
Basics in Cryptology

III – Distributed Cryptography

David Pointcheval
Ecole normale supérieure/PSL, CNRS & INRIA

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 1/26



Outline

Secret Sharing

Introduction

Shamir Secret Sharing

Verifiable Secret Sharing

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 2/26



Secret Sharing



Outline

Secret Sharing

Introduction

Shamir Secret Sharing

Verifiable Secret Sharing

Distributed Cryptography

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 3/26



Key Management

In case of a critical private key (decryption or signing key)

• Abuse: one user can use the secret key alone

• Loss: in case of loss of the key (destruction)

=⇒ share the secret key between several users

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 4/26



Secret Sharing Schemes [Shamir – 1979]

Let S ∈ {0, 1}` be a secret bit-string to be shared

between two people (Alice and Bob):

• one chooses a random S1 ∈ {0, 1}`, and sends it to Alice

• one computes S2 = S ⊕ S1, and sends it to Bob

Security:

• Alice knows a random value

• Bob knows a value masked by a random value: a random value!

=⇒ individually, they have no information on S

Together, they can recover S = S1 ⊕ S2

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 5/26



Secret Sharing Schemes

Let S ∈ {0, 1}` be a secret bit-string to be shared

between n people (U1, . . . , Un):

• one chooses random values Si ∈ {0, 1}`, for i = 1, . . . , n − 1

and sends Si to Ui

• one computes Sn = S ⊕ S1 ⊕ . . .⊕ Sn−1, and sends it to Un

Security:

• U1, . . . , Un−1 know random values

• Un knows a value masked by random values: a random value!

=⇒ individually, they have no information on S

=⇒ but also, any subgroup of (n − 1) people has no information on S

All together, they can recover S = S1 ⊕ . . .⊕ Sn
ENS/PSL/CNRS/INRIA Cascade David Pointcheval 6/26



Unconditional Security

Any subgroup of (n − 1) people has no information on S!

=⇒ if one people does not want / is not able to cooperate:

S is lost forever!

Threshold Secret Sharing

(n, k)-Threshold Secret Sharing

A secret S is shared among n users:

• any subgroup of k people (or more) can recover S

• any subgroup of less than k people has no information about S

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 7/26



Outline

Secret Sharing

Introduction

Shamir Secret Sharing

Verifiable Secret Sharing

Distributed Cryptography

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 8/26



Shamir Secret Sharing [Shamir – 1979]

Lagrange Interpolation of Polynomials

Let us be given k points (x1, y1), . . . , (xk , yk), with distinct abscissa.

There exists a unique polynomial P

• of degree k − 1

• such that P(xi ) = yi for i = 1, . . . , k

Lj(X ) =
i=k∏
i=1
i 6=j

X − xi
xj − xi

{
Lj(xj) = 1

Lj(xi ) = 0 for all i 6= j

As a consequence:

P(X ) =
k∑

j=1

yjLj(X ) satisfies

{
deg(P) = k − 1

P(xi ) = yi ∀i = 1, . . . , k

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 9/26



Shamir Secret Sharing: (n, k)-Threshold

For any subset S of k indices:

LS,j(X ) =
∏
i∈S
i 6=j

X − xi
xj − xi

{
LS,j(xj) = 1

LS,j(xi ) = 0 for all i ∈ S, i 6= j

and

P(X ) =
∑
j∈S

yjLS,j(X ) : S = P(0) =
∑
j∈S

yjLS,j(0)

If one notes λS,j = LS,j(0) (that can be publicly computed)

x =
∑
j∈S

yjλS,j .

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 10/26



Outline

Secret Sharing

Introduction

Shamir Secret Sharing

Verifiable Secret Sharing

Distributed Cryptography

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 11/26



Verifiable Secret Sharing [Chor-Goldwasser-Micali-Awerbuch – FOCS ’85]

If Eve claims she shared her decryption key: how can we trust her?

• we try to recover the key?

• how to do without revealing additional information?

=⇒ Verifiable Secret Sharing

For DL Keys [Feldman – FOCS ’87]

Eve’s keys are, in a group G = 〈g〉 of prime order q,

sk = x pk = y = g x

(n, k)-Secret sharing: x = P(0) for P(X ) =
∑k−1

i=0 aiX
i

=⇒ Si = P(i) for i = 1 . . . , n

For any subset S of k indices:

• x =
∑

j∈S SjλS,j

• y = g x = g
∑

j∈S SjλS,j =
∏

j∈S(gSj )λS,j =
∏

j∈S v
λS,j

j for vj = gSj

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 12/26



Verifiable Secret Sharing for DL Keys

For DL Keys [Feldman – FOCS ’87]

Eve’s keys are, in a group G = 〈g〉 of prime order q,

sk = x pk = y = g x

(n, k)-Secret sharing: x = P(0) for P(X ) =
∑k−1

i=0 aiX
i

• Eve computes Si = P(i) for i = 1 . . . , n and vi = gSi

• Eve sends each Si privately to each Ui

• Eve publishes vi = gSi for i = 1, . . . , n

• Each Ui can then check its own vi w.r.t. to its Si

• Anybody can check y =
∏
j∈S

v
λS,j

j

for any subset S of size k

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 13/26



Distributed Cryptography



Outline

Secret Sharing

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 14/26



Secret Sharing vs. Distributed Cryptography

If Eve shares her decryption key sk ,

the (Ui ) will have to cooperate to recover the key sk

and then decrypt the ciphertext

But then, they all know the decryption key sk!

How can the (Ui ) use their shares (Si ) to decrypt (or sign),

without leaking any additional information about sk?

=⇒ Multi-party computation

Let us try on ElGamal decryption (with shared DL keys)

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 15/26



Outline

Secret Sharing

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 16/26



ElGamal Encryption [ElGamal 1985]

ElGamal Encryption

In a group G = 〈g〉 of order q

• K(G, g , q): x
R← Zq, and sk ← x and pk ← y = g x

• Epk(m): r
R← Zq, c1 ← g r and c2 ← y r ×m.

Then, the ciphertext is c = (c1, c2)

• Dsk(c) outputs c2/c
x
1

We assume an (n, k)-secret sharing of x

and a qualified set S: x =
∑

j∈S SjλS,j

Dsk(c) = c2/c
x
1 : one needs to compute cx1

cx1 = c
∑

j∈S SjλS,j

1 =
∏
j∈S

(c
Sj
1 )λS,j

Each user computes Cj = c
Sj
1 , and then cx1 =

∏
j∈S C

λS,j

j
ENS/PSL/CNRS/INRIA Cascade David Pointcheval 17/26



Robustness

In a group G = 〈g〉 of order q

• K(G, g , q): x
R← Zq, and sk ← x and pk ← y = g x

• Epk(m): r
R← Zq, c1 ← g r and c2 ← y r ×m.

Then, the ciphertext is c = (c1, c2)

• Dsk(c) outputs c2/c
x
1

Given a qualified set S: x =
∑

j∈S SjλS,j

Each user computes Cj = c
Sj
1 , and then cx1 =

∏
j∈S C

λS,j

j

Assume Charlie a.k.a. U1, sends a random C1:

• the others will compute a wrong decryption

• Charlie will be able to extract the plaintext!

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 18/26



Fraud Detection

Each user computes Cj = c
Sj
1 , and then cx1 =

∏
j∈S C

λS,j

j

But U1, sends a random C1: instead of cS1
1 , knowing also v1 = gS1

=⇒ Decide a DDH tuple (g , c1, v1,C1)

Robustness

A defrauder can be detected

=⇒ Proof of DDH membership for the tuple (g , c1, v1,C1),

without leakage of any information about S1

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 19/26



NIZK Diffie-Hellman Language

In a group G = 〈g〉 of prime order q,

the DDH(g , h) assumption states it is hard to distinguish

L = (u = g x , v = hx) from G2 = (u = g x , v = hy )

• P knows x , such that (u = g x , v = hx) and wants to prove it

• P chooses k
R← Z?q, sets U = gk and V = hk

• P computes h = H(g , h, u, v ,U,V ) ∈ Zq

• P computes s = k − xh mod q

The proof consists of the pair (h, s):

anybody can check whether h = H(g , h, u, v , g suh, hsvh)

This proof allows to detect the defrauder

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 20/26



Outline

Secret Sharing

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 21/26



Schnorr Signature [Schnorr – Eurocrypt ’89 - Crypto ’89]

Schnorr Signature

• G = 〈g〉 of order q and H: {0, 1}? → Zq

• Key Generation → (y , x): x ∈ Z?q and y = g−x

• Signature of m→ (r , h, s)

k
R← Z?q r = gk h = H(m, r) s = k + xh mod q

• Verification of (m, r , s)

compute h = H(m, r) and check r
?
= g syh

We assume an (n, k)-secret sharing of x (with the vi )

and a qualified set S: x =
∑

j∈S SjλS,j

The users generate a common r and then sign (m, r)

with a partial signature si under vi :

=⇒ the linearity leads to a global signature

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 22/26



Distributed Schnorr Signature

• G = 〈g〉 of order q and H: {0, 1}? → Zq

• Key Generation → (y , x): x ∈ Z?q and y = g−x

We assume an (n, k)-secret sharing of x (with the vi = gSi )

and a qualified set S: x =
∑

j∈S SjλS,j

• Signature of m→ (r , h, s)

• each Ui chooses ki
R← Z?q and publishes ri = gki

• they all compute r =
∏

r
λS,j

i and h = H(m, r)

• each Ui computes and publishes si = ki + Sih mod q

Then, s =
∑

siλS,i

• Verification of (m, r , s)

compute h = H(m, r) and check r
?
= g syh

Each partial signature (m, ri , si ) can be checked: ri
?
= g si vhi

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 23/26



Outline

Secret Sharing

Distributed Cryptography

Introduction

Distributed Decryption

Distributed Signature

Distributed Key Generation

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 24/26



Distributed Key Generation

In the previous schemes (ElGamal encryption and Schnorr signature)

the keys are generated in a centralized way:

someone knows the secret key!

Distributed cryptography should include a distributed key generation:

the secret key should never exist in one place.

(n, n)-Threshold DL Key Generation

• G = 〈g〉 of order q

• Key Generation → (y , x):

• each Ui chooses xi
R← Z?q and publishes yi = g xi

• anybody can compute y =
∏

yi = g
∑

xi

The public key y corresponds to the “virtual” secret key

x =
∑

xi mod q

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 25/26



Distributed Key Generation

(n, k)-Threshold DL Key Generation

• G = 〈g〉 of order q

• Key Generation → (y , x):

• each Ui chooses a polynomial Pi of degree k − 1,

and sends Si,j = Pi (j) to Uj

• each Uj can then compute Sj =
∑

i Si,j =
∑

i Pi (j) = P(j),

where P =
∑

i Pi

• each Uj computes and publishes vj = gSj

The (Sj)j are an (n, k)-secret sharing of the “virtual” secret key x ,

corresponding to the public key y , that anybody can compute:
For any qualified set S:

• Secretly: x =
∑

j∈S SjλS,j mod q

• Publicly: y =
∏

j∈S v
λS,j

j

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 26/26


	Main Part
	Secret Sharing
	Introduction
	Shamir Secret Sharing
	Verifiable Secret Sharing

	Distributed Cryptography
	Introduction
	Distributed Decryption
	Distributed Signature
	Distributed Key Generation



