# IV – Secure Function Evaluation and Secure 2-Party Computation

David Pointcheval Ecole normale supérieure/PSL, CNRS & INRIA







ENS/PSL/CNRS/INRIA Cascade

## Outline

#### **Secure Function Evaluation**

Introduction

Examples

Malicious Setting

#### **Oblivious Transfer**

Definition

Examples

#### **Garbled Circuits**

Introduction

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade

#### Introduction

Examples

Malicious Setting

**Oblivious Transfer** 

**Garbled Circuits** 

ENS/PSL/CNRS/INRIA Cascade

#### **Multi-Party Computation**

*n* players  $P_i$  want to jointly evaluate  $y_i = f_i(x_1, ..., x_n)$ , for public functions  $f_i$  so that

- x<sub>i</sub> is the private input of P<sub>i</sub>
- $P_i$  eventually learns  $y_i = f_i(x_1, \ldots, x_n)$
- ... and nothing else about  $x_j$  for  $j \neq i$

#### **Security Notions**

- Privacy
- Correctness
- Fairness (much harder to get)

#### t-Privacy

If t parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs

Note that the knowledge of  $y_i$  can leak some information on the  $x_j$ 's.

#### **Security Models**

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from *t* users
- Malicious users: the adversary controls a fixed set of t players
- **Dynamic adversary**: the adversary dynamically chooses the (up to) *t* players it controls

#### Introduction

#### Examples

Malicious Setting

**Oblivious Transfer** 

**Garbled Circuits** 

ENS/PSL/CNRS/INRIA Cascade

## **Electronic Voting**

Private Evaluation of the Sum For all *i*:  $x_i \in \{0, 1\}$  and  $f_i(x_1, \dots, x_n) = \sum_i x_i$ 

## Example (Homomorphic Encryption)

• 
$$P_i$$
 encrypts  $C_i = E(x_i)$ 

with an additively homomorphic encryption scheme

• They all compute 
$$C = E(\sum x_i)$$

• They jointly decrypt C to get 
$$y = \sum x_i$$
  
using a distributed decryption

## **Electronic Voting**

#### **Privacy: Limitations**

In case of unanimity (i.e.  $\sum x_i = n$ ), one learns all the  $x_i$ 's, even in the honest-but-curious setting

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner

#### **Replay Attacks**

A malicious adversary could try to amplify  $P_1$ 's vote, replaying its message  $C_1$  by t corrupted players: this can leak  $P_1$ 's vote  $x_1$ 

This can be avoided with non-malleable encryption

The 2-party particular case: on Alice's input x and Bob's input y, Alice gets f(x, y) and Bob gets g(x, y), but nothing else

#### **Equality Test**

Alice owns a value x and Bob owns a value y,

in the end, they both learn whether x = y or not

#### Yao Millionaires' Problem

Alice owns an integer x and Bob owns an integer y,

in the end, they both learn whether  $x \leq y$  or not

## **Equality Test**

Alice owns a value  $x \in [A, B]$  and Bob owns a value  $y \in [A, B]$ , in the end, they both learn whether x = y or not

#### With Homomorphic Encryption

- Alice encrypts C = E(x)
   with an additively homomorphic encryption scheme
- Bob computes C' = E(r(x y)), for a random element r plus the randomization of the ciphertext
- Alice computes C'' = E(rr'(x y)), for a random element r' plus the randomization of the ciphertext
- They jointly decrypt C'': the value is 0 iff x = y (or random)

Alice owns an integer  $x \in [0, 2^n[$  and Bob owns an integer  $y \in [0, 2^n[$ , in the end, they both learn whether  $x \leq y$  or not

Theorem [Lin-Tzeng – 2005]  
Given 
$$x = x_{n-1} \dots x_0, y = y_{n-1} \dots y_0 \in \{0, 1\}^n$$
, and denoting  
 $T_x^1 = \{x_{n-1} \dots x_i | x_i = 1\}$   $T_y^0 = \{y_{n-1} \dots y_{i+1} 1 | y_i = 0\}$   
 $x > y \iff T_x^1 \cap T_y^0 \neq \emptyset$ 

$$\begin{array}{ll} x > y & \Longleftrightarrow & \exists ! i < n, (x_i > y_i) \land (\forall j > i, x_j = y_j) \\ \Leftrightarrow & \exists ! i < n, (x_i = 1) \land (y_i = 0) \land (\forall j > i, x_j = y_j) \\ \Leftrightarrow & \exists ! i < n, (y_i = 0) \land (x_{n-1} \dots x_i = y_{n-1} \dots y_{i+1}1) \\ \Leftrightarrow & |T_x^1 \cap T_y^0| = 1 \end{array}$$

ENS/PSL/CNRS/INRIA Cascade

## Yao Millionaires' Problem

We fill and order the sets by length:  $\overline{T}_{X}^{1} = \{X_{i}\}$  and  $\overline{T}_{y}^{0} = \{Y_{i}\}$  where

• if 
$$x_i = 0$$
,  $X_i = 2^n$ , otherwise  $X_i = x_{n-1} \dots x_i \in [0, 2^{n-i}]$ 

• if 
$$y_i = 1$$
,  $Y_i = 2^n + 1$ , otherwise  $Y_i = y_{n-1} \dots y_{i+1} 1 \in [0, 2^{n-i}]$ 

$$x > y \iff \exists ! i < n, X_i = Y_i$$

#### With Homomorphic Encryption

• Alice encrypts 
$$C_i = E(X_i)$$

with an additively homomorphic encryption scheme

- Bob computes  $C'_i = E(r_i(X_i Y_i))$ , for random elements  $r_i$  randomizes them, and sends them in random order
- Alice computes  $C''_i = E(r_i r'_i (X_i Y_i))$ , for random elements  $r'_i$  randomizes them, and sends them in random order
- They jointly decrypt the  $C''_i$ 's: one value is 0 iff x > y

ENS/PSL/CNRS/INRIA Cascade

Introduction

Examples

Malicious Setting

**Oblivious Transfer** 

**Garbled Circuits** 

ENS/PSL/CNRS/INRIA Cascade

## **GMW** Compiler

#### **GMW Compiler**

[Goldreich-Micali-Wigderson - STOC 1987]

- Commitment of the inputs
- Secure coin tossing
- Zero-knowledge proofs of correct behavior

## **Oblivious Transfer**

### **Oblivious Transfer**

#### Definition

Examples

**Garbled Circuits** 

ENS/PSL/CNRS/INRIA Cascade

The 2-party particular case: on Alice's input x and Bob's input y, Alice gets f(x, y) and Bob gets g(x, y), but nothing else

#### **Oblivious Transfer**

[Rabin - 1981]

Alice owns two values  $x_0, x_1$  and Bob owns a bit  $b \in \{0, 1\}$ , so that in the end, Bob learns  $x_b$  and Alice gets nothing:  $x = (x_0, x_1)$  and y = b, then  $g((x_0, x_1), b) = x_b$  and  $f((x_0, x_1), b) = \bot$ 

[Kilian – STOC 1988]

Oblivious Transfer is equivalent to Secure 2-Party Computation

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation

### **Oblivious Transfer**

Definition

Examples

**Garbled Circuits** 

ENS/PSL/CNRS/INRIA Cascade

## **Oblivious Transfer**

#### Example (Bellare-Micali's Construction – 1992)

In a discrete logarithm setting ( $\mathbb{G}, g, p$ ), for  $x_0, x_1 \in \mathbb{G}$ 

- Alice chooses  $c \stackrel{R}{\leftarrow} \mathbb{G}$  and sends it to Bob
- Bob chooses k <sup>R</sup> Z<sub>p</sub>, sets pk<sub>b</sub> ← g<sup>k</sup> and pk<sub>1-b</sub> ← c/pk<sub>b</sub>, and sends (pk<sub>0</sub>, pk<sub>1</sub>) to Alice

• Alice checks 
$$pk_0 \cdot pk_1 = c$$
  
and encrypts  $x_i$  under  $pk_i$  (for  $i = 0, 1$ ) with ElGamal  
 $C_i \leftarrow g^{r_i}$  and  $C'_i \leftarrow x_i \cdot pk_i^{r_i}$ , for  $r_i \stackrel{R}{\leftarrow} \mathbb{Z}_p$ 

• Bob can decrypt  $(C_b, C'_b)$  using k

Because of the random c (unknown discrete logarithm), Bob should not be able to infer any information about  $x_{1-b}$ 

This is provably secure in the **honest-but-curious setting** ENS/PSL/CNRS/INRIA Cascade David Pointcheval

## **Oblivious Transfer**

#### Example (Naor-Pinkas Construction – 2000)

In a discrete logarithm setting ( $\mathbb{G}, g, p$ ), for  $x_0, x_1 \in \mathbb{G}$ 

- Bob chooses  $r, s, t \stackrel{R}{\leftarrow} \mathbb{Z}_p$ , sets  $X \leftarrow g^r$ ,  $Y \leftarrow g^s$ ,  $Z_b \leftarrow g^{rs}$ ,  $Z_{1-b} \leftarrow g^t$ , and sends  $(X, Y, Z_0, Z_1)$  to Alice
- Alice checks  $Z_0 \neq Z_1$ , and re-randomizes the tuples:  $T_0 \leftarrow (X, Y'_0 = Y^{u_0} g^{v_0}, Z'_0 = Z_0^{u_0} X^{v_0})$  and  $T_1 \leftarrow (X, Y'_1 = Y^{u_1} g^{v_1}, Z'_1 = Z_1^{u_1} X^{v_1})$ , for  $u_0, v_0, u_1, v_1 \xleftarrow{R} \mathbb{Z}_p$
- Alice encrypts  $x_i$  under  $T_i$ :  $C_i = Y'_i$  and  $C'_i = x_i \cdot Z'_i$
- Bob can decrypt  $(C_b, C'_b)$  using r

The re-randomization keeps the DH-tuple  $T_b$ , but perfectly removes information in  $T_{1-b}$ 

This is provably secure in the malicious setting ENS/PSL/CNRS/INRIA Cascade David Pointcheval

## **Garbled Circuits**

**Oblivious Transfer** 

#### **Garbled Circuits**

#### Introduction

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade

Boolean circuit, Alice's inputs  $(x_1, x_2, x_3)$ , and Bob's inputs  $(y_1, y_2, y_3)$ :



They both learn z in the end, but nothing else ENS/PSL/CNRS/INRIA Cascade David Pointcheval

**Oblivious Transfer** 

#### **Garbled Circuits**

Introduction

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade

Alice converts the circuit into a generic circuit: 1-input or 2-input gates



23/33

## **Garbled Gates**

Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not): 4 random secret keys  $I_A^0$ ,  $I_A^1$ ,  $O_A^0$ ,  $O_A^1$ 

$$A = \begin{vmatrix} 1 & 0 \end{vmatrix} : C_A^0 = \mathsf{Encrypt}(I_A^0, O_A^1) & C_A^1 = \mathsf{Encrypt}(I_A^1, O_A^0) \end{vmatrix}$$

#### 2-Input Garbled Gate

For the gate B (and): 8 random secret keys  $I_B^0$ ,  $I_B^1$ ,  $J_B^0$ ,  $J_B^1$ ,  $O_B^0$ ,  $O_B^1$ 

$$\begin{split} \mathsf{B} &= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \mathsf{Encrypt}(I_B^0 || J_B^0, O_B^0) \quad C_B^{01} = \mathsf{Encrypt}(I_B^0 || J_B^1, O_B^0) \\ C_B^{10} &= \mathsf{Encrypt}(I_B^1 || J_B^0, O_B^0) \quad C_B^{11} = \mathsf{Encrypt}(I_B^1 || J_B^1, O_B^1) \end{split}$$

ENS/PSL/CNRS/INRIA Cascade

Alice publishes the ciphertexts in random order for each gate

Alice publishes the keys corresponding to her inputs:

- for  $x_1$ , she sends  $I_D^{x_1}$
- for  $x_2$ , she sends  $J_B^{x_2}$
- for  $x_3$ , she sends  $J_C^{x_3}$



$$A = \begin{bmatrix} 1 & 0 \end{bmatrix} : C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \quad C_A^1 = \text{Encrypt}(I_A^1, O_A^0)$$

#### **Oblivious Transfer**

Alice owns  $I_A^0$ ,  $I_A^1$  and Bob owns  $y_1 \in \{0, 1\}$ 

- Using an OT, Bob gets  $I_A^{\gamma_1}$ , while Alice learns nothing
- From the ciphertexts  $(C_A^b)_b$ , Bob gets  $O_A^{y_A}$

**Bob's Inputs** 



$$B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : C_B^{00} = \text{Encrypt}(I_B^0 || J_B^0, O_B^0) \quad C_B^{01} = \text{Encrypt}(I_B^0 || J_B^1, O_B^0)$$
$$C_B^{10} = \text{Encrypt}(I_B^1 || J_B^0, O_B^0) \quad C_B^{11} = \text{Encrypt}(I_B^1 || J_B^1, O_B^1)$$

#### **Oblivious Transfer**

Alice owns  $I_B^0$ ,  $I_B^1$ , and Bob owns  $y_2 \in \{0, 1\}$ 

- Using an OT, Bob gets  $I_B^{y_2}$ , while Alice learns nothing
- Bob additionally knows J<sub>B</sub><sup>x2</sup>
- From the ciphertexts  $(C_B^{bb'})_{bb'}$ , Bob gets  $O_B^{y_B}$

#### ENS/PSL/CNRS/INRIA Cascade

### **Internal Garbled Gates**



#### **Internal Garbled Gate**

For the gate E (or): 2 new random secret keys  $O_E^0$ ,  $O_E^1$ while  $I_E^0 \leftarrow O_A^0$ ,  $I_E^1 \leftarrow O_A^1$ ,  $J_E^0 \leftarrow O_B^0$ ,  $J_E^1 \leftarrow O_B^1$ 

$$\mathbf{E} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_E^{00} = \mathsf{Encrypt}(I_E^0 || J_E^0, O_E^0) \quad C_E^{01} = \mathsf{Encrypt}(I_E^0 || J_E^1, O_E^1)$$
$$C_E^{10} = \mathsf{Encrypt}(I_E^1 || J_E^0, O_E^1) \quad C_E^{11} = \mathsf{Encrypt}(I_E^1 || J_E^1, O_E^1)$$

ENS/PSL/CNRS/INRIA Cascade

### **Evaluation of Internal Gates**



$$\mathsf{E} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_E^{00} = \mathsf{Encrypt}(I_E^0 || J_E^0, O_E^0) \quad C_E^{01} = \mathsf{Encrypt}(I_E^0 || J_E^1, O_E^1) \\ C_E^{10} = \mathsf{Encrypt}(I_E^1 || J_E^0, O_E^1) \quad C_E^{11} = \mathsf{Encrypt}(I_E^1 || J_E^1, O_E^1)$$

#### **Evaluation of Gate E**

Bob knows 
$$I_E^{y_A} = O_A^{y_A}$$
 and  $J_E^{y_B} = O_B^{y_B}$   
From the ciphertexts  $(C_E^{bb'})_{bb'}$ , Bob gets  $O_E^{y_E}$ 

ENS/PSL/CNRS/INRIA Cascade

## **Output Garbled Gates**



#### **Output Garbled Gate**

For the gate G (or): 
$$I_G^0 \leftarrow O_E^0$$
,  $I_G^1 \leftarrow O_E^1$ ,  $J_G^0 \leftarrow O_F^0$ ,  $J_G^1 \leftarrow O_F^1$ 

$$\begin{aligned} \mathsf{G} &= \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_G^{00} = \mathsf{Encrypt}(I_G^0||J_G^0, 0) \quad C_G^{01} = \mathsf{Encrypt}(I_G^0||J_G^1, 1) \\ C_G^{10} &= \mathsf{Encrypt}(I_G^1||J_G^0, 1) \quad C_G^{11} = \mathsf{Encrypt}(I_G^1||J_G^1, 1) \end{aligned}$$

ENS/PSL/CNRS/INRIA Cascade

#### **Evaluation of Internal Gates**

$$G = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} : C_G^{00} = \text{Encrypt}(I_G^0 || J_G^0, 0) \quad C_G^{01} = \text{Encrypt}(I_G^0 || J_G^1, 1)$$
$$C_G^{10} = \text{Encrypt}(I_G^1 || J_G^0, 1) \quad C_G^{11} = \text{Encrypt}(I_G^1 || J_G^1, 1)$$

#### **Evaluation of Gate G**

Bob knows  $I_G^{y_E} = O_E^{y_E}$  and  $J_G^{y_F} = O_F^{y_F}$ From the ciphertexts  $(C_G^{bb'})_{bb'}$ , Bob gets  $z \in \{0, 1\}$ Bob can then transmit z to Alice

**Oblivious Transfer** 

#### **Garbled Circuits**

Introduction

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade

The previous construction assumes that

 Bob extracts the correct plaintext among the multiple candidates
 Redundancy is added to the plaintext (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct  $\implies$  Cut-and-choose technique
- Alice plays the oblivious transfer protocols with correct inputs
   Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT
- Bob sends back the correct value z

 $\Longrightarrow$  Random tags are appended to the final results 0 and 1

that Bob cannot guess

ENS/PSL/CNRS/INRIA Cascade