
Basics in Cryptology

IV – Secure Function Evaluation

and Secure 2-Party Computation

David Pointcheval
Ecole normale supérieure/PSL, CNRS & INRIA

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 1/33

Outline

Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Definition

Examples

Garbled Circuits

Introduction

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 2/33

Secure Function Evaluation

Outline

Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Garbled Circuits

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 3/33

Secure Function Evaluation

Multi-Party Computation

n players Pi want to jointly evaluate yi = fi (x1, . . . , xn),

for public functions fi so that

• xi is the private input of Pi

• Pi eventually learns yi = fi (x1, . . . , xn)

• . . . and nothing else about xj for j 6= i

Security Notions

• Privacy

• Correctness

• Fairness (much harder to get)

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 4/33

Secure Function Evaluation

t-Privacy

If t parties collude, they cannot learn more on the other inputs

than from their own/known inputs and outputs

Note that the knowledge of yi can leak some information on the xj ’s.

Security Models

• Honest-but-curious: all the players follow the protocol honestly,

but the adversary knows all the inputs/outputs from t users

• Malicious users: the adversary controls a fixed set of t players

• Dynamic adversary: the adversary dynamically chooses the (up to)

t players it controls

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 5/33

Outline

Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Garbled Circuits

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 6/33

Electronic Voting

Private Evaluation of the Sum

For all i : xi ∈ {0, 1} and fi (x1, . . . , xn) =
∑

j xj

Example (Homomorphic Encryption)

• Pi encrypts Ci = E (xi)

with an additively homomorphic encryption scheme

• They all compute C = E (
∑

xi)

• They jointly decrypt C to get y =
∑

xi

using a distributed decryption

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 7/33

Electronic Voting

Privacy: Limitations

In case of unanimity (i.e.
∑

xi = n), one learns all the xi ’s,

even in the honest-but-curious setting

This is not a weakness of the protocol, but of the functionality:

one should just reveal the winner

Replay Attacks

A malicious adversary could try to amplify P1’s vote, replaying its

message C1 by t corrupted players: this can leak P1’s vote x1

This can be avoided with non-malleable encryption

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 8/33

Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y , Alice

gets f (x , y) and Bob gets g(x , y), but nothing else

Equality Test

Alice owns a value x and Bob owns a value y ,

in the end, they both learn whether x = y or not

Yao Millionaires’ Problem

Alice owns an integer x and Bob owns an integer y ,

in the end, they both learn whether x ≤ y or not

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 9/33

Equality Test

Alice owns a value x ∈ [A,B] and Bob owns a value y ∈ [A,B],

in the end, they both learn whether x = y or not

With Homomorphic Encryption

• Alice encrypts C = E (x)

with an additively homomorphic encryption scheme

• Bob computes C ′ = E (r(x − y)), for a random element r

plus the randomization of the ciphertext

• Alice computes C ′′ = E (rr ′(x − y)), for a random element r ′

plus the randomization of the ciphertext

• They jointly decrypt C ′′: the value is 0 iff x = y (or random)

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 10/33

Yao Millionaires’ Problem

Alice owns an integer x ∈ [0, 2n[and Bob owns an integer y ∈ [0, 2n[,

in the end, they both learn whether x ≤ y or not

Theorem [Lin-Tzeng – 2005]

Given x = xn−1 . . . x0, y = yn−1 . . . y0 ∈ {0, 1}n, and denoting

T 1
x = {xn−1 . . . xi |xi = 1} T 0

y = {yn−1 . . . yi+11|yi = 0}

x > y ⇐⇒ T 1
x ∩ T 0

y 6= ∅

x > y ⇐⇒ ∃!i < n, (xi > yi) ∧ (∀j > i , xj = yj)

⇐⇒ ∃!i < n, (xi = 1) ∧ (yi = 0) ∧ (∀j > i , xj = yj)

⇐⇒ ∃!i < n, (yi = 0) ∧ (xn−1 . . . xi = yn−1 . . . yi+11)

⇐⇒ |T 1
x ∩ T 0

y | = 1

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 11/33

Yao Millionaires’ Problem

We fill and order the sets by length: T̄ 1
x = {Xi} and T̄ 0

y = {Yi} where

• if xi = 0, Xi = 2n, otherwise Xi = xn−1 . . . xi ∈ [0, 2n−i [

• if yi = 1, Yi = 2n + 1, otherwise Yi = yn−1 . . . yi+11 ∈ [0, 2n−i [

x > y ⇐⇒ ∃!i < n,Xi = Yi

With Homomorphic Encryption

• Alice encrypts Ci = E (Xi)

with an additively homomorphic encryption scheme

• Bob computes C ′i = E (ri (Xi − Yi)), for random elements ri

randomizes them, and sends them in random order

• Alice computes C ′′i = E (ri r
′
i (Xi − Yi)), for random elements r ′i

randomizes them, and sends them in random order

• They jointly decrypt the C ′′i ’s: one value is 0 iff x > y

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 12/33

Outline

Secure Function Evaluation

Introduction

Examples

Malicious Setting

Oblivious Transfer

Garbled Circuits

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 13/33

GMW Compiler

GMW Compiler [Goldreich-Micali-Wigderson – STOC 1987]

• Commitment of the inputs

• Secure coin tossing

• Zero-knowledge proofs of correct behavior

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 14/33

Oblivious Transfer

Outline

Secure Function Evaluation

Oblivious Transfer

Definition

Examples

Garbled Circuits

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 15/33

Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y , Alice

gets f (x , y) and Bob gets g(x , y), but nothing else

Oblivious Transfer [Rabin – 1981]

Alice owns two values x0, x1 and Bob owns a bit b ∈ {0, 1},
so that in the end, Bob learns xb and Alice gets nothing:

x = (x0, x1) and y = b, then g((x0, x1), b) = xb and f ((x0, x1), b) = ⊥

[Kilian – STOC 1988]

Oblivious Transfer is equivalent to Secure 2-Party Computation

From an Oblivious Transfer Protocol,

one can implement any 2-Party Secure Function Evaluation

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 16/33

Outline

Secure Function Evaluation

Oblivious Transfer

Definition

Examples

Garbled Circuits

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 17/33

Oblivious Transfer

Example (Bellare-Micali’s Construction – 1992)

In a discrete logarithm setting (G, g , p), for x0, x1 ∈ G

• Alice chooses c
R← G and sends it to Bob

• Bob chooses k
R← Zp, sets pkb ← gk and pk1−b ← c/pkb,

and sends (pk0, pk1) to Alice

• Alice checks pk0 · pk1 = c

and encrypts xi under pk i (for i = 0, 1) with ElGamal:

Ci ← g ri and C ′i ← xi · pk rii , for ri
R← Zp

• Bob can decrypt (Cb,C
′
b) using k

Because of the random c (unknown discrete logarithm),

Bob should not be able to infer any information about x1−b

This is provably secure in the honest-but-curious setting
ENS/PSL/CNRS/INRIA Cascade David Pointcheval 18/33

Oblivious Transfer

Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting (G, g , p), for x0, x1 ∈ G

• Bob chooses r , s, t
R← Zp, sets X ← g r , Y ← g s , Zb ← g rs ,

Z1−b ← g t , and sends (X ,Y ,Z0,Z1) to Alice

• Alice checks Z0 6= Z1, and re-randomizes the tuples:

T0 ← (X ,Y ′0 = Y u0g v0 ,Z ′0 = Zu0
0 X v0) and

T1 ← (X ,Y ′1 = Y u1g v1 ,Z ′1 = Zu1
1 X v1), for u0, v0, u1, v1

R← Zp

• Alice encrypts xi under Ti : Ci = Y ′i and C ′i = xi · Z ′i
• Bob can decrypt (Cb,C

′
b) using r

The re-randomization keeps the DH-tuple Tb,

but perfectly removes information in T1−b

This is provably secure in the malicious setting
ENS/PSL/CNRS/INRIA Cascade David Pointcheval 19/33

Garbled Circuits

Outline

Secure Function Evaluation

Oblivious Transfer

Garbled Circuits

Introduction

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 20/33

Boolean Circuit

Boolean circuit, Alice’s inputs (x1, x2, x3), and Bob’s inputs (y1, y2, y3):

y1

x2

y2

x3

y3

x1

z

They both learn z in the end, but nothing else
ENS/PSL/CNRS/INRIA Cascade David Pointcheval 21/33

Outline

Secure Function Evaluation

Oblivious Transfer

Garbled Circuits

Introduction

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 22/33

Garbled Circuit

Alice converts the circuit into a generic circuit: 1-input or 2-input gates

A

E

B

G

C

F

D

y1

x2

y2

x3

y3

x1

z

A =
[
1 0

]
not

B =

[
0 0

0 1

]
and

C =

[
0 1

1 1

]
or

D =
[
0 1

]
line

E =

[
0 1

1 1

]
or

F =

[
0 0

0 1

]
and

G =

[
0 1

1 1

]
or

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 23/33

Garbled Gates

Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not): 4 random secret keys I 0
A, I 1

A, O0
A, O1

A

A =
[
1 0

]
:C 0

A = Encrypt(I 0
A,O

1
A) C 1

A = Encrypt(I 1
A,O

0
A)

2-Input Garbled Gate

For the gate B (and): 8 random secret keys I 0
B , I 1

B , J0
B , J1

B , O0
B , O1

B

B =

[
0 0

0 1

]
:C 00

B = Encrypt(I 0
B ||J0

B ,O
0
B) C 01

B = Encrypt(I 0
B ||J1

B ,O
0
B)

C 10
B = Encrypt(I 1

B ||J0
B ,O

0
B) C 11

B = Encrypt(I 1
B ||J1

B ,O
1
B)

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 24/33

Alice’s Inputs

Alice publishes the ciphertexts in random order for each gate

Alice publishes the keys corresponding to her inputs:

• for x1, she sends I x1
D

• for x2, she sends Jx2
B

• for x3, she sends Jx3
C

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 25/33

Bob’s Inputs

Ay1 yA

A =
[
1 0

]
:C 0

A = Encrypt(I 0
A,O

1
A) C 1

A = Encrypt(I 1
A,O

0
A)

Oblivious Transfer

Alice owns I 0
A, I 1

A and Bob owns y1 ∈ {0, 1}

• Using an OT, Bob gets I y1

A , while Alice learns nothing

• From the ciphertexts (Cb
A)b, Bob gets OyA

A

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 26/33

Bob’s Inputs

B
x2

y2
yB

B =

[
0 0

0 1

]
:C 00

B = Encrypt(I 0
B ||J0

B ,O
0
B) C 01

B = Encrypt(I 0
B ||J1

B ,O
0
B)

C 10
B = Encrypt(I 1

B ||J0
B ,O

0
B) C 11

B = Encrypt(I 1
B ||J1

B ,O
1
B)

Oblivious Transfer

Alice owns I 0
B , I 1

B , and Bob owns y2 ∈ {0, 1}

• Using an OT, Bob gets I y2

B , while Alice learns nothing

• Bob additionally knows Jx2
B

• From the ciphertexts (Cbb′
B)bb′ , Bob gets OyB

B

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 27/33

Internal Garbled Gates

A

E

B

y1
yA

x2

y2 yB

yE

Internal Garbled Gate

For the gate E (or): 2 new random secret keys O0
E , O1

E

while I 0
E ← O0

A, I 1
E ← O1

A, J0
E ← O0

B , J1
E ← O1

B

E =

[
0 1

1 1

]
:C 00

E = Encrypt(I 0
E ||J0

E ,O
0
E) C 01

E = Encrypt(I 0
E ||J1

E ,O
1
E)

C 10
E = Encrypt(I 1

E ||J0
E ,O

1
E) C 11

E = Encrypt(I 1
E ||J1

E ,O
1
E)

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 28/33

Evaluation of Internal Gates

A

E

B

y1
yA

x2

y2 yB

yE

E =

[
0 1

1 1

]
:C 00

E = Encrypt(I 0
E ||J0

E ,O
0
E) C 01

E = Encrypt(I 0
E ||J1

E ,O
1
E)

C 10
E = Encrypt(I 1

E ||J0
E ,O

1
E) C 11

E = Encrypt(I 1
E ||J1

E ,O
1
E)

Evaluation of Gate E

Bob knows I yAE = OyA
A and JyBE = OyB

B

From the ciphertexts (Cbb′
E)bb′ , Bob gets OyE

E

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 29/33

Output Garbled Gates

E

G

F

yB

yA yE

yD

yC yF

z

Output Garbled Gate

For the gate G (or): I 0
G ← O0

E , I 1
G ← O1

E , J0
G ← O0

F , J1
G ← O1

F

G =

[
0 1

1 1

]
:C 00

G = Encrypt(I 0
G ||J0

G , 0) C 01
G = Encrypt(I 0

G ||J1
G , 1)

C 10
G = Encrypt(I 1

G ||J0
G , 1) C 11

G = Encrypt(I 1
G ||J1

G , 1)

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 30/33

Evaluation of Internal Gates

E

G

F

yB

yA yE

yD

yC yF

z

G =

[
0 1

1 1

]
:C 00

G = Encrypt(I 0
G ||J0

G , 0) C 01
G = Encrypt(I 0

G ||J1
G , 1)

C 10
G = Encrypt(I 1

G ||J0
G , 1) C 11

G = Encrypt(I 1
G ||J1

G , 1)

Evaluation of Gate G

Bob knows I yEG = OyE
E and JyFG = OyF

F

From the ciphertexts (Cbb′
G)bb′ , Bob gets z ∈ {0, 1}

Bob can then transmit z to Alice

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 31/33

Outline

Secure Function Evaluation

Oblivious Transfer

Garbled Circuits

Introduction

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 32/33

Honest-but-Curious and Malicious

The previous construction assumes that

• Bob extracts the correct plaintext among the multiple candidates

=⇒ Redundancy is added to the plaintext

(or authenticated encryption)

They have to trust each other

• Alice correctly builds garbled gates: the ciphertexts are correct

=⇒ Cut-and-choose technique

• Alice plays the oblivious transfer protocols with correct inputs

=⇒ Inputs are committed, checked during the cut-and-choose,

and ZK proofs are done during the OT

• Bob sends back the correct value z

=⇒ Random tags are appended to the final results 0 and 1

that Bob cannot guess
ENS/PSL/CNRS/INRIA Cascade David Pointcheval 33/33

	Main Part
	Secure Function Evaluation
	Introduction
	Examples
	Malicious Setting

	Oblivious Transfer
	Definition
	Examples

	Garbled Circuits
	Introduction
	Garbled Circuits
	Correctness

