Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Conclusion

II - Encryption

David Pointcheval
MPRI - Paris
Ecole normale supérieure/PSL, CNRS \& INRIA

Outline

1/68ENS/CNRS/INRIA Cascade

Outline

Basic Security Notions

Public-Key Encryption
Signatures

Game-based Proofs

Advanced Security for Encryption

Conclusion

Public-Key Encryption

OW - CPA Security Game

Goal: Privacy/Secrecy of the plaintext

IND - CPA Security Game

$$
\begin{aligned}
& (s k, p k) \leftarrow \mathcal{K}() ;\left(m_{0}, m_{1}, \text { state }\right) \leftarrow \mathcal{A}(p k) \\
& \quad b \stackrel{R}{\leftarrow}\{0,1\} ; c=\mathcal{E}_{p k}\left(m_{b}\right) ; b^{\prime} \leftarrow \mathcal{A}(\text { state }, c)
\end{aligned}
$$

Basic Security Notions

Public-Key Encryption
Signatures

Game-based Proofs
Advanced Security for Encryption

Conclusion
$\operatorname{Adv}_{\mathcal{S}}^{\text {ind }-\mathrm{cpa}}(\mathcal{A})=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]\right|=\left|2 \times \operatorname{Pr}\left[b^{\prime}=b\right]-1\right|$

Goal: Authentication of the sender

Game-based Proofs

Basic Security Notions

Game-based Proofs

Provable Security
Game-based Approach
Transition Hops

Advanced Security for Encryption

Conclusion

Provable Security

Direct Reduction

One can prove that:

- if an adversary is able to break the cryptographic scheme
- then one can break the underlying problem (integer factoring, discrete logarithm, 3-SAT, etc)

Outline

Sequence of Games

Real Attack Game

The adversary plays a game, against a challenger (security notion)

Game-based Proofs

Provable Security
Game-based Approach
Transition Hops

Basic Security Notions

- Security may rely on several assumptions
- Proving that the view of the adversary, generated by the
simulator, in the reduction is the same as in the real attack game is not easy to do in such a one big step

Unfortunately

Sequence of Games

Sequence of Games

Simulation

The adversary plays a game, against a sequence of simulators

Simulation

The adversary plays a game, against a sequence of simulators

Sequence of Games

Simulation

The adversary plays a game, against a sequence of simulators

- The output of the simulator in Game 1 is related to the output of the challenger in Game 0 (adversary's winning probability)
- The output of the simulator in Game 3 is easy to evaluate (e.g. always zero, always 1, probability of one-half)
- The gaps (Game $1 \leftrightarrow$ Game 2, Game $2 \leftrightarrow$ Game 3, etc) are clearly identified with specific events

Outline

Two Simulators

Basic Security Notions

Game-based Proofs

Provable Security
Game-based Approach
Transition Hops

Advanced Security for Encryption

Conclusion

- perfectly identical behaviors

[Hop-S-Perfect]
- different behaviors, only if event Ev happens
- Ev is negligible
- Ev is non-negligible (but not overwhelming) and independent of the output in Game $_{A}$
\rightarrow Simulator B terminates in case of event Ev

Two Distributions

- perfectly identical input distributions
[Hop-D-Perfect]
- different distributions
- statistically close
[Hop-D-Stat]
- computationally close

Two Simulations

- Identical behaviors: $\operatorname{Pr}\left[\right.$ Game $\left._{A}\right]-\operatorname{Pr}\left[\right.$ Game $\left._{B}\right]=0$
- The behaviors differ only if Ev happens:
- Ev is negligible, one can ignore it

$$
\text { Shoup's Lemma: }\left|\operatorname{Pr}\left[\mathbf{G a m e}_{A}\right]-\operatorname{Pr}\left[\mathbf{G a m e}_{B}\right]\right| \leq \operatorname{Pr}[\mathbf{E v}]
$$

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[\text { Game }_{A}\right]-\operatorname{Pr}\left[\text { Game }_{B}\right] \mid \\
& =\left\lvert\, \begin{array}{l}
\operatorname{Pr}\left[\mathbf{G a m e} \mathbf{e}_{A} \mid \mathbf{E v}\right] \operatorname{Pr}[\mathbf{E v}]+\operatorname{Pr}\left[\mathbf{G a m e} \mathbf{e}_{A} \mid \neg \mathbf{E v}\right] \operatorname{Pr}[\neg \mathbf{E v}] \\
-\operatorname{Pr}\left[\mathbf{G a m e} \mathbf{e}_{B} \mid \mathbf{E v}\right] \operatorname{Pr}[\mathbf{E v}]-\operatorname{Pr}\left[\mathbf{G a m e} \mathbf{e}_{B} \mid \neg \mathbf{E v}\right] \operatorname{Pr}[\neg \mathbf{E v}
\end{array}\right. \\
& =\left(\operatorname{Pr}\left[\mathbf{G a m e}_{A} \mid \mathbf{E v}\right]-\operatorname{Pr}\left[\mathbf{G a m e}{ }_{B} \mid \mathbf{E v}\right]\right) \times \operatorname{Pr}[\mathbf{E v}] \\
& =\mid+\left(\operatorname{Pr}\left[\mathbf{G a m e}_{A} \mid \neg \mathbf{E v}\right]-\operatorname{Pr}\left[\mathbf{G a m e}_{B} \mid \neg \mathbf{E v}\right]\right) \times \operatorname{Pr}[\neg \mathbf{E v}] \\
& \leq|1 \times \operatorname{Pr}[\mathbf{E v}]+0 \times \operatorname{Pr}[\neg \mathbf{E v}]| \leq \operatorname{Pr}[\mathbf{E v}]
\end{aligned}
$$

- Ev is non-negligible and independent of the output in Game $_{A}$, Simulator B terminates in case of event Ev

Two Simulations

Two Simulations

- Identical behaviors: $\operatorname{Pr}\left[\right.$ Game $\left._{A}\right]-\operatorname{Pr}\left[\right.$ Game $\left._{B}\right]=0$
- The behaviors differ only if Ev happens:
- Ev is negligible, one can ignore it
- Ev is non-negligible and independent of the output in Game ${ }_{A}$, Simulator B terminates and outputs 0 , in case of event $\mathbf{E v}$:

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathbf{G a m e}_{B}\right]=\operatorname{Pr}\left[\mathbf{G a m e}_{B} \mid \mathbf{E v}\right] \operatorname{Pr}[\mathbf{E v}]+\operatorname{Pr}\left[\mathbf{G a m e}_{B} \mid \neg \mathbf{E v}\right] \operatorname{Pr}[\neg \mathbf{E v}] \\
& =0 \times \operatorname{Pr}[\mathbf{E v}]+\operatorname{Pr}\left[\mathbf{G a m e}{ }_{A} \mid \neg \mathbf{E v}\right] \times \operatorname{Pr}[\neg \mathbf{E v}] \\
& =\operatorname{Pr}\left[\mathbf{G a m e}_{A}\right] \times \operatorname{Pr}[\neg \mathbf{E v}]
\end{aligned}
$$

Simulator B terminates and flips a coin, in case of event Ev:

$$
\begin{aligned}
\operatorname{Pr}\left[\mathbf{G a m e}_{B}\right] & =\operatorname{Pr}\left[\mathbf{G a m e} \mathbf{E}_{B} \mid \mathbf{E v}\right] \operatorname{Pr}[\mathbf{E v}]+\operatorname{Pr}\left[\mathbf{G a m e} \mathbf{e}_{B} \mid \neg \mathbf{E v}\right] \operatorname{Pr}[\neg \mathbf{E v}] \\
& =\frac{1}{2} \times \operatorname{Pr}[\mathbf{E v}]+\operatorname{Pr}\left[\mathbf{G a m e} \mathbf{e}_{A} \mid \neg \mathbf{E v}\right] \times \operatorname{Pr}[\neg \mathbf{E v}] \\
& =\frac{1}{2}+\left(\operatorname{Pr}\left[\mathbf{G a m e} \mathbf{A}_{A}\right]-\frac{1}{2}\right) \times \operatorname{Pr}[\neg \mathbf{E v}]
\end{aligned}
$$

- Identical behaviors: $\operatorname{Pr}\left[\right.$ Game $\left._{A}\right]-\operatorname{Pr}\left[\right.$ Game $\left._{B}\right]=0$
- The behaviors differ only if Ev happens:
- Ev is negligible, one can ignore it
- Ev is non-negligible and independent of the output in Game ${ }_{A}$, Simulator B terminates in case of event Ev

Event Ev

- Either Ev is negligible, or the output is independent of Ev
- For being able to terminate simulation B in case of event Ev, this event must be efficiently detectable
- For evaluating $\operatorname{Pr}[\mathbf{E v}]$, one re-iterates the above process, with an initial game that outputs 1 when event Ev happens

Two Distributions

$\operatorname{Pr}\left[\right.$ Game $\left._{A}\right]-\operatorname{Pr}\left[\mathbf{G a m e}_{B}\right] \leq \mathbf{A d v}\left(\mathcal{D}^{\text {oracles }}\right)$

$$
\operatorname{Pr}\left[\text { Game }_{A}\right]-\operatorname{Pr}\left[\text { Game }_{B}\right] \leq \mathbf{A d v}\left(\mathcal{D}^{\text {oracles }}\right)
$$

- For identical/statistically close distributions, for any oracle:

$$
\operatorname{Pr}\left[\mathbf{G a m e}_{A}\right]-\operatorname{Pr}\left[\mathbf{G a m e}_{B}\right]=\operatorname{Dist}\left(\text { Distrib }_{A}, \text { Distrib }_{B}\right)=\operatorname{negl}()
$$

- For computationally close distributions, in general, we need to exclude additional oracle access:

$$
\operatorname{Pr}\left[\text { Game }_{A}\right]-\operatorname{Pr}\left[\text { Game }_{B}\right] \leq \text { Adv }^{\text {Distrib }}(t)
$$

where t is the computational time of the distinguisheur

Outline

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Advanced Security for Encryption

Advanced Security Notions
Cramer-Shoup Encryption Scheme
Generic Conversion

Conclusion

Public-Key Encryption

IND - CPA Security Game

The adversary cannot get any information about a plaintext of a specific ciphertext (validity, partial value, etc)

Malleability

Non-Malleability: NM - CPA Security Game

Semantic security (ciphertext indistinguishability) guarantees that no information is leaked from c about the plaintext m

But it may be possible to derive a ciphertext c^{\prime} such that the plaintext m^{\prime} is related to m in a meaningful way:

- EIGamal ciphertext: $c_{1}=g^{r}$ and $c_{2}=m \times y^{r}$
- Malleability: $c_{1}^{\prime}=c_{1}=g^{r}$ and $c_{2}^{\prime}=2 \times c_{2}=(2 m) \times y^{r}$

From an encryption of m, one can build an encryption of $2 m$, or a random ciphertext of m, etc.

$\operatorname{Adv}_{\mathcal{S}}^{\mathrm{nm}-\mathrm{cpa}}(\mathcal{A})=\left|\operatorname{Pr}\left[\mathcal{R}\left(m^{*}, m\right)\right]-\operatorname{Pr}\left[\mathcal{R}\left(m^{\prime}, m\right)\right]\right|$

Additional Information

More information modelled by oracle access

- reaction attacks: oracle which answers, on c, whether the ciphertext c is valid or not
- plaintext-checking attacks: oracle which answers, on a pair (m, c), whether the plaintext m is really encrypted in c or not (whether $m=\mathcal{D}_{s k}(c)$)
- chosen-ciphertext attacks (CCA): decryption oracle (with the restriction not to use it on the challenge ciphertext) \Longrightarrow the adversary can obtain the plaintext of any ciphertext of its choice (excepted the challenge)
- non-adaptive (CCA - 1)
[Naor-Yung - STOC '90] only before receiving the challenge
- adaptive (CCA - 2) unlimited oracle access

IND - CCA Security Game

The adversary can ask any decryption of its choice:
Chosen-Ciphertext Attacks (oracle access)

$$
\begin{gathered}
(s k, p k) \leftarrow \mathcal{K}() ;\left(m_{0}, m_{1}, \text { state }\right) \leftarrow \mathcal{A}^{\mathcal{D}}(p k) ; \\
b \stackrel{R}{\leftarrow}\{0,1\} ; c=\mathcal{E}_{p k}\left(m_{b}\right) ; b^{\prime} \leftarrow \mathcal{A}^{\mathcal{D}}(\text { state }, c) \\
\operatorname{Adv}_{\mathcal{S}}^{\mathrm{ind}-\mathrm{cca}}(\mathcal{A})=\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]\right|=\left|2 \times \operatorname{Pr}\left[b^{\prime}=b\right]-1\right|
\end{gathered}
$$

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Advanced Security Notions
Cramer-Shoup Encryption Scheme
Generic Conversion

Cramer-Shoup Encryption Scheme

Key Generation

- $\mathbb{G}=(\langle g\rangle, \times)$ group of order q
- sk $=\left(x_{1}, x_{2}, y_{1}, y_{2}, z\right)$, where $x_{1}, x_{2}, y_{1}, y_{2}, z \stackrel{R}{\leftarrow} \mathbb{Z}_{q}$
- $p k=\left(g_{1}, g_{2}, \mathcal{H}, c, d, h\right)$, where
- g_{1}, g_{2} are independent elements in \mathbb{G}
- \mathcal{H} a hash function (second-preimage resistant)
- $c=g_{1}^{x_{1}} g_{2}^{\chi_{2}}, d=g_{1}^{y_{1}} g_{2}^{y_{2}}$, and $h=g_{1}^{z}$

Encryption

$$
u_{1}=g_{1}^{r}, u_{2}=g_{2}^{r}, e=m \times h^{r}, v=c^{r} d^{r \alpha} \text { where } \alpha=\mathcal{H}\left(u_{1}, u_{2}, e\right)
$$

$u_{1}=g_{1}^{r}, u_{2}=g_{2}^{r}, e=m \times h^{r}, v=c^{r} d^{r \alpha}$ where $\alpha=\mathcal{H}\left(u_{1}, u_{2}, e\right)$
$\left(u_{1}, e\right)$ is an ElGamal ciphertext, with public key $h=g_{1}^{z}$

Decryption

- since $h=g_{1}^{z}, h^{r}=u_{1}^{z}$, thus $m=e / u_{1}^{z}$
- since $c=g_{1}^{x_{1}} g_{2}^{x_{2}}$ and $d=g_{1}^{y_{1}} g_{2}^{y_{2}}$

$$
c^{r}=g_{1}^{r x_{1}} g_{2}^{r x_{2}}=u_{1}^{x_{1}} u_{2}^{x_{2}} \quad d^{r}=u_{1}^{y_{1}} u_{2}^{y_{2}}
$$

One thus first checks whether

$$
v=u_{1}^{x_{1}+\alpha y_{1}} u_{2}^{x_{2}+\alpha y_{2}} \text { where } \alpha=\mathcal{H}\left(u_{1}, u_{2}, e\right)
$$

Security of the Cramer-Shoup Encryption Scheme

Real Attack Game

Theorem

The Cramer-Shoup encryption scheme achieves IND - CCA security, under the DDH assumption, and the second-preimage resistance of \mathcal{H} :

$$
\mathbf{A d} v_{\mathcal{C S}}^{\text {ind-cca }}(t) \leq 2 \times \mathbf{A d} \mathbf{v}_{\mathbb{G}}^{\text {ddh }}(t)+\operatorname{Succ}^{\mathcal{H}}(t)+3 q_{D} / q
$$

Let us prove this theorem, with a sequence of games, in which \mathcal{A} is an IND - CCA adversary against the Cramer-Shoup encryption scheme.

Key Generation Oracle

$x_{1}, x_{2}, y_{1}, y_{2}, z \stackrel{R}{\leftarrow} \mathbb{Z}_{q}, g_{1}, g_{2} \stackrel{R}{\leftarrow} \mathbb{G}: s k=\left(x_{1}, x_{2}, y_{1}, y_{2}, z\right)$
$c=g_{1}^{X_{1}} g_{2}^{X_{2}}, d=g_{1}^{y_{1}} g_{2}^{y_{2}}$, and $h=g_{1}^{z}: p k=\left(g_{1}, g_{2}, \mathcal{H}, c, d, h\right)$

Decryption Oracle

If $v=u_{1}^{x_{1}+\alpha y_{1}} u_{2}^{x_{2}+\alpha y_{2}}$ where $\alpha=\mathcal{H}\left(u_{1}, u_{2}, e\right)$: $m=e / u_{1}^{z}$

Proof: Invalid ciphertexts

- Game $_{0}$: use of the oracles \mathcal{K}, \mathcal{D}
- Game $_{1}$: we abort (with a random output b^{\prime}) in case of bad (invalid) accepted ciphertext, where invalid ciphertext means $\log _{g_{1}} u_{1} \neq \log _{g_{2}} u_{2}$

Event F

\mathcal{A} submits a bad accepted ciphertext (note: this is not computationally detectable)

The advantage in $\mathbf{G a m e}_{1}$ is: $\operatorname{Pr}_{1}\left[b^{\prime}=b \mid \mathbf{F}\right]=1 / 2$

$$
\underset{\text { Grame }_{0}}{\operatorname{Pr}}[\mathbf{F}]=\operatorname{Pr}_{\text {Game }_{1}}[\mathbf{F}] \underset{\text { Game }_{1}}{\operatorname{Pr}}\left[b^{\prime}=b \mid \neg \mathbf{F}\right]=\underset{\text { Game }_{0}}{\operatorname{Pr}}\left[b^{\prime}=b \mid \neg \mathbf{F}\right]
$$

$$
\begin{aligned}
& \boldsymbol{A d v}_{\text {Game }_{1}}=2 \times \operatorname{Prame}_{1}\left[b^{\prime}=b\right]-1 \\
& =2 \times \underset{\text { Game }_{1}}{\operatorname{Pr}}\left[b^{\prime}=b \mid \neg \mathbf{F}\right] \underset{\text { Game }_{1}}{\operatorname{Pr}}[\neg \mathbf{F}] \\
& +2 \times \underset{\text { Game }_{1}}{\operatorname{Pr}}\left[b^{\prime}=b \mid \mathbf{F}\right] \underset{\text { Game }_{1}}{\operatorname{Pr}}[F]-1 \\
& =2 \times \underset{\text { Game }_{0}}{\operatorname{Pr}}\left[b^{\prime}=b \mid \neg \mathbf{F}\right] \underset{\text { Game }_{0}}{\operatorname{Pr}}[\neg \mathbf{F}]+\underset{\text { Game }_{0}}{\operatorname{Pr}}[\mathbf{F}]-1 \\
& =2 \times \underset{\text { Game }_{0}}{\operatorname{Pr}}\left[b^{\prime}=b\right]-2 \times \underset{\text { Game }_{0}}{\operatorname{Pr}}\left[b^{\prime}=b \mid \mathbf{F}\right] \underset{\text { Game }_{0}}{\operatorname{Pr}}[\mathbf{F}] \\
& +\underset{\text { Game }_{0}}{\operatorname{Pr}}[F]-1 \\
& =\boldsymbol{A d v}_{\text {Game }_{0}}-\underset{\text { Game }_{0}}{\operatorname{Pr}}[\mathbf{F}]\left(2 \times \underset{\text { Game }_{0}}{\operatorname{Pr}}\left[b^{\prime}=b \mid \mathbf{F}\right]-1\right) \\
& \geq \operatorname{Adv}_{\text {Game }_{0}}-\underset{\text { Game }_{0}}{\operatorname{Pr}}[F]
\end{aligned}
$$ \Longrightarrow Hop-S-NegI: $\boldsymbol{A d v}_{\text {Game }_{1}} \geq \operatorname{Adv}_{\text {Game }_{0}}-\operatorname{Pr}[\mathbf{F}]$

Details: Bad Accept

Proof: Simulations

In order to evaluate $\operatorname{Pr}[\mathbf{F}]$, we study the probability that

- $r_{1}=\log _{g_{1}} u_{1} \neq \log _{g_{2}} u_{2}=r_{2}$,
- whereas $v=u_{1}^{x_{1}+\alpha y_{1}} u_{2}^{x_{2}+\alpha y_{2}}$

The adversary just knows the public key:

$$
c=g_{1}^{x_{1}} g_{2}^{x_{2}} \quad d=g_{1}^{y_{1}} g_{2}^{y_{2}}
$$

Let us move to the exponents, in basis g_{1}, with $g_{2}=g_{1}^{s}$:

$$
\begin{aligned}
\log c & =x_{1}+s x_{2} \\
\log d & =y_{1}+s y_{2} \\
\log v & =r_{1}\left(x_{1}+\alpha y_{1}\right)+s r_{2}\left(x_{2}+\alpha y_{2}\right)
\end{aligned}
$$

The system is under-defined: for any v, there are $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ that satisfy the system $\Longrightarrow v$ is unpredictable

$$
\underset{\text { ENs/CNRS/INRIA Cascade }}{\Longrightarrow \operatorname{Pr}[F] \leq q_{D} / q \quad \Longrightarrow \mathbf{A d v}_{\text {Game }_{1}} \geq \operatorname{Adv}_{\text {Game }_{0}}-q_{D} / q}
$$

Proof: Computable Adversary

- Game ${ }_{3}$: we do no longer exclude bad accepted ciphertexts \Longrightarrow Hop-S-NegI:
$\boldsymbol{A d v}_{\text {Game }_{3}} \geq \boldsymbol{A d v}_{\text {Game }_{2}}-\operatorname{Pr}[\mathbf{F}] \geq \boldsymbol{A d v}_{\text {Game }_{2}}-q_{D} / q$
This is technical: to make the simulator/adversary computable
- Game ${ }_{2}$: we use the simulations

Key Generation Simulation

$$
\begin{aligned}
& x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}, g_{1}, g_{2} \stackrel{R}{\leftarrow} \mathbb{G}: s k=\left(x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right) \\
& g_{2}=g_{1}^{s} \\
& c=g_{1}^{x_{1}} g_{2}^{x_{2}}, d=g_{1}^{y_{1}} g_{2}^{y_{2}}, \text { and } h=g_{1}^{z_{1}} g_{2}^{z_{2}}: p k=\left(g_{1}, g_{2}, \mathcal{H}, c, d, h\right) \\
& z=z_{1}+s z_{2}
\end{aligned}
$$

Distribution of the public key: Identical

Decryption Simulation

If $v=u_{1}^{X_{1}+\alpha y_{1}} u_{2}^{X_{2}+\alpha y_{2}}$ where $\alpha=\mathcal{H}\left(u_{1}, u_{2}, e\right)$: $m=e / u_{1}^{Z_{1}} u_{2}^{Z_{2}}$
Under the assumption of $\neg \mathbf{F}$, perfect simulation
\Longrightarrow Hop-S-Perfect: $\mathbf{A d v}_{\text {Game }_{2}}=\operatorname{Adv}_{\text {Game }_{1}}$

Proof: DDH Assumption

- Game 4_{4} : we modify the generation of the challenge ciphertext:

Original Challenge

Random choice: $b \stackrel{R}{\leftarrow}\{0,1\}, r \stackrel{R}{\leftarrow} \mathbb{Z}_{q} \quad\left[\alpha=\mathcal{H}\left(u_{1}, u_{2}, e\right)\right]$

$$
u_{1}=g_{1}^{r}, u_{2}=g_{2}^{r}, e=m_{b} \times h^{r}, v=c^{r} d^{r \alpha}
$$

New Challenge 1

Given $\left(U=g_{1}^{r}, V=g_{2}^{r}\right)$ and random choice $b \stackrel{R}{\leftarrow}\{0,1\}$

$$
u_{1}=U, u_{2}=V, e=m_{b} \times U^{z_{1}} V^{z_{2}}, v=U^{x_{1}+\alpha y_{1}} V^{x_{2}+\alpha y_{2}}
$$

$$
\begin{aligned}
& \text { With }\left(U=g_{1}^{r}, V=g_{2}^{r}\right): U^{z_{1}} V^{z_{2}}=h^{r} \text { and } U^{x_{1}+\alpha y_{1}} V^{x_{2}+\alpha y_{2}}=c^{r} d^{r \alpha} \\
& \Longrightarrow \text { Hop-S-Perfect: } \operatorname{Adv}_{\text {Game }_{4}}=\operatorname{Adv}_{\text {Game }_{3}}
\end{aligned}
$$

Proof: DDH Assumption

Proof: DDH Assumption

- Game ${ }_{5}$: we modify the generation of the challenge ciphertext:

Previous Challenge 1

Given $\left(U=g_{1}^{r}, V=g_{2}^{r}\right)$ and random choice $b \stackrel{R}{\leftarrow}\{0,1\}$

$$
u_{1}=U, u_{2}=V, e=m_{b} \times U^{z_{1}} V^{z_{2}}, v=U^{x_{1}+\alpha y_{1}} V^{x_{2}+\alpha y_{2}}
$$

New Challenge 2

Given $\left(U=g_{1}^{r_{1}}, V=g_{2}^{r_{2}}\right)$ and random choice $b \stackrel{R}{\leftarrow}\{0,1\}$

$$
u_{1}=U, u_{2}=V, e=m_{b} \times U^{z_{1}} V^{z_{2}}, v=U^{x_{1}+\alpha y_{1}} V^{x_{2}+\alpha y_{2}}
$$

The input changes from $\left(U=g_{1}^{r}, V=g_{2}^{r}\right)$ to $\left(U=g_{1}^{r_{1}}, V=g_{2}^{r_{2}}\right)$:
\Longrightarrow Hop-D-Comp: $\boldsymbol{A d v}_{\text {Game }_{5}} \geq \boldsymbol{A d v}_{\text {Game }_{4}}-2 \times \boldsymbol{A d v}_{\mathbb{G}}{ }^{\mathbf{d d h}}(t)$

The input from outside changes from ($U=g_{1}^{r}, V=g_{2}^{r}$) (a CDH tuple) to $\left(U=g_{1}^{r_{1}}, V=g_{2}^{r_{2}}\right)$ (a random tuple):

$$
\operatorname{Pr}_{\text {Game }_{4}}\left[b^{\prime}=b\right]-\underset{\text { Game }_{5}}{\operatorname{Pr}}\left[b^{\prime}=b\right] \leq \operatorname{Adv}_{\mathbb{G}}^{\text {ddh }}(t)
$$

\Longrightarrow Hop-D-Comp: $\boldsymbol{A d v}_{\text {Game }_{5}} \geq \operatorname{Adv}_{\text {Game }_{4}}-2 \times \operatorname{Adv}_{\mathbb{G}}{ }^{\mathbf{d d h}}(t)$
(Since Adv $=2 \times \operatorname{Pr}\left[b^{\prime}=b\right]-1$)

Proof: Collision

- Game $_{6}$: we abort (with a random output b^{\prime}) in case of second pre-image with a decryption query

Event F_{H}

\mathcal{A} submits a ciphertext with the same α as the challenge ciphertext, but a different initial triple: $\left(u_{1}, u_{2}, \boldsymbol{e}\right) \neq\left(u_{1}^{*}, u_{2}^{*}, e^{*}\right)$, but $\alpha=\alpha^{*}$, were
"*" are for all the elements related to the challenge ciphertext.
Second pre-image of $\mathcal{H}: \quad \Longrightarrow \operatorname{Pr}\left[\mathbf{F}_{H}\right] \leq$ Succ $^{\mathcal{H}}(t)$
The advantage in $\mathbf{G a m e}_{6}$ is: $\operatorname{Pr}_{\text {Game }_{6}}\left[b^{\prime}=b \mid \mathbf{F}_{H}\right]=1 / 2$

$$
\underset{\text { Game }_{5}}{\operatorname{Pr}}\left[\mathbf{F}_{H}\right]=\underset{\text { Game }_{6}}{\operatorname{Pr}}\left[\mathbf{F}_{H}\right] \quad \underset{\text { Game }_{6}}{\operatorname{Pr}}\left[b^{\prime}=b \mid \neg \mathbf{F}_{H}\right]=\underset{\text { Game }_{5}}{\operatorname{Pr}}\left[b^{\prime}=b \mid \neg \mathbf{F}_{H}\right]
$$

\Longrightarrow Hop-S-Negl: $\boldsymbol{A d v}_{\text {Game }_{6}} \geq \mathbf{A d v}_{\text {Game }_{5}}-\operatorname{Pr}\left[\mathbf{F}_{H}\right]$

$$
\boldsymbol{\operatorname { A d v }}_{\text {Game }_{6}} \geq \boldsymbol{\operatorname { A d v }}_{\text {Game }_{5}}-\boldsymbol{\operatorname { S u c c }}^{\mathcal{H}}(t)
$$

in case of bad accepted ciphertext, we do as in Game ${ }_{1}$

Event \mathbf{F}^{\prime}

\mathcal{A} submits a bad accepted ciphertext (note: this is not computationally detectable)

The advantage in $\mathbf{G a m e}_{7}$ is: $\operatorname{Pr}_{\text {Game }_{7}}\left[b^{\prime}=b \mid \mathbf{F}^{\prime}\right]=1 / 2$

$$
\underset{\text { Game }_{6}}{\operatorname{Pr}}\left[\mathbf{F}^{\prime}\right]=\operatorname{Pr}_{\text {Game }_{7}}\left[\mathbf{F}^{\prime}\right] \underset{\text { Game }_{7}}{\operatorname{Pr}}\left[b^{\prime}=b \mid \neg \mathbf{F}^{\prime}\right]=\operatorname{Pr}_{\text {Game }_{6}}\left[b^{\prime}=b \mid \neg \mathbf{F}^{\prime}\right]
$$

\Longrightarrow Hop-S-Negl: $\mathbf{A d v}_{\text {Game }_{7}} \geq \boldsymbol{A d v}_{\text {Game }_{6}}-\operatorname{Pr}\left[\mathbf{F}^{\prime}\right]$

Details: Bad Accept

Details: Bad Accept (Case 3)

In order to evaluate $\operatorname{Pr}\left[\mathbf{F}^{\prime}\right]$, we study the probability that

- $r_{1}=\log _{g_{1}} u_{1} \neq \log _{g_{2}} u_{2}=r_{2}$,
- whereas $v=u_{1}{ }^{x_{1}+\alpha y_{1}} u_{2}{ }^{x_{2}+\alpha y_{2}}$

Let us use "*" for all the elements related to the challenge ciphertext.
Three cases may appear:

- Case 1: $\left(u_{1}, u_{2}, e\right)=\left(u_{1}^{*}, u_{2}^{*}, e^{*}\right)$, then necessarily

$$
v \neq v^{*}=U^{x_{1}+\alpha^{*} y_{1}} V^{x_{2}+\alpha^{*} y_{2}}=u_{1}^{* x_{1}+\alpha^{*} y_{1}} u_{2}^{* x_{2}+\alpha^{*} y_{2}}
$$

Then, the ciphertext is rejected $\quad \Longrightarrow \operatorname{Pr}\left[\mathbf{F}_{1}^{\prime}\right]=0$

- Case 2: $\left(u_{1}, u_{2}, e\right) \neq\left(u_{1}^{*}, u_{2}^{*}, e^{*}\right)$, but $\alpha=\alpha^{*}$:

From the previous game, Aborts $\quad \Longrightarrow \operatorname{Pr}\left[\mathbf{F}_{2}^{\prime}\right]=0$

- Case 3: $\left(u_{1}, u_{2}, e\right) \neq\left(u_{1}^{*}, u_{2}^{*}, e^{*}\right)$, and $\alpha \neq \alpha^{*}$

The determinant of the system is

$$
\begin{aligned}
\Delta & =\left|\begin{array}{cccc}
1 & s & 0 & 0 \\
0 & 0 & 1 & s \\
r_{1}^{*} & s r_{2}^{*} & r_{1}^{*} \alpha^{*} & s r_{2}^{*} \alpha^{*} \\
r_{1} & s r_{2} & r_{1} \alpha & s r_{2} \alpha
\end{array}\right| \\
& =s^{2} \times\left(\left(r_{2}-r_{1}\right) \times\left(r_{2}^{*}-r_{1}^{*}\right) \times \alpha^{*}-\left(r_{2}^{*}-r_{1}^{*}\right) \times\left(r_{2}-r_{1}\right) \times \alpha\right) \\
& =s^{2} \times\left(r_{2}-r_{1}\right) \times\left(r_{2}^{*}-r_{1}^{*}\right) \times\left(\alpha^{*}-\alpha\right) \\
& \neq 0
\end{aligned}
$$

The system is under-defined:
for any v, there are $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ that satisfy the system
$\Longrightarrow v$ is unpredictable $\quad \Longrightarrow \operatorname{Pr}\left[\mathbf{F}_{3}^{\prime}\right] \leq q_{D} / q$
$\Longrightarrow \boldsymbol{A d v}_{\text {Game }_{7}} \geq \boldsymbol{A d v}_{\text {Game }_{6}}-q_{D} / q$

Details: Bad Accept (Case 3)

The adversary knows the public key, and the (invalid) challenge ciphertext:

$$
\begin{gathered}
c=g_{1}^{x_{1}} g_{2}^{x_{2}} \quad d=g_{1}^{y_{1}} g_{2}^{y_{2}} \\
v^{*}=U^{x_{1}+\alpha^{*} y_{1}} V^{x_{2}+\alpha^{*} y_{2}}=g_{1}^{r_{1}^{*}\left(x_{1}+\alpha^{*} y_{1}\right)} g_{2}^{r_{2}^{*}\left(x_{2}+\alpha^{*} y_{2}\right)}
\end{gathered}
$$

Let us move to the exponents, in basis g_{1}, with $g_{2}=g_{1}^{s}$:

$$
\begin{aligned}
\log c & =x_{1}+s x_{2} \\
\log d & =y_{1}+s y_{2} \\
\log v^{*} & =r_{1}^{*}\left(x_{1}+\alpha^{*} y_{1}\right)+\operatorname{sr}_{2}^{*}\left(x_{2}+\alpha^{*} y_{2}\right) \\
\log v & =r_{1}\left(x_{1}+\alpha y_{1}\right)+\operatorname{sr}_{2}\left(x_{2}+\alpha y_{2}\right)
\end{aligned}
$$

Outline

$$
\begin{aligned}
& \operatorname{Adv}_{\text {Game }_{7}}=0 \\
& \boldsymbol{\operatorname { A d v }}_{\text {Game }_{7}} \geq \operatorname{Adv}_{\text {Game }_{6}}-q_{D} / q \\
& \boldsymbol{\operatorname { A d v }}_{\text {Game }_{6}} \geq \boldsymbol{A d v}_{\text {Game }_{5}}-\boldsymbol{\operatorname { S u c c }}^{\mathcal{H}}(t) \\
& \boldsymbol{\operatorname { A d v }}_{\text {Game }_{5}} \geq \operatorname{Adv}_{\text {Game }_{4}}-2 \times \boldsymbol{\operatorname { A d v }}_{\mathbb{G}}{ }^{\mathbf{d d h}}(t) \\
& \boldsymbol{A d v}_{\text {Game }_{4}}=\boldsymbol{A d v}_{\text {Game }_{3}} \\
& \boldsymbol{\operatorname { A d v }}_{\text {Game }_{3}} \geq \operatorname{Adv}_{\text {Game }_{2}}-q_{D} / q \\
& \boldsymbol{A d v}_{\text {Game }_{2}}=\operatorname{Adv}_{\text {Game }_{1}} \\
& \operatorname{Adv}_{\text {Game }_{1}} \geq \operatorname{Adv}_{\text {Game }_{0}}-q_{D} / q \\
& \boldsymbol{\operatorname { A d v }}_{\text {Game }_{0}}=\operatorname{Adv}_{\mathcal{C S}}^{\text {ind-cca }}(\mathcal{A})
\end{aligned}
$$

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Advanced Security Notions
Cramer-Shoup Encryption Scheme
Generic Conversion

Conclusion

$$
\operatorname{Adv}_{\mathcal{C S}}^{\text {ind-cca }}(\mathcal{A}) \leq 2 \times \mathbf{A d v}_{\mathbb{G}}^{\text {ddh }}(t)+\operatorname{Succ}^{\mathcal{H}}(t)+3 q_{D} / q
$$

ans/CNrSINriA Cascade DavidPointcheval

First Generic Conversion

[Bellare-Rogaway - Eurocrypt '93]
For efficiency: random oracle model

Setup

- A trapdoor one-way permutation family $\{(f, g)\}$ onto the set X
- Two hash functions, for the security parameter k_{1},

$$
\mathcal{G}: X \longrightarrow\{0,1\}^{n} \text { and } \mathcal{H}:\{0,1\}^{\star} \longrightarrow\{0,1\}^{k_{1}}
$$

where n is the bit-length of the plaintexts.

Key Generation

One chooses a random element in the family

- f is the public key
- the inverse g is the private key

First Generic Conversion (Cont'ed)

Encryption

One chooses a random element $r \in X$

$$
a=f(r), \quad b=m \oplus \mathcal{G}(r), \quad c=\mathcal{H}(m, r)
$$

Decryption

Given (a, b, c), and the private key g,

- one first recovers $r=g(a)$
- one gets $m=b \oplus \mathcal{G}(r)$
- one then checks whether $c \stackrel{?}{=} \mathcal{H}(m, r)$

If the equality holds, one returns m, otherwise one rejects the ciphertext

Security of the Bellare-Rogaway Conversion

Real Attack Game

Theorem

The Bellare-Rogaway conversion achieves IND - CCA security, under the one-wayness of the trapdoor permutation f :

$$
\operatorname{Adv}_{\mathcal{B R}}^{\text {ind-cca }}(t) \leq 2 \times \operatorname{Succ}_{f}^{\mathrm{ow}}(T)+\frac{4 q_{D}}{2^{k_{1}}}
$$

where $T \leq t+\left(q_{G}+q_{H}\right) \cdot T_{f}$.
Let us prove this theorem, with a sequence of games, in which \mathcal{A} is an IND - CCA adversary against the Bellare-Rogaway conversion.

Key Generation Oracle

Random permutation f, and its inverse g

Decryption Oracle

Compute $r=g(a)$, and then $m=b \oplus \mathcal{G}(r)$
if $c=\mathcal{H}(m, r)$, outputs m, otherwise reject

Simulation of the Random Oracles

Simulation of the Challenge Ciphertext

- Game ${ }_{0}$: use of the perfect oracles

Challenge Ciphertext

Random r, random bit b : $a=f(r), b=m_{b} \oplus \mathcal{G}(r), c=\mathcal{H}(m, r)$

$$
\operatorname{Adv}_{\text {Game }_{0}}=2 \times \operatorname{Pr}_{\text {Greme }_{0}}\left[b^{\prime}=b\right]-1=\varepsilon
$$

- Game $_{1}$: use of the simulation of the random oracles

Random Oracles

For any new query, a new random output: management of lists

- Game ${ }_{2}$: use of an independent random value h^{+}

Challenge Ciphertext

Random r, random bit b : $a=f(r), b=m_{b} \oplus \mathcal{G}(r), c=h^{+}$
This game is indistinguishable from the previous one, unless (m_{b}, r) is queried to \mathcal{H} : event AskMR (it can only be asked by the adversary, since such a query by the decryption oracle would be for the challenge ciphertext).
Note that in case of AskMR, we stop the simulation with a random output:

$$
\text { Adv }_{\text {Game }_{2}} \geq \text { Adv }_{\text {Game }_{1}}-2 \times \operatorname{Pr}_{\text {Game }_{2}}[\text { AskMR }]
$$

$$
\boldsymbol{A d v}_{\text {Game }_{1}}=\boldsymbol{A d v}_{\text {Game }_{0}}
$$

Simulation of the Decryption Oracle

- Game ${ }_{3}$: reject if (m, r) not queried to \mathcal{H}

Decryption Oracle

Look in the \mathcal{H}-list for (m, r) such that $c=\mathcal{H}(m, r)$.
If not found: reject,
if for one pair, $a=f(r)$ and $b=m \oplus \mathcal{G}(r)$, output m
This makes a difference if this value c, without having been asked to \mathcal{H}, is correct: for each attempt, the probability is bounded by $1 / 2^{k_{1}}$:

$$
\begin{aligned}
\mathbf{A d v}_{\text {Game }_{3}} & \geq \mathbf{A d v}_{\text {Game }_{2}}-2 q_{D} / 2^{k_{1}} \\
\operatorname{Pr}[\mathbf{A s k M R}] & \geq \operatorname{Pr}_{\text {Game }_{2}}[\text { AskMR }]-q_{D} / 2^{k_{1}}
\end{aligned}
$$

Inversion of the Permutation

Since we can assume that a^{+}is a given challenge for inverting the permutation f, when one looks in the \mathcal{G}-list or the \mathcal{H}-list, one can find r, the pre-image of a^{+}:

$$
\underset{\operatorname{Game}_{5}}{\operatorname{Pr}}[\mathbf{A s k R}] \leq \operatorname{Succ}_{f}^{\mathrm{ow}}\left(t+\left(q_{G}+q_{H}\right) \cdot T_{f}\right)
$$

But clearly, in the last game, because of g^{+}that perfectly hides m_{b} :

$$
\operatorname{Adv}_{\text {Game }_{5}}=0
$$

Simulation of the Challenge Ciphertext

- Game ${ }_{4}$: use of an independent random value $g^{+}\left(\right.$and $\left.h^{+}\right)$

Challenge Ciphertext

Random r, random bit $b: a=f(r), b=m_{b} \oplus g^{+}, c=h^{+}$
This game is indistinguishable from the previous one, unless r is queried to \mathcal{G} by the adversary or by the decryption oracle. We denote by AskR the event that r is asked to \mathcal{G} or \mathcal{H} by the adversary (which includes AskMR). But r cannot be asked to \mathcal{G} by the decryption oracle without AskR: only possible if r is in the \mathcal{H}-list, and thus asked by the adversary:

$$
\begin{aligned}
\text { Adv }_{\text {Game }_{4}} & \geq \text { Adv }_{\text {Game }_{3}}-2 \times \underset{\text { Game }_{3}}{\operatorname{Pr}}[\text { AskR } \wedge \neg \text { AskMR }] \\
\underset{\text { Grame }_{4}}{\operatorname{Pr}}[\text { AskR }] & =\underset{\text { Grame }_{3}}{\operatorname{Pr}}[\text { AskMR }]+\underset{\text { Greme }_{3}}{\operatorname{Pr}}[\text { AskR } \wedge \neg \text { AskMR }]
\end{aligned}
$$

$$
\begin{aligned}
\text { AdvGame }_{5} & =\text { Adv }_{\text {Game }}^{4} \\
\operatorname{Pr}_{\text {G }}[\mathbf{A s k R}] & =\operatorname{Pr}_{\text {Game }_{4}}[\text { AskR }]
\end{aligned}
$$

Simulation of the Challenge Ciphertext

- Game 5 : use of an independent random value a^{+}(and g^{+}, h^{+})

Challenge Ciphertext

random bit $b: a=a^{+}, b=m_{b} \oplus g^{+}, c=h^{+}$
This determines r, the unique value such that $a^{+}=f(r)$, which allows to detect event AskR.
This game is perfectly indistinguishable from the previous one:

Conclusion

As a consequence, $0=\operatorname{Adv}_{\text {Game }_{5}}$

$$
\begin{aligned}
& =\mathbf{A d v}_{\text {Game }_{4}} \geq \mathbf{A d v}_{\text {Game }_{3}}-2 \times \underset{\text { Game }_{3}}{\operatorname{Pr}}[\mathbf{A s k R} \wedge \neg \mathbf{A s k M R}] \\
& \geq \boldsymbol{A d v}_{\text {Game }_{2}}-2 \times \underset{\text { Game }_{3}}{\operatorname{Pr}}[\mathbf{A s k R} \wedge \neg \mathbf{A s k M R}]-2 q_{D} / 2^{k_{1}} \\
& \geq \operatorname{Adv}_{\text {Game }_{1}}-2 \times \operatorname{Pr}_{\text {Game }_{2}}[\mathbf{A s k M R}]-2 \times \operatorname{Pr}_{\text {Game }_{3}}[\mathbf{A s k R} \wedge \neg \mathbf{A s k M R}]-2 q_{D} / 2^{k_{1}} \\
& \geq \mathbf{A d v}_{\text {Game }_{0}}-2 \times \underset{\text { Grame }_{3}}{\operatorname{Pr}}[\mathbf{A s k M R}]-2 \times \underset{\text { Game }_{3}}{\operatorname{Pr}}[\text { AskR } \wedge \neg \mathbf{A s k M R}]-4 q_{D} / 2^{k_{1}} \\
& \geq \text { Adv }_{\text {Game }_{0}}-2 \times \operatorname{Pr}_{\text {Game }_{4}}[\text { AskR }]-4 q_{D} / 2^{k_{1}} \\
& \geq \mathbf{A d v}_{\text {Game }_{0}}-2 \times \operatorname{Pr}_{\text {Game }_{5}}[\mathbf{A s k R}]-4 q_{D} / 2^{k_{1}}
\end{aligned}
$$

And then,

$$
\operatorname{Adv}_{\text {Game }_{0}} \leq 4 q_{D} / 2^{k_{1}}+2 \times \operatorname{Succ}_{f}^{\text {ow }}(T)
$$

Conclusion

Outline

Basic Security Notions

Game-based Proofs

Advanced Security for Encryption

Conclusion

Conclusion

Game-based Methodology: the story of OAEP
[Bellare-Rogaway EC '94]

- Reduction proven indistinguishable for an IND-CCA adversary (actually IND-CCA1, and not IND-CCA2) but widely believed for IND-CCA2, without any further analysis of the reduction The direct-reduction methodology
-

[Shoup - Crypto '01]
Shoup showed the gap for IND-CCA2, under the OWP Granted his new game-based methodology
-
[Fujisaki-Okamoto-Pointcheval-Stern - Crypto '01] FOPS proved the security for IND-CCA2, under the PD-OWP Using the game-based methodology

