I – Introduction

David Pointcheval Ecole normale supérieure/PSL, CNRS & INRIA

Outline

Cryptography

Introduction

Kerckhoffs' Principles

Cryptographic Primitives

Symmetric Cryptography

Asymmetric Cryptography

Computational Assumptions

Public-Key Encryption

Signatures

Introduction

Kerckhoffs' Principles

Cryptographic Primitives

Symmetric Cryptography

Asymmetric Cryptography

Old Encryption Mechanisms

Scytale - Permutation

Alberti's disk Mono-alphabetical Substitution

Substitutions and permutations Security relies on the secrecy of the mechanism

Wheel – M 94 (CSP 488) Poly-alphabetical Substitution

ENS/PSL/CNRS/INRIA Cascade

Introduction

Kerckhoffs' Principles

Cryptographic Primitives

Symmetric Cryptography

Asymmetric Cryptography

ENS/PSL/CNRS/INRIA Cascade

Kerckhoffs' Principles (1)

La Cryptographie Militaire (1883)

Le système doit être matèriellement, sinon mathématiquement, indéchiffrable

The system should be, if not theoretically unbreakable, unbreakable in practice

 \longrightarrow If the security cannot be formally proven, heuristics should provide some confidence.

La Cryptographie Militaire (1883)

Il faut qu'il n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi

Compromise of the system should not inconvenience the correspondents

 \longrightarrow The description of the mechanism should be public

La Cryptographie Militaire (1883)

La clef doit pouvoir en être communiquée et retenue sans le secours de notes écrites, et être changée ou modifiée au gré des correspondants

The key should be rememberable without notes and should be easily changeable

 \longrightarrow The parameters specific to the users (the key) should be short

Use of (Secret) Key

A shared information (secret key) between the sender and the receiver parameterizes the mechanism:

- Vigenère: each key letter tells the shift
- Enigma: connectors and rotors

Security **looks** better: but broken (Alan Turing *et al.*)

Symmetric Encryption

Principles 2 and 3 define the concepts of symmetric cryptography:

Secrecy

It is impossible/hard to recover m from c only (without k)

Security

It is heuristic only: 1st principle

Any security indeed vanished with statistical attacks! Perfect secrecy? Is it possible?

Perfect Secrecy

The ciphertext does not reveal any (additional) information about the plaintext: no more than known before

- a priori information about the plaintext, defined by the distribution probability of the plaintext
- a posteriori information about the plaintext, defined by the distribution probability of the plaintext, given the ciphertext

Both distributions should be perfectly identical

One-Time Pad Encryption

Vernam's Cipher (1929)

• Encryption of $m \in \{0, 1\}^n$ under the key $k \in \{0, 1\}^n$: $m = \boxed{1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1}$ plaintext \oplus XOR (+ modulo 2) $k = \boxed{1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0}$ key = random mask = $c = \boxed{0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1}$ ciphertext • Decryption of $c \in \{0, 1\}^n$ under the key $k \in \{0, 1\}^n$: $c \oplus k = (m \oplus k) \oplus k = m \oplus (k \oplus k) = m$

Which message is encrypted in the ciphertext $c \in \{0, 1\}^n$?

For any candidate $m \in \{0,1\}^n$, the key $k = c \oplus m$ would lead to c

\Rightarrow no information about *m* is leaked with *c*!

ENS/PSL/CNRS/INRIA Cascade

Information Theory

Drawbacks

- The key must be as long as the plaintext
- This key must be used once only (one-time pad)

Theorem (Shannon – 1949)

To achieve perfect secrecy, A and B have to share a common string truly random and as long as the whole communication.

Thus, the above one-time pad technique is optimal...

Practical Secrecy

Perfect Secrecy vs. Practical Secrecy

• No information about the plaintext *m* is in the ciphertext *c* without the knowledge of the key *k*

\Rightarrow information theory

No information about the plaintext m can be extracted from the ciphertext c, even for a powerful adversary (unlimited time and/or unlimited power): perfect secrecy

In practice: adversaries are limited in time/power
 ⇒ complexity theory

Shannon also showed that combining appropriately permutations and substitutions can hide information: extracting information from the ciphertext is time consuming

Modern Symmetric Encryption: DES and AES

Combination of substitutions and permutations

DES (1977) Data Encryption Standard

AES (2001) Advanced Encryption Standard

Introduction

Kerckhoffs' Principles

Cryptographic Primitives

Symmetric Cryptography

Asymmetric Cryptography

Symmetric Encryption – Secret Key Encryption

One secret key only shared by Alice and Bob: this is a common parameter for the encryption and the decryption algorithms This secret key has a symmetric capability

The secrecy of the key k guarantees the secrecy of communications but requires such a common secret key!

How can we establish such a common secret key? Or, how to avoid it?

ENS/PSL/CNRS/INRIA Cascade

Secrecy

- The recipient only should be able to open the message
- No requirement about the sender

Why would the sender need a secret key to encrypt a message?

Asymmetric Encryption: Formalism

Public Key Cryptography – Diffie-Hellman (1976)

- Bob's public key is used by Alice as a parameter to encrypt a message to Bob
- Bob's private key is used by Bob as a parameter to decrypt ciphertexts

Asymmetric cryptography extends the 2nd principle:

The secrecy of the private key sk guarantees the secrecy of communications

ENS/PSL/CNRS/INRIA Cascade

Introduction

Kerckhoffs' Principles

Cryptographic Primitives

Symmetric Cryptography

Asymmetric Cryptography

ENS/PSL/CNRS/INRIA Cascade

Main Symmetric Primitives

- Encryption:
 - block-cipher
 - stream-cipher
- Authentication:
 - MAC: Message Authentication Codes
 - AEAD: Authenticated Encryption (with Associated Data)
- Integrity:
 - hash functions

Cryptographic Hash Function

A hash function generates a (constant-length) output from any input To be used as a fingerprint of the file input Collision: $m \neq m'$ such that H(m) = H(m').

Properties of Hash Functions

- One-wayness (First Preimage):
 given h = H(x), hard to find x' such that h = H(x')
- Second Preimage:

given x, h = H(x), hard to find $x' \neq x$ such that h = H(x')

• Collision-Resistance: hard to find $x \neq x'$ such that H(x) = H(x')

Generic attack: birthday paradox against collision-resistance (the output must be at least 256-bit long)

ENS/PSL/CNRS/INRIA Cascade

Asymmetric Cryptography

Asymmetric Cryptography

Computational Assumptions

Public-Key Encryption

Signatures

Integer Factoring

- Given n = pq
- Find p and q

Year	Required Complexity	<i>n</i> bitlength
before 2000	64	768
before 2010	80	1024
before 2020	112	2048
before 2030	128	3072
	192	7680
	256	15360

Note that the reduction may be lossy: extra bits are then required

ENS/PSL/CNRS/INRIA Cascade

Integer Factoring Records

Integer Factoring

- Given n = pq
- Find p and q

Digits	Date	Details
129	April 1994	Quadratic Sieve
130	April 1996	Algebraic Sieve
140	February 1999	
155	August 1999	512 bits
160	April 2003	
200	May 2005	
232	December 2009	768 bits

Integer Factoring Variants

RSA

[Rivest-Shamir-Adleman 1978]

- Given n = pq, e and $y \in \mathbb{Z}_n^*$
- Find x such that $y = x^e \mod n$

Note that this problem is hard without the prime factors p and q, but becomes easy with them: if $d = e^{-1} \mod \varphi(n)$, then $x = y^d \mod n$

Flexible RSA

[Baric-Pfitzmann and Fujisaki-Okamoto 1997]

- Given n = pq and $y \in \mathbb{Z}_n^*$
- Find x and e > 1 such that $y = x^e \mod n$

Both problems are assumed as hard as integer factoring: the prime factors are a trapdoor to find solutions

ENS/PSL/CNRS/INRIA Cascade

Discrete Logarithm

Discrete Logarithm Problem

- Given $\mathbb{G} = \langle g \rangle$ a cyclic group of order q, and $y \in \mathbb{G}$
- Find x such that $y = g^x$

Possible groups: $\mathbb{G} \in (\mathbb{Z}_p^{\star}, \times)$, or an elliptic curve

(Computational) Diffie Hellman Problem

- Given $\mathbb{G} = \langle g \rangle$ a cyclic group of order q, and $X = g^x$, $Y = g^y$
- Find $Z = g^{xy}$

The knowledge of x or y helps to solve this problem (trapdoor)

Decisional Problem

(Decisional) Diffie Hellman Problem

- Given 𝔅 = ⟨g⟩ a cyclic group of order q, and X = g^x, Y = g^y, as well as a candidate Z ∈ 𝔅
- Decide whether $Z = g^{xy}$

The adversary is called a distinguisher (outputs 1 bit).

A good distinguisher should behave in significantly different manners according to the input distribution:

$$\mathbf{Adv}_{\mathbb{G}}^{\mathsf{ddh}}(\mathcal{A}) = \Pr[\mathcal{A}(X, Y, Z) = 1 | Z = g^{xy}] \\ - \Pr[\mathcal{A}(X, Y, Z) = 1 | Z \stackrel{R}{\leftarrow} \mathbb{G}]$$

Asymmetric Cryptography

Computational Assumptions

Public-Key Encryption

Signatures

Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext

ENS/PSL/CNRS/INRIA Cascade

\mathcal{RSA} Encryption

The RSA encryption scheme \mathcal{RSA} is defined by

- *K*(1^k): *p* and *q* two random *k*-bit prime integers, and an exponent *e* (possibly fixed, or not):
 sk ← *d* = *e*⁻¹ mod φ(*n*) and *pk* ← (*n*, *e*)
- $\mathcal{E}_{pk}(m)$: the ciphertext is $c = m^e \mod n$
- $\mathcal{D}_{sk}(c)$: the plaintext is $m = c^d \mod n$

ElGamal Encryption

The ElGamal encryption scheme \mathcal{EG} is defined, in a group $\mathbb{G}=\langle g
angle$ of order q

- $\mathcal{K}(\mathbb{G}, g, q)$: $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and $sk \leftarrow x$ and $pk \leftarrow y = g^x$
- $\mathcal{E}_{pk}(m)$: $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $c_1 \leftarrow g^r$ and $c_2 \leftarrow y^r \times m = pk^r \times m$. Then, the ciphertext is $c = (c_1, c_2)$

•
$$\mathcal{D}_{sk}(c)$$
 outputs $c_2/c_1^x = c_2/c_1^{sk}$

Asymmetric Cryptography

Computational Assumptions Public-Key Encryption

Signatures

Signature

Goal: Authentication of the sender

ENS/PSL/CNRS/INRIA Cascade

\mathcal{RSA} Signature

The RSA signature scheme \mathcal{RSA} is defined by

- *K*(1^k): *p* and *q* two random *k*-bit prime integers, and an exponent *v* (possibly fixed, or not):
 sk ← *s* = *v*⁻¹ mod φ(*n*) and *pk* ← (*n*, *v*)
- $S_{sk}(m)$: the signature is $\sigma = m^s \mod n$
- $\mathcal{V}_{pk}(m,\sigma)$ checks whether $m = \sigma^{v} \mod n$