Basics in Cryptology

IV - Secure Function Evaluation and Secure 2-Party Computation

David Pointcheval

Ecole normale supérieure/PSL, CNRS \& INRIA

Outline

Secure Function Evaluation

Introduction
Examples
Malicious Setting

Oblivious Transfer

Definition
Examples

Garbled Circuits

Introduction
Garbled Circuits
Correctness

Secure Function Evaluation

Outline

Secure Function Evaluation

Introduction
Examples
Malicious Setting

Oblivious Transfer

Garbled Circuits

Secure Function Evaluation

Multi-Party Computation

n players P_{i} want to jointly evaluate $y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)$, for public functions f_{i} so that

- x_{i} is the private input of P_{i}
- P_{i} eventually learns $y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)$
- ... and nothing else about x_{j} for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)

Secure Function Evaluation

t-Privacy

If t parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs

Note that the knowledge of y_{i} can leak some information on the x_{j} 's.

Security Models

- Honest-but-curious: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from t users
- Malicious users: the adversary controls a fixed set of t players
- Dynamic adversary: the adversary dynamically chooses the (up to) t players it controls

Outline

Secure Function Evaluation

Introduction
Examples
Malicious Setting

Oblivious Transfer

Garbled Circuits

Electronic Voting

Private Evaluation of the Sum

For all i : $x_{i} \in\{0,1\}$ and $f_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j} x_{j}$

Example (Homomorphic Encryption)

- P_{i} encrypts $C_{i}=E\left(x_{i}\right)$ with an additively homomorphic encryption scheme
- They all compute $C=E\left(\sum x_{i}\right)$
- They jointly decrypt C to get $y=\sum x_{i}$
using a distributed decryption

Electronic Voting

Privacy: Limitations

In case of unanimity (i.e. $\sum x_{i}=n$), one learns all the x_{i} 's, even in the honest-but-curious setting

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner

Replay Attacks

A malicious adversary could try to amplify P_{1} 's vote, replaying its message C_{1} by t corrupted players: this can leak P_{1} 's vote x_{1}

This can be avoided with non-malleable encryption

Secure 2-Party Computation

The 2-party particular case: on Alice's input x and Bob's input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Equality Test

Alice owns a value x and Bob owns a value y,
in the end, they both learn whether $x=y$ or not

Yao Millionaires' Problem

Alice owns an integer x and Bob owns an integer y, in the end, they both learn whether $x \leq y$ or not

Equality Test

Alice owns a value $x \in[A, B]$ and Bob owns a value $y \in[A, B]$, in the end, they both learn whether $x=y$ or not

With Homomorphic Encryption

- Alice encrypts $C=E(x)$ with an additively homomorphic encryption scheme
- Bob computes $C^{\prime}=E(r(x-y))$, for a random element r plus the randomization of the ciphertext
- Alice computes $C^{\prime \prime}=E\left(r r^{\prime}(x-y)\right)$, for a random element r^{\prime} plus the randomization of the ciphertext
- They jointly decrypt $C^{\prime \prime}$: the value is 0 iff $x=y$ (or random)

Yao Millionaires' Problem

Alice owns an integer $x \in\left[0,2^{n}\left[\right.\right.$ and Bob owns an integer $y \in\left[0,2^{n}[\right.$, in the end, they both learn whether $x \leq y$ or not

Theorem

Given $x=x_{n-1} \ldots x_{0}, y=y_{n-1} \ldots y_{0} \in\{0,1\}^{n}$, and denoting

$$
\begin{aligned}
& T_{x}^{1}=\left\{x_{n-1} \ldots x_{i} \mid x_{i}=1\right\} \quad T_{y}^{0}=\left\{y_{n-1} \ldots y_{i+1} 1 \mid y_{i}=0\right\} \\
& x>y \Longleftrightarrow T_{x}^{1} \cap T_{y}^{0} \neq \emptyset \\
& x>y \Longleftrightarrow \exists!i<n,\left(x_{i}>y_{i}\right) \wedge\left(\forall j>i, x_{j}=y_{j}\right) \\
& \Longleftrightarrow \exists!i<n,\left(x_{i}=1\right) \wedge\left(y_{i}=0\right) \wedge\left(\forall j>i, x_{j}=y_{j}\right) \\
& \Longleftrightarrow \exists!i<n,\left(y_{i}=0\right) \wedge\left(x_{n-1} \ldots x_{i}=y_{n-1} \ldots y_{i+1} 1\right) \\
& \Longleftrightarrow\left|T_{x}^{1} \cap T_{y}^{0}\right|=1
\end{aligned}
$$

Yao Millionaires' Problem

We fill and order the sets by length: $\bar{T}_{x}^{1}=\left\{X_{i}\right\}$ and $\bar{T}_{y}^{0}=\left\{Y_{i}\right\}$ where

- if $x_{i}=0, X_{i}=2^{n}$, otherwise $X_{i}=x_{n-1} \ldots x_{i} \in\left[0,2^{n-i}[\right.$
- if $y_{i}=1, Y_{i}=2^{n}+1$, otherwise $Y_{i}=y_{n-1} \ldots y_{i+1} 1 \in\left[0,2^{n-i}[\right.$

$$
x>y \Longleftrightarrow \exists!i<n, X_{i}=Y_{i}
$$

With Homomorphic Encryption

- Alice encrypts $C_{i}=E\left(X_{i}\right)$
with an additively homomorphic encryption scheme
- Bob computes $C_{i}^{\prime}=E\left(r_{i}\left(X_{i}-Y_{i}\right)\right)$, for random elements r_{i} randomizes them, and sends them in random order
- Alice computes $C_{i}^{\prime \prime}=E\left(r_{i} r_{i}^{\prime}\left(X_{i}-Y_{i}\right)\right)$, for random elements r_{i}^{\prime}
randomizes them, and sends them in random order
- They jointly decrypt the $C_{i}^{\prime \prime \prime}$ s: one value is 0 iff $x>y$

Outline

Secure Function Evaluation

Introduction
Examples
Malicious Setting

Oblivious Transfer

Garbled Circuits

GMW Compiler

GMW Compiler

- Commitment of the inputs
- Secure coin tossing
- Zero-knowledge proofs of correct behavior

Oblivious Transfer

Outline

Secure Function Evaluation

Oblivious Transfer

Definition Examples

Garbled Circuits

Secure 2-Party Computation

The 2-party particular case: on Alice's input x and Bob's input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else

Oblivious Transfer
Alice owns two values x_{0}, x_{1} and Bob owns a bit $b \in\{0,1\}$, so that in the end, Bob learns x_{b} and Alice gets nothing:
$x=\left(x_{0}, x_{1}\right)$ and $y=b$, then $g\left(\left(x_{0}, x_{1}\right), b\right)=x_{b}$ and $f\left(\left(x_{0}, x_{1}\right), b\right)=\perp$

Oblivious Transfer is equivalent to Secure 2-Party Computation

From an Oblivious Transfer Protocol, one can implement any 2-Party Secure Function Evaluation

Outline

Secure Function Evaluation

Oblivious Transfer

Definition

Examples

Garbled Circuits

Oblivious Transfer

Example (Bellare-Micali's Construction - 1992)

In a discrete logarithm setting (\mathbb{G}, g, p), for $x_{0}, x_{1} \in \mathbb{G}$

- Alice chooses $c \stackrel{R}{\leftarrow} \mathbb{G}$ and sends it to Bob
- Bob chooses $k \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$, sets $p k_{b} \leftarrow g^{k}$ and $p k_{1-b} \leftarrow c / p k_{b}$, and sends $\left(p k_{0}, p k_{1}\right)$ to Alice
- Alice checks $p k_{0} \cdot p k_{1}=c$ and encrypts x_{i} under $p k_{i}$ (for $i=0,1$) with ElGamal:

$$
C_{i} \leftarrow g^{r_{i}} \text { and } C_{i}^{\prime} \leftarrow x_{i} \cdot p k_{i}^{r_{i}}, \text { for } r_{i} \stackrel{R}{\leftarrow} \mathbb{Z}_{p}
$$

- Bob can decrypt $\left(C_{b}, C_{b}^{\prime}\right)$ using k

Because of the random c (unknown discrete logarithm),
Bob should not be able to infer any information about x_{1-b}
This is provably secure in the honest-but-curious setting

Oblivious Transfer

Example (Naor-Pinkas Construction - 2000)

In a discrete logarithm setting (\mathbb{G}, g, p), for $x_{0}, x_{1} \in \mathbb{G}$

- Bob chooses $r, s, t \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$, sets $X \leftarrow g^{r}, Y \leftarrow g^{s}, Z_{b} \leftarrow g^{r s}$, $Z_{1-b} \leftarrow g^{t}$, and sends $\left(X, Y, Z_{0}, Z_{1}\right)$ to Alice
- Alice checks $Z_{0} \neq Z_{1}$, and re-randomizes the tuples:

$$
\begin{aligned}
& T_{0} \leftarrow\left(X, Y_{0}^{\prime}=Y^{u_{0}} g^{v_{0}}, Z_{0}^{\prime}=Z_{0}^{u_{0}} X^{v_{0}}\right) \text { and } \\
& T_{1} \leftarrow\left(X, Y_{1}^{\prime}=Y^{u_{1}} g^{v_{1}}, Z_{1}^{\prime}=Z_{1}^{u_{1}} X^{v_{1}}\right), \text { for } u_{0}, v_{0}, u_{1}, v_{1} \leftarrow \mathbb{R} \mathbb{Z}_{p}
\end{aligned}
$$

- Alice encrypts x_{i} under $T_{i}: C_{i}=Y_{i}^{\prime}$ and $C_{i}^{\prime}=x_{i} \cdot Z_{i}^{\prime}$
- Bob can decrypt $\left(C_{b}, C_{b}^{\prime}\right)$ using r

The re-randomization keeps the DH -tuple T_{b}, but perfectly removes information in T_{1-b}

This is provably secure in the malicious setting

Garbled Circuits

Outline

Secure Function Evaluation

Oblivious Transfer

Garbled Circuits

Introduction

Garbled Circuits

Correctness

Boolean Circuit

Boolean circuit, Alice's inputs $\left(x_{1}, x_{2}, x_{3}\right)$, and Bob's inputs $\left(y_{1}, y_{2}, y_{3}\right)$:

They both learn z in the end, but nothing else

Outline

Secure Function Evaluation

Oblivious Transfer

Garbled Circuits

Introduction
Garbled Circuits
Correctness

Garbled Circuit

Alice converts the circuit into a generic circuit: 1-input or 2-input gates

Garbled Gates

Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not): 4 random secret keys $I_{A}^{0}, I_{A}^{1}, O_{A}^{0}, O_{A}^{1}$

$$
\mathrm{A}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]: C_{A}^{0}=\operatorname{Encrypt}\left(I_{A}^{0}, O_{A}^{1}\right) \quad C_{A}^{1}=\operatorname{Encrypt}\left(I_{A}^{1}, O_{A}^{0}\right)
$$

2-Input Garbled Gate

For the gate B (and): 8 random secret keys $I_{B}^{0}, I_{B}^{1}, J_{B}^{0}, J_{B}^{1}, O_{B}^{0}, O_{B}^{1}$

$$
\begin{array}{rlr}
\mathrm{B}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]: C_{B}^{00}=\operatorname{Encrypt}\left(I_{B}^{0} \| J_{B}^{0}, O_{B}^{0}\right) & C_{B}^{01}=\operatorname{Encrypt}\left(I_{B}^{0} \| J_{B}^{1}, O_{B}^{0}\right) \\
C_{B}^{10}=\operatorname{Encrypt}\left(I_{B}^{1} \| J_{B}^{0}, O_{B}^{0}\right) & C_{B}^{11}=\operatorname{Encrypt}\left(I_{B}^{1} \| J_{B}^{1}, O_{B}^{1}\right)
\end{array}
$$

Alice's Inputs

Alice publishes the ciphertexts in random order for each gate

Alice publishes the keys corresponding to her inputs:

- for x_{1}, she sends $I_{D}^{x_{1}}$
- for x_{2}, she sends $J_{B}^{x_{2}}$
- for x_{3}, she sends $J_{C}^{x_{3}}$

Bob's Inputs

$$
\mathrm{A}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]: C_{A}^{0}=\operatorname{Encrypt}\left(I_{A}^{0}, O_{A}^{1}\right) \quad C_{A}^{1}=\operatorname{Encrypt}\left(I_{A}^{1}, O_{A}^{0}\right)
$$

Oblivious Transfer

Alice owns I_{A}^{0}, I_{A}^{1} and Bob owns $y_{1} \in\{0,1\}$

- Using an OT, Bob gets $I_{A}^{y_{1}}$, while Alice learns nothing
- From the ciphertexts $\left(C_{A}^{b}\right)_{b}$, Bob gets $O_{A}^{y_{A}}$

Bob's Inputs

$$
\begin{aligned}
\mathrm{B}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]: C_{B}^{00} & =\operatorname{Encrypt}\left(I_{B}^{0} \| J_{B}^{0}, O_{B}^{0}\right) & C_{B}^{01}=\operatorname{Encrypt}\left(I_{B}^{0} \| J_{B}^{1}, O_{B}^{0}\right) \\
C_{B}^{10} & =\operatorname{Encrypt}\left(I_{B}^{1} \| J_{B}^{0}, O_{B}^{0}\right) & C_{B}^{11}=\operatorname{Encrypt}\left(I_{B}^{1} \| J_{B}^{1}, O_{B}^{1}\right)
\end{aligned}
$$

Oblivious Transfer

Alice owns I_{B}^{0}, I_{B}^{1}, and Bob owns $y_{2} \in\{0,1\}$

- Using an OT, Bob gets $I_{B}^{y_{2}}$, while Alice learns nothing
- Bob additionally knows $J_{B}^{x_{2}}$
- From the ciphertexts $\left(C_{B}^{b b^{\prime}}\right)_{b b^{\prime}}$, Bob gets $O_{B}^{y_{B}}$

Internal Garbled Gates

Internal Garbled Gate

For the gate E (or): 2 new random secret keys O_{E}^{0}, O_{E}^{1} while $I_{E}^{0} \leftarrow O_{A}^{0}, I_{E}^{1} \leftarrow O_{A}^{1}, J_{E}^{0} \leftarrow O_{B}^{0}, J_{E}^{1} \leftarrow O_{B}^{1}$

$$
\begin{aligned}
E=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]: C_{E}^{00} & =\operatorname{Encrypt}\left(l_{E}^{0} \| J_{E}^{0}, O_{E}^{0}\right) & C_{E}^{01}=\operatorname{Encrypt}\left(I_{E}^{0} \| J_{E}^{1}, O_{E}^{1}\right) \\
C_{E}^{10} & =\operatorname{Encrypt}\left(I_{E}^{1} \| J_{E}^{0}, O_{E}^{1}\right) & C_{E}^{11}=\operatorname{Encrypt}\left(I_{E}^{1} \| J_{E}^{1}, O_{E}^{1}\right)
\end{aligned}
$$

Evaluation of Internal Gates

$$
\begin{aligned}
& E=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]: C_{E}^{00}=\operatorname{Encrypt}\left(I_{E}^{0} \| J_{E}^{0}, O_{E}^{0}\right) \quad C_{E}^{01}=\operatorname{Encrypt}\left(I_{E}^{0} \| J_{E}^{1}, O_{E}^{1}\right) \\
& C_{E}^{10}=\operatorname{Encrypt}\left(I_{E}^{1} \| J_{E}^{0}, O_{E}^{1}\right) \quad C_{E}^{11}=\operatorname{Encrypt}\left(I_{E}^{1} \| J_{E}^{1}, O_{E}^{1}\right)
\end{aligned}
$$

Evaluation of Gate E

Bob knows $I_{E}^{y_{A}}=O_{A}^{y_{A}}$ and $J_{E}^{y_{B}}=O_{B}^{y_{B}}$
From the ciphertexts $\left(C_{E}^{b b^{\prime}}\right)_{b b^{\prime}}$, Bob gets $O_{E}^{y_{E}}$

Output Garbled Gates

Output Garbled Gate

For the gate $G($ or $): I_{G}^{0} \leftarrow O_{E}^{0}, I_{G}^{1} \leftarrow O_{E}^{1}, J_{G}^{0} \leftarrow O_{F}^{0}, J_{G}^{1} \leftarrow O_{F}^{1}$

$$
\begin{aligned}
G=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]: C_{G}^{00}=\operatorname{Encrypt}\left(I_{G}^{0} \| J_{G}^{0}, 0\right) & C_{G}^{01}=\operatorname{Encrypt}\left(I_{G}^{0} \| J_{G}^{1}, 1\right) \\
C_{G}^{10}=\operatorname{Encrypt}\left(I_{G}^{1} \| J_{G}^{0}, 1\right) & C_{G}^{11}=\operatorname{Encrypt}\left(I_{G}^{1} \| J_{G}^{1}, 1\right)
\end{aligned}
$$

Evaluation of Internal Gates

$$
\begin{aligned}
G=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]: C_{G}^{00}=\operatorname{Encrypt}\left(I_{G}^{0} \| J_{G}^{0}, 0\right) & C_{G}^{01}=\operatorname{Encrypt}\left(I_{G}^{0} \| J_{G}^{1}, 1\right) \\
C_{G}^{10}=\operatorname{Encrypt}\left(I_{G}^{1} \| J_{G}^{0}, 1\right) & C_{G}^{11}=\operatorname{Encrypt}\left(I_{G}^{1} \| J_{G}^{1}, 1\right)
\end{aligned}
$$

Evaluation of Gate G

Bob knows $I_{G}^{y_{E}}=O_{E}^{y_{E}}$ and $J_{G}^{y_{F}}=O_{F}^{y_{F}}$
From the ciphertexts $\left(C_{G}^{b b^{\prime}}\right)_{b b^{\prime}}$, Bob gets $z \in\{0,1\}$
Bob can then transmit z to Alice

Outline

Secure Function Evaluation

Oblivious Transfer

Garbled Circuits

Introduction
 Garbled Circuits

Correctness

Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
\Longrightarrow Redundancy is added to the plaintext (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct \Longrightarrow Cut-and-choose technique
- Alice plays the oblivious transfer protocols with correct inputs \Longrightarrow Inputs are committed, checked during the cut-and-choose, and ZK proofs are done during the OT
- Bob sends back the correct value z
\Longrightarrow Random tags are appended to the final results 0 and 1 that Bob cannot guess

