	$\mathbf{Adv}_{\mathbf{Game}_1} - 2 \times \Pr_{\mathbf{Game}_2}[\mathbf{AskMR}] - 2 \times \Pr_{\mathbf{Game}_3}[\mathbf{AskR} \wedge \neg \mathbf{AskMR}] - 2q_D/2^{k_1}$
\geq	$\mathbf{Adv}_{\mathbf{Game}_0} - 2 \times \Pr_{\mathbf{Game}_3}[\mathbf{AskMR}] - 2 \times \Pr_{\mathbf{Game}_3}[\mathbf{AskR} \wedge \neg \mathbf{AskMR}] - 4q_D/2^{k_1}$
\geq	$\mathbf{Adv}_{\mathbf{Game}_0} - 2 imes \Pr_{\mathbf{Game}_4}[\mathbf{AskR}] - 4q_D/2^{k_1}$
\geq	$\mathbf{Adv}_{\mathbf{Game}_0} - 2 \times \Pr_{\mathbf{Game}_5}[\mathbf{AskR}] - 4q_D/2^{k_1}$

And then,

$$Adv_{Game_0} \leq 4q_D/2^{k_1} + 2 \times Succ_f^{ow}(T)$$

Conclusion

ENS/CNRS/INRIA Cascade	David Pointcheval	66/68
Outline		Conclusion
		Game-based Methodology: the story of OAEP [Bellare-Rogaway EC '94]
Basic Security Notior Game-based Proofs	าร	 Reduction proven indistinguishable for an IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely believed for IND-CCA2, without any further analysis of the reduction The direct-reduction methodology
Advanced Security fo	or Encryption	 [Shoup - Crypto '01] Shoup showed the gap for IND-CCA2, under the OWP Granted his new game-based methodology
Conclusion		 [Fujisaki-Okamoto-Pointcheval-Stern – Crypto '01] FOPS proved the security for IND-CCA2, under the PD-OWP Using the game-based methodology

67/68ENS/CNRS/INRIA Cascade