Outline

1 Secure Function Evaluation
 - Introduction
 - Examples
 - Malicious Setting

2 Oblivious Transfer
 - Definition
 - Examples

3 Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness

Secure Function Evaluation

Multi-Party Computation

n players P_i want to jointly evaluate $y_i = f_i(x_1, \ldots, x_n)$, for public functions f_i so that
- x_i is the private input of P_i
- P_i eventually learns $y_i = f_i(x_1, \ldots, x_n)$
- \ldots and nothing else about x_j for $j \neq i$

Security Notions

- Privacy
- Correctness
- Fairness (much harder to get)
Secure Function Evaluation

t-Privacy

If t parties collude, they cannot learn more on the other inputs than from their own/known inputs and outputs.

Note that the knowledge of y_i can leak some information on the x_j's.

Security Models

- **Honest-but-curious**: all the players follow the protocol honestly, but the adversary knows all the inputs/outputs from t users
- **Malicious users**: the adversary controls a fixed set of t players
- **Dynamic adversary**: the adversary dynamically chooses the (up to) t players it controls

Outline

1. Secure Function Evaluation
 - Introduction
 - Examples
 - Malicious Setting
2. Oblivious Transfer
3. Garbled Circuits

Electronic Voting

Privacy: Limitations

In case of unanimity (i.e. $\sum x_i = n$), one learns all the x_i's, even in the honest-but-curious setting.

This is not a weakness of the protocol, but of the functionality: one should just reveal the winner.

Replay Attacks

A malicious adversary could try to amplify P_1's vote, replaying its message C_1 by t corrupted players: this can leak P_1's vote x_1.

This can be avoided with non-malleable encryption.
Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else.

Equality Test

Alice owns a value x and Bob owns a value y, in the end, they both learn whether $x = y$ or not.

With Homomorphic Encryption

- Alice encrypts $C = E(x)$, with an additively homomorphic encryption scheme.
- Bob computes $C^0 = E(r(x - y))$, for a random element r.
- Alice computes $C^\oplus = E(r^0(x - y))$, for a random element r^0.
- They jointly decrypt C^\oplus: the value is 0 iff $x = y$ (or random).

Yao Millionaires’ Problem

Alice owns an integer $x \in [0, 2^n]$ and Bob owns an integer $y \in [0, 2^n]$, in the end, they both learn whether $x \leq y$ or not.

Theorem [Lin-Tzeng – 2005]

Given $x = x_{n-1} \ldots x_0, y = y_{n-1} \ldots y_0 \in \{0, 1\}^n$, and denoting

$$T^1_x = \{x_{n-1} \ldots x_i | x_i = 1\} \quad T^0_y = \{y_{n-1} \ldots y_{i+1} | y_i = 0\}$$

$$x > y \iff T^1_x \cap T^0_y \neq \emptyset$$

Yao Millionaires’ Problem

We fill and order the sets by length: $\bar{T}^1_x = \{X_i\}$ and $\bar{T}^0_y = \{Y_i\}$ where for $i = 0, \ldots, n$:

- if $x_i = 0$, $X_i = 2^n$, otherwise $X_i = x_{n-1} \ldots x_i \in [0, 2^{n-i}]$.
- if $y_i = 1$, $Y_i = 2^n + 1$, otherwise $Y_i = y_{n-1} \ldots y_i + 1 \in [0, 2^{n-i}]$.

$x > y \iff \exists i < n, X_i = Y_i$

With Homomorphic Encryption

- Alice encrypts $C_i = E(X_i)$, with an additively homomorphic encryption scheme.
- Bob computes $C^0_i = E(r_i (X_i - Y_i))$, for random elements r_i and sends them in random order.
- Alice computes $C_i^{\oplus} = E(r^0_i (X_i - Y_i))$, for random elements r^0_i.
- They jointly decrypt the C_i^{\oplus}s: one value is 0 iff $x > y$.

Equality Test

Alice owns a value $x \in [A, B]$ and Bob owns a value $y \in [A, B]$, in the end, they both learn whether $x = y$ or not.

With Homomorphic Encryption

- Alice encrypts $C = E(x)$
- Bob computes $C^0 = E(r(x - y))$, for a random element r
- Alice computes $C^{\oplus} = E(r^0(x - y))$, for a random element r^0
- They jointly decrypt C^{\oplus}: the value is 0 iff $x = y$ (or random).
Secure Function Evaluation

1. Introduction
2. Examples
3. Malicious Setting

Oblivious Transfer

1. Definition
2. Examples

Garbled Circuits

Secure 2-Party Computation

The 2-party particular case: on Alice’s input x and Bob’s input y, Alice gets $f(x, y)$ and Bob gets $g(x, y)$, but nothing else.

Oblivious Transfer

Alice owns two values
Outline

1 Secure Function Evaluation
2 Oblivious Transfer
 - Definition
 - Examples
3 Garbled Circuits

Oblivious Transfer

Example (Bellare-Micali’s Construction - 1992)

In a discrete logarithm setting \((G, g, p)\), for \(x_0, x_1 \in G\)

- Alice chooses \(c \leftarrow G\) and sends it to Bob
- Bob chooses \(k \leftarrow \mathbb{Z}_p\), sets \(pk_b \leftarrow g^k\) and \(pk_{1-b} \leftarrow c/pk_b\), and sends \((pk_0, pk_1)\) to Alice
- Alice checks \(pk_0 \cdot pk_1 = c\) and encrypts \(x_i\) under \(pk_i\) (for \(i = 0, 1\)) with ElGamal:

 \(C_i \leftarrow g^{r_i}\) and \(C_i^0 \leftarrow x_i \cdot pk_i^{r_i}\), for \(r_i \leftarrow \mathbb{Z}_p\)

- Bob can decrypt \((C_b, C_b^0)\) using \(k\)

Because of the random \(c\) (unknown discrete logarithm),
Bob should not be able to infer any information about \(x_{1-b}\)
This is provably secure in the **honest-but-curious setting**

Example (Naor-Pinkas Construction - 2000)

In a discrete logarithm setting \((G, g, p)\), for \(x_0, x_1 \in G\)

- Bob chooses \(r, s, t \leftarrow \mathbb{Z}_p\), sets \(X \leftarrow g^r, Y \leftarrow g^s, Z_b \leftarrow g^{rs}, Z_{1-b} \leftarrow g^t\), and sends \((X, Y, Z_0, Z_1)\) to Bob
- Alice checks \(Z_0 \neq Z_1\), and re-randomizes the tuples:

 \(T_0 \leftarrow (X, Y_0^0 = Y^{u_0} g^{v_0}, Z_0^0 = Z_0^{u_0} X^{v_0})\) and

 \(T_1 \leftarrow (X, Y_1^0 = Y^{u_1} g^{v_1}, Z_1^0 = Z_1^{u_1} X^{v_1})\), for \(u_0, v_0, u_1, v_1 \leftarrow \mathbb{Z}_p\)

- Alice encrypts \(x_i\) under \(T_i\):

 \(C_i \leftarrow Y_i^0\) and \(C_i^0 \leftarrow x_i \cdot Z_i^0\)

- Bob can decrypt \((C_b, C_b^0)\) using \(r\)

The re-randomization keeps the DH-tuple \(T_b\),
but perfectly removes information in \(T_{1-b}\)
This is provably secure in the **malicious setting**
Boolean Circuit

Boolean circuit, Alice’s inputs \((x_1, x_2, x_3)\), and Bob’s inputs \((y_1, y_2, y_3)\):

They both learn \(z\) in the end, but nothing else.

Garbled Circuit

Alice converts the circuit into a generic circuit: 1-input or 2-input gates

Garbled Gates

Alice generates the garbled gates

1-Input Garbled Gate

For the gate A (not): 4 random secret keys \(I^0_A, I^1_A, O^0_A, O^1_A\)

\[A = 1 \ : \ C^0_A = \text{Encrypt}(I^0_A, O^1_A) \quad C^1_A = \text{Encrypt}(I^1_A, O^0_A) \]

2-Input Garbled Gate

For the gate B (and): 8 random secret keys \(I^0_B, I^1_B, J^0_B, J^1_B, O^0_B, O^1_B\)

\[B = 01 \ : \ C^{00}_B = \text{Encrypt}(I^0_B || J^0_B, O^0_B) \quad C^{01}_B = \text{Encrypt}(I^0_B || J^1_B, O^1_B) \]
\[C^{10}_B = \text{Encrypt}(I^1_B || J^0_B, O^0_B) \quad C^{11}_B = \text{Encrypt}(I^1_B || J^1_B, O^1_B) \]
Alice’s Inputs

Alice publishes the ciphertexts in random order for each gate

Alice publishes the keys corresponding to her inputs:
- for x_1, she sends $I_{x_1}^D$
- for x_2, she sends $J_{x_2}^B$
- for x_3, she sends $J_{x_3}^C$

Bob’s Inputs

\[A = 1 \]
\[C_A^0 = \text{Encrypt}(I_A^0, O_A^1) \]
\[C_A^1 = \text{Encrypt}(I_A^1, O_A^0) \]

Oblivious Transfer

Alice owns I_A^0, I_A^1 and Bob owns $y_1 \in \{0, 1\}$
- Using an OT, Bob gets $I_A^{y_1}$, while Alice learns nothing
- From the ciphertexts $(C_A^b)^b$, Bob gets $O_A^{y_A}$

Bob’s Inputs

\[B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \]
\[C_B^{00} = \text{Encrypt}(I_B^0 || J_B^0, O_B^0) \]
\[C_B^{01} = \text{Encrypt}(I_B^0 || J_B^1, O_B^0) \]
\[C_B^{10} = \text{Encrypt}(I_B^1 || J_B^0, O_B^0) \]
\[C_B^{11} = \text{Encrypt}(I_B^1 || J_B^1, O_B^0) \]

Internal Garbled Gates

For the gate E (or): 2 new random secret keys O_E^0, O_E^1
while $I_E^0 \leftarrow O_A^1, I_E^1 \leftarrow O_A^0, J_E^0 \leftarrow O_B^0, J_E^1 \leftarrow O_B^1$

\[E = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \]
\[C_E^{00} = \text{Encrypt}(I_E^0 || J_E^0, O_E^0) \]
\[C_E^{01} = \text{Encrypt}(I_E^0 || J_E^1, O_E^1) \]
\[C_E^{10} = \text{Encrypt}(I_E^1 || J_E^0, O_E^1) \]
\[C_E^{11} = \text{Encrypt}(I_E^1 || J_E^1, O_E^1) \]
Evaluation of Internal Gates

\[
E = \begin{bmatrix}
0 & 1 \\
1 & 1
\end{bmatrix}:
\begin{align*}
C_{E}^{00} &= \text{Encrypt}(I_{E}^{0} || J_{E}^{0}, O_{E}^{0}) \\
C_{E}^{01} &= \text{Encrypt}(I_{E}^{0} || J_{E}^{1}, O_{E}^{1}) \\
C_{E}^{10} &= \text{Encrypt}(I_{E}^{1} || J_{E}^{0}, O_{E}^{1}) \\
C_{E}^{11} &= \text{Encrypt}(I_{E}^{1} || J_{E}^{1}, O_{E}^{1})
\end{align*}
\]

Evaluation of Gate E

Bob knows \(I_{E}^{A} = O_{A}^{E} \) and \(J_{E}^{B} = O_{B}^{E} \)

From the ciphertexts \((C_{E}^{bb'})^{bb'}\), Bob gets \(O_{E}^{Y_{E}} \)

Output Garbled Gates

\[
G = \begin{bmatrix}
0 & 1 \\
1 & 1
\end{bmatrix}:
\begin{align*}
C_{G}^{00} &= \text{Encrypt}(I_{G}^{0} || J_{G}^{0}, 0) \\
C_{G}^{01} &= \text{Encrypt}(I_{G}^{0} || J_{G}^{1}, 1) \\
C_{G}^{10} &= \text{Encrypt}(I_{G}^{1} || J_{G}^{0}, 1) \\
C_{G}^{11} &= \text{Encrypt}(I_{G}^{1} || J_{G}^{1}, 1)
\end{align*}
\]

Evaluation of Gate G

Bob knows \(I_{E}^{E} = O_{E}^{E} \) and \(J_{E}^{F} = O_{F}^{E} \)

From the ciphertexts \((C_{E}^{bb'})^{bb'}\), Bob gets \(z \in \{0, 1\} \)

Bob can then transmit \(z \) to Alice

Outline

1. Secure Function Evaluation
2. Oblivious Transfer
3. Garbled Circuits
 - Introduction
 - Garbled Circuits
 - Correctness
Honest-but-Curious and Malicious

The previous construction assumes that

- Bob extracts the correct plaintext among the multiple candidates
 -⇒ Redundancy is added to the plaintext
 (or authenticated encryption)

They have to trust each other

- Alice correctly builds garbled gates: the ciphertexts are correct
 -⇒ Cut-and-choose technique

- Alice plays the oblivious transfer protocols with correct inputs
 -⇒ Inputs are committed, checked during the cut-and-choose,
 and ZK proofs are done during the OT

- Bob sends back the correct value z
 -⇒ Random tags are appended to the final results 0 and 1
 that Bob cannot guess