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Old Encryption Mechanisms

Scytale - Permutation

Substitutions and permutations

Security relies on

the secrecy of the mechanism

Alberti’s disk

Mono-alphabetical Substitution

Wheel – M 94 (CSP 488)

Poly-alphabetical Substitution
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Kerckhoffs’ Principles (1)

La Cryptographie Militaire (1883)

Le système doit être matèriellement,

sinon mathématiquement, indéchiffrable

The system should be, if not theoretically unbreakable,

unbreakable in practice

−→ If the security cannot be formally proven,

heuristics should provide some confidence.
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Kerckhoffs’ Principles (2)

La Cryptographie Militaire (1883)

Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient

tomber entre les mains de l’ennemi

Compromise of the system should not inconvenience the correspondents

−→ The description of the mechanism should be public
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Kerckhoffs’ Principles (3)

La Cryptographie Militaire (1883)

La clef doit pouvoir en être communiquée et retenue sans le secours de

notes écrites, et être changée ou modifiée au gré des correspondants

The key should be rememberable without notes and should be easily changeable

−→ The parameters specific to the users (the key) should be short
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Use of (Secret) Key

A shared information (secret key) between the sender and the receiver

parameterizes the mechanism:

• Vigenère: each key letter tells the shift

• Enigma: connectors and rotors

Security looks better: but broken (Alan Turing et al.)
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Symmetric Encryption

Principles 2 and 3 define the concepts of symmetric cryptography:

kk

E Dm c m

kG1k

Secrecy

It is impossible/hard to recover m from c only (without k)

Security

It is heuristic only: 1st principle
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Perfect Secrecy?

Any security indeed vanished with statistical attacks!

Perfect secrecy? Is it possible?

Perfect Secrecy

The ciphertext does not reveal any (additional) information

about the plaintext: no more than known before

• a priori information about the plaintext,

defined by the distribution probability of the plaintext

• a posteriori information about the plaintext,

defined by the distribution probability of the plaintext,

given the ciphertext

Both distributions should be perfectly identical
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One-Time Pad Encryption

Vernam’s Cipher (1929)

• Encryption of m ∈ {0, 1}n under the key k ∈ {0, 1}n:

m = 1 0 0 1 0 1 1 plaintext

⊕ XOR (+ modulo 2)

k = 1 1 0 1 0 0 0 key = random mask

=

c = 0 1 0 0 0 1 1 ciphertext

• Decryption of c ∈ {0, 1}n under the key k ∈ {0, 1}n:

c ⊕ k = (m ⊕ k)⊕ k = m ⊕ (k ⊕ k) = m

Which message is encrypted in the ciphertext c ∈ {0, 1}n?

For any candidate m ∈ {0, 1}n, the key k = c ⊕m would lead to c

⇒ no information about m is leaked with c!
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Information Theory

Drawbacks

• The key must be as long as the plaintext

• This key must be used once only (one-time pad)

Theorem (Shannon – 1949)

To achieve perfect secrecy, A and B have to share a common string

truly random and as long as the whole communication.

Thus, the above one-time pad technique is optimal. . .
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Practical Secrecy

Perfect Secrecy vs. Practical Secrecy

• No information about the plaintext m is in the ciphertext c

without the knowledge of the key k

⇒ information theory

No information about the plaintext m can be extracted

from the ciphertext c , even for a powerful adversary

(unlimited time and/or unlimited power): perfect secrecy

• In practice: adversaries are limited in time/power

⇒ complexity theory

Shannon also showed that combining appropriately permutations and

substitutions can hide information: extracting information from the

ciphertext is time consuming
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Modern Symmetric Encryption: DES and AES

Combination of substitutions and permutations

DES (1977)

Data Encryption Standard

AES (2001)

Advanced Encryption Standard
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Symmetric Encryption: Formalism

Symmetric Encryption – Secret Key Encryption

One secret key only shared by Alice and Bob: this is a common

parameter for the encryption and the decryption algorithms

This secret key has a symmetric capability

kk

E Dm c m

kG1k

The secrecy of the key k guarantees the secrecy of communications

but requires such a common secret key!

How can we establish such a common secret key?

Or, how to avoid it?
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Asymmetric Encryption: Intuition [Diffie-Hellman 1976]

Secrecy

• The recipient only should be able to open the message

• No requirement about the sender

Why would the sender need a secret key to encrypt a message?

Alice

Bob

The treasure
is under 

…/...
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Asymmetric Encryption: Formalism

Public Key Cryptography – Diffie-Hellman (1976)

• Bob’s public key is used by Alice as a parameter to encrypt a

message to Bob

• Bob’s private key is used by Bob as a parameter to decrypt

ciphertexts

Asymmetric cryptography extends the 2nd principle:

skpk

E Dm c m

(pk,sk)G1k

The secrecy of the private key sk guarantees the secrecy of

communications
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Main Symmetric Primitives

• Encryption:

• block-cipher

• stream-cipher

• Authentication:

• MAC: Message Authentication Codes

• AEAD: Authenticated Encryption (with Associated Data)

• Integrity:

• hash functions
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Hash Functions: Collision-Resistance

Cryptographic Hash Function

A hash function generates a (constant-length) output from any input

To be used as a fingerprint of the file input

Collision: m 6= m′ such that H(m) = H(m′).

Properties of Hash Functions

• One-wayness (First Preimage):

given h = H(x), hard to find x ′ such that h = H(x ′)

• Second Preimage:

given x , h = H(x), hard to find x ′ 6= x such that h = H(x ′)

• Collision-Resistance: hard to find x 6= x ′ such that H(x) = H(x ′)

Generic attack: birthday paradox against collision-resistance

(the output must be at least 256-bit long)
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Integer Factoring [Lenstra-Verheul 2000]

Integer Factoring

• Given n = pq

• Find p and q

Year Required Complexity n bitlength

before 2000 64 768

before 2010 80 1024

before 2020 112 2048

before 2030 128 3072

192 7680

256 15360

Note that the reduction may be lossy: extra bits are then required
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Integer Factoring Records

Integer Factoring

• Given n = pq

• Find p and q

Digits Date Details

129 April 1994 Quadratic Sieve

130 April 1996 Algebraic Sieve

140 February 1999

155 August 1999 512 bits

160 April 2003

200 May 2005

232 December 2009 768 bits
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Integer Factoring Variants

RSA [Rivest-Shamir-Adleman 1978]

• Given n = pq, e and y ∈ Z?
n

• Find x such that y = xe mod n

Note that this problem is hard without the prime factors p and q, but

becomes easy with them: if d = e−1 mod ϕ(n), then x = yd mod n

Flexible RSA [Baric-Pfitzmann and Fujisaki-Okamoto 1997]

• Given n = pq and y ∈ Z?
n

• Find x and e > 1 such that y = xe mod n

Both problems are assumed as hard as integer factoring:

the prime factors are a trapdoor to find solutions
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Discrete Logarithm

Discrete Logarithm Problem

• Given G = 〈g〉 a cyclic group of order q, and y ∈ G

• Find x such that y = g x

Possible groups: G ∈ (Z?
p,×), or an elliptic curve

(Computational) Diffie Hellman Problem

• Given G = 〈g〉 a cyclic group of order q, and X = g x , Y = g y

• Find Z = g xy

The knowledge of x or y helps to solve this problem (trapdoor)
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Decisional Problem

(Decisional) Diffie Hellman Problem

• Given G = 〈g〉 a cyclic group of order q, and X = g x , Y = g y ,

as well as a candidate Z ∈ G

• Decide whether Z = g xy

The adversary is called a distinguisher (outputs 1 bit).

A good distinguisher should behave in significantly different manners

according to the input distribution:

Advddh
G (A) = Pr[A(X ,Y ,Z ) = 1|Z = g xy ]

− Pr[A(X ,Y ,Z ) = 1|Z R← G]
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Public-Key Encryption

Goal: Privacy/Secrecy of the plaintext
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RSA Encryption [Rivest-Shamir-Adleman 1978]

RSA Encryption

The RSA encryption scheme RSA is defined by

• K(1k): p and q two random k-bit prime integers,

and an exponent e (possibly fixed, or not):

sk ← d = e−1 mod ϕ(n) and pk ← (n, e)

• Epk(m): the ciphertext is c = me mod n

• Dsk(c): the plaintext is m = cd mod n
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ElGamal Encryption [ElGamal 1985]

ElGamal Encryption

The ElGamal encryption scheme EG is defined,

in a group G = 〈g〉 of order q

• K(G, g , q): x
R← Zq, and sk ← x and pk ← y = g x

• Epk(m): r
R← Zq, c1 ← g r and c2 ← y r ×m = pk r ×m.

Then, the ciphertext is c = (c1, c2)

• Dsk(c) outputs c2/c
x
1 = c2/c

sk
1
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Signature

Goal: Authentication of the sender
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RSA Signature [Rivest-Shamir-Adleman 1978]

RSA Signature

The RSA signature scheme RSA is defined by

• K(1k): p and q two random k-bit prime integers,

and an exponent v (possibly fixed, or not):

sk ← s = v−1 mod ϕ(n) and pk ← (n, v)

• Ssk(m): the signature is σ = ms mod n

• Vpk(m, σ) checks whether m = σv mod n
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