Outline

1. Secret Sharing
 - Introduction
 - Shamir Secret Sharing
 - Verifiable Secret Sharing

2. Distributed Cryptography
 - Introduction
 - Distributed Decryption
 - Distributed Signature
 - Distributed Key Generation

Key Management

In case of a critical private key (decryption or signing key)

- **Abuse**: one user can use the secret key alone
- **Loss**: in case of loss of the key (destruction)

⇒ share the secret key between several users
Secret Sharing Schemes

Let $S \in \{0, 1\}^\ell$ be a secret bit-string to be shared between two people (Alice and Bob):
- one chooses a random $S_1 \in \{0, 1\}^\ell$, and sends it to Alice
- one computes $S_2 = S \oplus S_1$, and sends it to Bob

Security:
- Alice knows a random value
- Bob knows a value masked by a random value: a random value!

\implies individually, they have no information on S

Together, they can recover $S = S_1 \oplus S_2$

Unconditional Security

Any subgroup of $(n - 1)$ people has no information on S!
\implies if one people does not want / is not able to cooperate:

S is lost forever!

Threshold Secret Sharing

(n, k)-Threshold Secret Sharing

A secret S is shared among n users:
- any subgroup of k people (or more) can recover S
- any subgroup of less than k people has no information about S
Lagrange Interpolation of Polynomials

Let us be given \(k \) points \((x_1, y_1), \ldots, (x_k, y_k)\), with distinct abscissa. There exists a unique polynomial \(P \) of degree \(k - 1 \) such that \(P(x_i) = y_i \) for \(i = 1, \ldots, k \).

\[
L_j(X) = \prod_{i \neq j} \frac{X - x_i}{x_j - x_i}
\]

As a consequence:

\[
P(X) = \sum_{j=1}^{k} y_j L_j(X)
\]

satisfies

\[
\begin{align*}
\deg(P) &= k - 1 \\
P(x_i) &= y_i \quad \forall i = 1, \ldots, k
\end{align*}
\]

Verifiable Secret Sharing

If Eve claims she shared her decryption key: how can we trust her?

- we try to recover the key?
- how to do without revealing additional information?

\[\implies\text{Verifiable Secret Sharing}\]

For DL Keys

Eve’s keys are, in a group \(\mathbb{G} = \langle g \rangle \) of prime order \(q \),

\[
sk = x \quad pk = y = g^x
\]

\((n, k)\)-Secret sharing: \(x = P(0) \) for \(P(X) = \sum_{i=0}^{k-1} a_i X^i \)

\[\implies S_i = P(i) \text{ for } i = 1, \ldots, n\]

For any subset \(S \) of \(k \) indices:

- \(x = \sum_{j \in S} S_j \lambda_{S,j} \)
- \(y = g^x = g^{\sum_{j \in S} S_j \lambda_{S,j}} = \prod_{j \in S} (g^{S_j})^{\lambda_{S,j}} = \prod_{j \in S} v_j^{\lambda_{S,j}} \) for \(v_j = g^{S_j} \)
Verifiable Secret Sharing for DL Keys

For DL Keys [Feldman – FOCS ’87]

Eve’s keys are, in a group \(G = \langle g \rangle \) of prime order \(q \),

\[
sk = x \quad pk = y = g^x
\]

\((n, k)\)-Secret sharing: \(x = P(0) \) for \(P(X) = \sum_{i=0}^{k-1} a_i X^i \)

- Eve computes \(S_i = P(i) \) for \(i = 1 \ldots n \) and \(v_i = g^{S_i} \)
- Eve sends each \(S_i \) privately to each \(U_i \)
- Eve publishes \(v_i = g^{S_i} \) for \(i = 1, \ldots, n \)
- Each \(U_i \) can then check its own \(v_i \) w.r.t. to its \(S_i \)
- Anybody can check

\[
y = \prod_{j \in S} v_j^{\lambda_{S,j}}
\]

for any subset \(S \) of size \(k \)

Outline

1 Secret Sharing

2 Distributed Cryptography

- Introduction
 - Distributed Decryption
 - Distributed Signature
 - Distributed Key Generation

Secret Sharing vs. Distributed Cryptography

If Eve shares her decryption key \(sk \),
the \((U_i) \) will have to cooperate to recover the key \(sk \)
and then decrypt the ciphertext

But then, they all know the decryption key \(sk \)!

How can the \((U_i) \) use their shares \((S_i) \) to decrypt (or sign),
without leaking any additional information about \(sk \)?

\(\Rightarrow \) Multi-party computation

Let us try on ElGamal decryption (with shared DL keys)
ElGamal Encryption

In a group $\mathbb{G} = \langle g \rangle$ of order q

- $K(\mathbb{G}, g, q): x \overset{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $E_{pk}(m): r \overset{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m$.
 Then, the ciphertext is $c = (c_1, c_2)$
- $D_{sk}(c)$ outputs c_2/c_1^x

We assume an (n, k)-secret sharing of x and a qualified set S: $x = \sum_{j \in S} S_j \lambda_{S,j}$

$D_{sk}(c) = c_2/c_1^x$: one needs to compute $c_1^x = \prod_{j \in S} (c_1^s)^{\lambda_{S,j}}$

Each user computes $C_j = c_1^{S_j}$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda_{S,j}}$

Fraud Detection

Each user computes $C_j = c_1^{S_j}$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda_{S,j}}$

But U_1, sends a random C_1: instead of $c_1^{S_1}$, knowing also $v_1 = g^{S_1}$

\Longrightarrow Decide a DDH tuple (g, c_1, v_1, C_1)

Robustness

A defrauder can be detected

\Longrightarrow Proof of DDH membership for the tuple (g, c_1, v_1, C_1), without leakage of any information about S_1

NIZK Diffie-Hellman Language

In a group $\mathbb{G} = \langle g \rangle$ of order q,

- $K(\mathbb{G}, g, q): x \overset{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $E_{pk}(m): r \overset{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m$.
 Then, the ciphertext is $c = (c_1, c_2)$
- $D_{sk}(c)$ outputs c_2/c_1^x

Given each qualified set S: $x = \sum_{j \in S} S_j \lambda_{S,j}$

Each user computes $C_j = c_1^{S_j}$, and then $c_1^x = \prod_{j \in S} C_j^{\lambda_{S,j}}$

Assume Charlie a.k.a. U_1, sends a random C_1:

- the others will compute a wrong decryption
- Charlie will be able to extract the plaintext!
1 Secret Sharing

2 Distributed Cryptography
 - Introduction
 - Distributed Decryption
 - Distributed Signature
 - Distributed Key Generation

Schnorr Signature

- \(G = \langle g \rangle \) of order \(q \) and \(H: \{0, 1\}^* \rightarrow \mathbb{Z}_q \)
- Key Generation \(\rightarrow (y, x): x \in \mathbb{Z}_q^* \) and \(y = g^{-x} \)
- Signature of \(m \rightarrow (r, h, s) \)
 \[k \overset{R}{\leftarrow} \mathbb{Z}_q^* \quad r = g^k \quad h = H(m, r) \quad s = k + xh \mod q \]
- Verification of \((m, r, s) \)
 compute \(h = H(m, r) \) and check \(r = g^s y^h \)

We assume an \((n, k)\)-secret sharing of \(x \) (with the \(v_i = g^{S_i} \)) and a qualified set \(S: x = \sum_{j \in S} S_j \lambda_{S,j} \)

The users generate a common \(r \) and then sign \((m, r)\) with a partial signature \(s_i \) under \(v_i \):

\[\implies \text{the linearity leads to a global signature} \]

Distributed Schnorr Signature

- \(G = \langle g \rangle \) of order \(q \) and \(H: \{0, 1\}^* \rightarrow \mathbb{Z}_q \)
- Key Generation \(\rightarrow (y, x): x \in \mathbb{Z}_q^* \) and \(y = g^{-x} \)

We assume an \((n, k)\)-secret sharing of \(x \) (with the \(v_i = g^{S_i} \)) and a qualified set \(S: x = \sum_{j \in S} S_j \lambda_{S,j} \)

The users generate a common \(r \) and then sign \((m, r)\) with a partial signature \(s_i \) under \(v_i \):

\[\implies \text{the linearity leads to a global signature} \]

Each partial signature \((m, r_i, s_i)\) can be checked: \(r_i = g^{s_i} v_i^h \)
Distributed Key Generation

In the previous schemes (ElGamal encryption and Schnorr signature) the keys are generated in a centralized way: someone knows the secret key!

Distributed cryptography should include a distributed key generation: the secret key should never exist in one place.

\((n, n)\)-Threshold DL Key Generation

- \(G = \langle g \rangle\) of order \(q\)
- Key Generation \(\rightarrow (y, x)\):
 - each \(U_i\) chooses \(x_i \in \mathbb{Z}_q^*\) and publishes \(y_i = g^{x_i}\)
 - anybody can compute \(y = \prod y_i = g^{\sum x_i}\)

The public key \(y\) corresponds to the “virtual” secret key \(x = \sum x_i \mod q\)

\((n, k)\)-Threshold DL Key Generation

- \(G = \langle g \rangle\) of order \(q\)
- Key Generation \(\rightarrow (y, x)\):
 - each \(U_i\) chooses a polynomial \(P_i\) of degree \(k - 1\), and sends \(S_{ij} = P_i(j)\) to \(U_j\)
 - each \(U_j\) can then compute \(S_j = \sum_i S_{ij} = \sum_i P_i(j) = P(j)\), where \(P = \sum_i P_i\)
 - each \(U_j\) computes and publishes \(v_j = g^{S_j}\)

The \((S_j)\) are an \((n, k)\)-secret sharing of the “virtual” secret key \(x\), corresponding to the public key \(y\), that anybody can compute:

For any qualified set \(S\):
- Secretly: \(x = \sum_{j \in S} S_j \lambda_{S,j} \mod q\)
- Publicly: \(y = \prod_{j \in S} v_j^{\lambda_{S,j}}\)