Basics in Cryptology

II - Zero-Knowledge Proofs and Applications

David Pointcheval

Ecole normale supérieure/PSL, CNRS & INRIA

Zero-Knowledge Proofs of Knowledge

Introduction

3-Coloring

Examples

Signatures

From Identification to Signature

Forking Lemma

Zero-Knowledge Proofs of Membership

Introduction

Example: DH

Zero-Knowledge Proofs of

Knowledge

Zero-Knowledge Proofs of Knowledge

Introduction

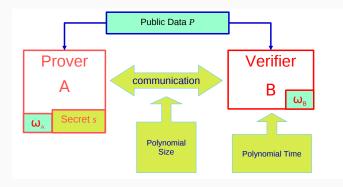
3-Coloring

Examples

Signatures

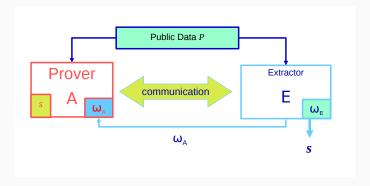
Zero-Knowledge Proofs of Membership

How do I prove that I know a solution s to a problem P?



Proof of Knowledge: Soundness

A knows something...What does it mean? the information can be extracted: extractor

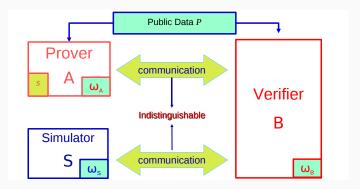


Proof of Knowledge: Zero-Knowledge

How do I prove that I know a solution s to a problem P? I reveal the solution...

How can I do it without revealing any information?

Zero-knowledge: simulation and indistinguishability



Zero-Knowledge Proofs of Knowledge

Introduction

3-Coloring

Examples

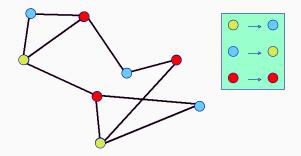
Signatures

Zero-Knowledge Proofs of Membership

How do I prove that I know a 3-color covering, without revealing any information?

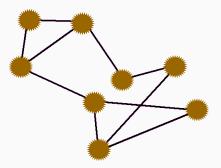


How do I prove that I know a 3-color covering, without revealing any information?



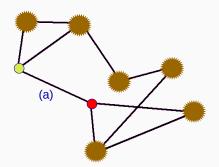
I choose a random permutation on the colors and I apply it to the vertices

How do I prove that I know a 3-color covering, without revealing any information?



I mask the vertices and send it to the verifier

How do I prove that I know a 3-color covering, without revealing any information?

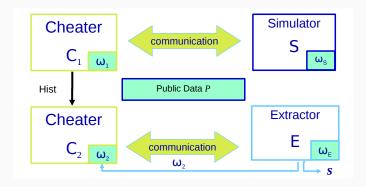


The verifier chooses an edge I open it

The verifier checks the validity: 2 different colors

Secure Multiple Proofs of Knowledge: Authentication

If there exists an efficient adversary, then one can solve the underlying problem:



Zero-Knowledge Proofs of Knowledge

Introduction

3-Coloring

Examples

Signatures

Zero-Knowledge Proofs of Membership

3-Pass Zero-Knowledge Proofs

Generic Proof

- Proof of knowledge of x, such that $\mathcal{R}(x, y)$
- \mathcal{P} builds a commitment r and sends it to \mathcal{V}
- \mathcal{V} chooses a challenge $h \stackrel{R}{\leftarrow} \{0,1\}^k$ for \mathcal{P}
- $m{\cdot}$ \mathcal{P} computes and sends the answer s
- V checks (r, h, s)

Σ -Protocol

- Proof of knowledge of x
- \mathcal{P} sends a commitment r
- ullet ${\cal V}$ sends a challenge h
- ullet ${\cal P}$ sends the answer s
- V checks (r, h, s)

Special soundness

If one can answer to two different challenges $h \neq h'$:

 \implies s and s' for a unique r

 \implies one can extract x

- Setting: n = pq \mathcal{P} knows x, such that $X = x^2 \mod n$ and wants to prove it to \mathcal{V}
- \mathcal{P} chooses $r \stackrel{R}{\leftarrow} \mathbb{Z}_n^{\star}$, sets and sends $R = r^2 \mod n$
- ullet $\mathcal V$ chooses $b \overset{R}{\leftarrow} \{0,1\}$ and sends it to $\mathcal P$
- \mathcal{P} computes and sends $s = x^b \times r \mod n$
- V checks whether $s^2 \stackrel{?}{=} X^b R \mod n$

One then reiterates t times

For a fixed R, two valid answers s and s' satisfy

$$s^2/X = R = (s')^2 \mod n \Longrightarrow X = (s/s')^2 \mod n$$

And thus $x = s/s' \mod n \Longrightarrow$ Special Soundness

Fiat-Shamir Proof: Extraction

More precisely: the execution of t repetitions depends on

- ullet (b_1,\ldots,b_t) from the verifier ${\mathcal V}$
- ω that (together with the previous b_i (i < k)) determines R_k from the prover \mathcal{P}

If
$$\Pr_{\omega,(b_i)}[\mathcal{V} \text{ accepts } \mathcal{P}] > 1/2^t + \varepsilon$$
,
there is a good fraction of ω (more than $\varepsilon/2$)
such that $\Pr_{(b_i)}[\mathcal{V} \text{ accepts } \mathcal{S}] \geq 1/2^t + \varepsilon/2$.

For such a good ω : a good node along the successful path

Fiat-Shamir Proof: Simulation

Honest Verifier

Simulation of a triplet: $(R = r^2 \mod n, b, s = x^b \times r \mod n)$ for $r \stackrel{R}{\leftarrow} \mathbb{Z}_n^*$ and $b \stackrel{R}{\leftarrow} \{0, 1\}$

Similar to: $(R = s^2/X^b \mod n, b, s)$ for $s \stackrel{R}{\leftarrow} \mathbb{Z}_{+}^{*}$ and $b \stackrel{R}{\leftarrow} \{0, 1\}$

Simulation: random s and b, and set $(R = s^2/X^b \mod n, b, s)$

Any Verifier

Simulation of a triplet: $(R = r^2 \mod n, b = \mathcal{V}(\text{view}), s = x^b \times r \mod n)$ for $r \stackrel{R}{\leftarrow} \mathbb{Z}_n^*$ only!

Similar to: $(R = s^2/X^b \mod n, b = \mathcal{V}(\text{view}), s)$ for $s \overset{R}{\leftarrow} \mathbb{Z}_n^*$ Simulation: random s and β , and set $R = s^2/X^\beta \mod n$ upon reception of b: if $b = \beta$, output s, else rewind b and β independent: rewind once over $2 \Longrightarrow$ linear time

- Setting: n = pq and an exponent e \mathcal{P} knows x, such that $X = x^e \mod n$ and wants to prove it to \mathcal{V}
- \mathcal{P} chooses $r \stackrel{R}{\leftarrow} \mathbb{Z}_n^{\star}$, sets and sends $R = r^e \mod n$
- \mathcal{V} chooses $b \stackrel{R}{\leftarrow} \{0,1\}^t$ and sends it to \mathcal{P}
- \mathcal{P} computes and sends $s = x^b \times r \mod n$
- V checks whether $s^e \stackrel{?}{=} X^b R \mod n$

For a fixed R, two valid answers s and s' satisfy

$$s^e/X^b = R = (s')^e/X^{b'} \mod n \Longrightarrow X^{b'-b} = (s'/s)^e \mod n$$

If e prime and bigger than 2^t , then e and b' - b are relatively prime:

Bezout: $ue + v(b' - b) = 1 \Longrightarrow X^{v(b' - b)} = (s'/s)^{ve} = X^{1-ue} \mod n$

As a consequence: $X = ((s'/s)^{\nu}X^{u})^{e} \Longrightarrow$ Special Soundness

- Setting: $\mathbb{G} = \langle g \rangle$ of order q \mathcal{P} knows x, such that $y = g^{-x}$ and wants to prove it to \mathcal{V}
- \mathcal{P} chooses $k \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{\star}$, sets and sends $r = g^{k}$
- \mathcal{V} chooses $h \stackrel{R}{\leftarrow} \{0,1\}^t$ and sends it to \mathcal{P}
- \mathcal{P} computes and sends $s = k + xh \mod q$
- V checks whether $r \stackrel{?}{=} g^s y^h$

For a fixed r, two valid answers s and s' satisfy

$$g^s y^h = r = g^{s'} y^{h'} \Longrightarrow y^{h'-h} = g^{s-s'}$$

And thus $x = (s - s')(h' - h)^{-1} \mod q \Longrightarrow$ Special Soundness

Signatures

Zero-Knowledge Proofs of Knowledge

Signatures

From Identification to Signature

Forking Lemma

Zero-Knowledge Proofs of Membership

Σ-Protocols

Zero-Knowledge Proof

- Proof of knowledge of x
- \mathcal{P} sends a commitment r
- \mathcal{V} sends a challenge h
- ullet ${\cal P}$ sends the answer s
- V checks (r, h, s)

Signature

- Key Generation \rightarrow (y, x)
- Signature of $m \to (r, h, s)$ Commitment rChallenge $h = \mathcal{H}(m, r)$ Answer s
- Verification of (m, r, s)compute $h = \mathcal{H}(m, r)$ and check (r, h, s)

Special soundness

If one can answer to two different challenges $h \neq h'$: s and s' for a unique commitment r, one can extract x

Zero-Knowledge Proofs of Knowledge

Signatures

From Identification to Signature

Forking Lemma

Zero-Knowledge Proofs of Membership

The Forking Lemma shows an efficient reduction between the signature scheme and the identification scheme, but basically, if an adversary \mathcal{A} produces, with probability $\varepsilon \geq 2/2^k$, a valid signature (m,r,h,s), then within T'=2T, one gets two valid signatures (m,r,h,s) and (m,r,h',s'), with $h \neq h'$ with probability $\varepsilon' \geq \varepsilon^2/32q_H^3$.

The special soundness provides the secret key.

Zero-Knowledge Proofs of

Membership

Zero-Knowledge Proofs of Knowledge

Signatures

Zero-Knowledge Proofs of Membership

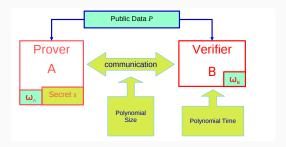
Introduction

Example: DH

Proof of Membership

How do I prove that a word w lies in a language \mathcal{L} : $P = (w, \mathcal{L})$?

• if $\mathcal{L} \in \mathcal{NP}$: a witness s can help prove that $w \in \mathcal{L}$



If $w \notin \mathcal{L}$:

- ullet Proof (perfect soundess): a powerful ${\cal A}$ cannot cheat
- ullet Argument (computational soundness): a limited ${\cal A}$ cannot cheat

Proof of Membership

Soundness

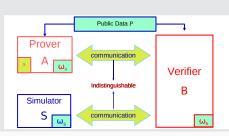
 $w \in \mathcal{L}...$ what does it mean? a witness exists, different from knowing it: no need of extractor

Zero-Knowledge

How do I prove there exists a witness s? I reveal it...

How can I do it without revealing any information?

Zero-knowledge: simulation and indistinguishability



Zero-Knowledge Proofs of Knowledge

Signatures

Zero-Knowledge Proofs of Membership

Introduction

Example: DH

Diffie-Hellman Language

In a group $\mathbb{G} = \langle g \rangle$ of prime order q,

the **DDH**(g, h) assumption states it is hard to distinguish $\mathcal{L} = (u = g^x, v = h^x)$ from $\mathbb{G}^2 = (u = g^x, v = h^y)$

- ullet R knows x, such that $(u=g^x,v=h^x)$ and wants to prove it to ${\cal V}$
- \mathcal{P} chooses $k \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{\star}$, sets and sends $U = g^{k}$ and $V = h^{k}$
- \mathcal{V} chooses $h \stackrel{R}{\leftarrow} \{0,1\}^t$ and sends it to \mathcal{P}
- \mathcal{P} computes and sends $s = k xh \mod q$
- V checks whether $U \stackrel{?}{=} g^s u^h$ and $V \stackrel{?}{=} h^s v^h$

For a fixed (U, V), two valid answers s and s' satisfy

$$g^s u^h = U = g^{s'} u^{h'} \quad h^s v^h = V = h^{s'} v^{h'}$$

- if one sets $y = (s s')(h' h)^{-1} \mod q \Longrightarrow u = g^y$ and $v = h^y$
- there exists a witness: Perfect Soundness