Computational Security for Cryptography

David Pointcheval

October 13, 2009

Abstract

Since the appearance of public-key cryptography in the Diffie-Hellman seminal paper, many
schemes have been proposed, but many have been broken. Indeed, for a long time, the simple fact
that a cryptographic algorithm had withstood cryptanalytic attacks for several years was considered
as a kind of validation. But some schemes took a long time before being widely studied, and maybe
thereafter being broken.

A much more convincing line of research has tried to provide “provable” security for crypto-
graphic protocols, in a complexity theory sense: if one can break the cryptographic protocol, one
can efficiently solve the underlying problem. Unfortunately, this initially was a purely theoretical
work: very few practical schemes could be proven in this so-called “standard model” because such a
security level rarely meets with efficiency. Ten years ago, Bellare and Rogaway proposed a trade-off
to achieve some kind of validation of efficient schemes, by identifying some concrete cryptographic
objects with ideal random ones. The most famous identification appeared in the so-called “random-
oracle model”. More recently, another direction has been taken to prove the security of efficient
schemes in the standard model (without any ideal assumption) by using stronger computational
assumptions.

In these lectures, we focus on practical asymmetric protocols together with their “reductionist”
security proofs. We cover the two main goals that public-key cryptography is devoted to solve:
authentication with digital signatures, and confidentiality with public-key encryption schemes.

1 Introduction

Since the beginning of public-key cryptography, with the seminal Diffie-Hellman paper [25], many suit-
able algorithmic problems for cryptography have been proposed and many cryptographic schemes have
been designed, together with more or less heuristic proofs of their security relative to the intractability
of the above problems. However, most of those schemes have thereafter been broken.

The simple fact that a cryptographic algorithm withstood cryptanalytic attacks for several years
has often been considered as a kind of validation procedure, but some schemes take a long time before
being broken. An example is the Chor-Rivest cryptosystem [21, 48], based on the knapsack problem,
which took more than 10 years to be totally broken [86], whereas before this attack it was believed to
be strongly secure. As a consequence, the lack of attacks at some time should never be considered as
a security validation of the proposal.

1.1 Provable Security

A completely different paradigm is provided by the concept of “provable” security. A significant line
of research has tried to provide proofs in the framework of complexity theory (a.k.a. “reductionist”
security proofs [4]): the proofs provide reductions from a well-studied problem (RSA or the discrete
logarithm) to an attack against a cryptographic protocol.

At the beginning, people just tried to define the security notions required by actual cryptographic
schemes, and then to design protocols which achieve these notions. The techniques were directly
derived from the complexity theory, providing polynomial reductions. However, their aim was essen-
tially theoretical. They were indeed trying to minimize the required assumptions on the primitives
(one-way functions or permutations, possibly trapdoor, etc) [37, 35, 52, 71| without considering prac-
ticality. Therefore, they just needed to design a scheme with polynomial algorithms, and to exhibit

polynomial reductions from the basic assumption on the primitive into an attack of the security no-
tion, in an asymptotic way. However, such a result has no practical impact on actual security. Indeed,
even with a polynomial reduction, one may be able to break the cryptographic protocol within a few
hours, whereas the reduction just leads to an algorithm against the underlying problem which requires
many years. Therefore, those reductions only prove the security when very huge (and thus maybe
unpractical) parameters are in use, under the assumption that no polynomial time algorithm exists
to solve the underlying problem.

1.2 Exact Security and Practical Security

For a few years, more efficient reductions have been expected, under the denominations of either
“exact security” [12] or “concrete security” [58], which provide more practical security results. The
perfect situation is reached when one manages to prove that, from an attack, one can describe an
algorithm against the underlying problem, with almost the same success probability within almost the
same amount of time. We have then achieved “practical security”.

Unfortunately, in many cases, even just provable security is at the cost of an important loss in terms
of efficiency for the cryptographic protocol. Thus some models have been proposed, trying to deal
with the security of efficient schemes: some concrete objects are identified with ideal (or black-box)
ones.

For example, it is by now usual to identify hash functions with ideal random functions, in the
so-called “random-oracle model”, informally introduced by Fiat and Shamir [28], and formalized by
Bellare and Rogaway [10]. Similarly, block ciphers are identified with families of truly random permu-
tations in the “ideal cipher model” [9]. A few years ago, another kind of idealization was introduced
in cryptography, the black-box group [53, 80|, where the group operation, in any algebraic group, is
defined by a black-box: a new element necessarily comes from the addition (or the subtraction) of two
already known elements. It is by now called the “generic model”. Some more recent works [77, 18]
even require several ideal models together to provide some new validations.

1.3 Outline of the Notes

In the next section, we explain and motivate more about exact security proofs, and we introduce the
notion of the weaker security analyses, the security arguments (in an ideal model, and namely the
random-oracle model). Then, we review the formalism of the most important asymmetric primitives:
signatures and public-key encryption schemes. For both, we provide some examples, with some security
analyses in the “reductionist” sense.

1.4 Related Work

These notes present a survey, based on several published papers, from the author, with often several
co-authors: about signature [67, 69, 68, 17, 84|, encryption [7, 3, 62, 59, 32, 33| and provably secure
constructions [61, 63, 65, 64, 66]. Many other papers are also cited and rephrased, which present
efficient provably secure constructions. Among the bibliography list presented at the end, we would
like to insist on [10, 11, 12, 22, 82, 83]. We thus refer the reader to the original papers for more details.

2 Security Proofs and Security Arguments

2.1 Computational Assumptions

In both symmetric and asymmetric scenarios, many security notions can not be unconditionally guar-
anteed (whatever the computational power of the adversary). Therefore, security generally relies on
a computational assumption: the existence of one-way functions, or permutations, possibly trapdoor.
A one-way function is a function f which anyone can easily compute, but given y = f(x) it is com-
putationally intractable to recover x (or any pre-image of y). A one-way permutation is a bijective
one-way function. For encryption, one would like the inversion to be possible for the recipient only: a

trapdoor one-way permutation is a one-way permutation for which a secret information (the trapdoor)
helps to invert the function on any point.

Given such objects, and thus computational assumptions about the intractability of the inversion
without possible trapdoors, we would like that security could be achieved without extra assumptions.
The only way to formally prove such a fact is by showing that an attacker against the cryptographic
protocol can be used as a sub-part in an algorithm that can break the basic computational assumption.

A partial order therefore exists between computational assumptions (and intractable problems
too): if a problem P is more difficult than the problem P’ (P’ reduces to P, see below) then the
assumption of the intractability of the problem P is weaker than the assumption of the intractability
of the problem P’. The weaker the required assumption is, the more secure the cryptographic scheme
is.

2.2 “Reductionist” Security Proofs

In complexity theory, such an algorithm which uses the attacker as a sub-part in a global algorithm
is called a reduction. If this reduction is polynomial, we can say that the attack of the cryptographic
protocol is at least as hard as inverting the function: if one has a polynomial algorithm to solve the
latter problem, one can polynomially solve the former one. In the complexity theory framework, a
polynomial algorithm is the formalization of efficiency.

Therefore, in order to prove the security of a cryptographic protocol, one first needs to make
precise the security notion one wants the protocol to achieve: which adversary’s goal one wants to
be intractable, under which kind of attack. At the beginning of the 1980’s, such security notions
have been defined for encryption [35] and signature [37, 38], and provably secure schemes have been
suggested. However, those proofs had a theoretical impact only, because both the proposed schemes
and the reductions were completely unpractical, yet polynomial. The reductions were indeed efficient
(i.e. polynomial), and thus a polynomial attack against a cryptosystem would have led to a polynomial
algorithm that broke the computational assumption. But the latter algorithm, even polynomial, may
require hundreds of years to solve a small instance.

For example, let us consider a cryptographic protocol based on integer factoring. Let us assume
that one provides a polynomial reduction from the factorization into an attack. But such a reduction
may just lead to a factorization algorithm with a complexity in 22°k!'°, where k is the bit-size of the
integer to factor. This indeed contradicts the assumption that no-polynomial algorithm exists for
factoring. However, on a 1024-bit number (k = 21°), it provides an algorithm that requires 2!?° basic
operations, which is much more than the complexity of the best current algorithm, such as NFS [46],
which needs less than 219 (see Section 4). Therefore, such a reduction would just be meaningful for
numbers above 4096 bits (since with k = 212, 2145 < 2149 where 249 is the estimate effort for factoring
a 4096-bit integer with the best algorithm.) Concrete examples are given later.

2.3 Practical Security

Moreover, most of the proposed schemes were unpractical as well. Indeed, the protocols were polyno-
mial in time and memory, but not efficient enough for practical implementation.

For a few years, people have tried to provide both practical schemes, with practical reductions and
exact complexity, which prove the security for realistic parameters, under a well-defined assumption:
exact reduction in the standard model (which means in the complexity-theoretic framework). For
example, under the assumption that a 1024-bit integer cannot be factored with less than 270 basic
operations, the cryptographic protocol cannot be broken with less than 260 basic operations. We will
see such an example later.

Unfortunately, as already remarked, practical or even just efficient reductions in the standard model
can rarely be conjugated with practical schemes. Therefore, one needs to make some hypotheses on
the adversary: the attack is generic, independent of the actual implementation of some objects

e hash functions, in the “random-oracle model”;

e symmetric block ciphers, in the “ideal-cipher model”;

e algebraic groups, in the “generic model”.

The “random-oracle model” was the first to be introduced in the cryptographic community [28, 10],
and has already been widely accepted. By the way, flaws have been shown in the “generic model” [84]
on practical schemes, and the “random-oracle model” is not equivalent to the standard one either.
Several gaps have already been exhibited [19, 54, 6]. However, all the counter-examples in the random-
oracle model are pathological, counter-intuitive and not natural. Therefore, in the sequel, we focus on
security analyses in this model, for real and natural constructions. A security proof in the random-
oracle model will at least give a strong argument in favor of the security of the scheme. Furthermore,
proofs in the random-oracle model under a weak computational assumption may be of more pratical
interest than proofs in the standard model under a strong computational assumption.

2.4 The Random-Oracle Model

As said above, efficiency rarely meets with provable security. More precisely, none of the most efficient
schemes in their category have been proven secure in the standard model. However, some of them
admit security validations under ideal assumptions: the random-oracle model is the most widely
accepted one.

Many cryptographic schemes use a hash function H (such as MD5 [72] or the American standards
SHA-1 [56], SHA-256, SHA-384 and SHA-512 [57]). This use of hash functions was originally motivated
by the wish to sign long messages with a single short signature. In order to achieve non-repudiation,
a minimal requirement on the hash function is the impossibility for the signer to find two different
messages providing the same hash value. This property is called collision-resistance.

It was later realized that hash functions were an essential ingredient for the security of, first,
signature schemes, and then of most cryptographic schemes. In order to obtain security arguments,
while keeping the efficiency of the designs that use hash functions, a few authors suggested using the
hypothesis that H behaves like a random function. First, Fiat and Shamir [28] applied it heuristically
to provide a signature scheme “as secure as” factorization. Then, Bellare and Rogaway [10, 11, 12]
formalized this concept for cryptography, and namely for signature and public-key encryption.

In this model, the so-called “random-oracle model”, the hash function can be formalized by an
oracle which produces a truly random value for each new query. Of course, if the same query is asked
twice, identical answers are obtained. This is precisely the context of relativized complexity theory
with “oracles,” hence the name.

About this model, no one has ever been able to provide a convincing contradiction to its practical
validity, but just theoretical counter-examples on either clearly wrong designs for practical purpose [19],
or artificial security notions [54, 6]. Therefore, this model has been strongly accepted by the com-
munity, and is considered as a good one, in which security analyses give a good taste of the actual
security level. Even if it does not provide a formal proof of security (as in the standard model, without
any ideal assumption), it is argued that proofs in this model ensure security of the overall design of
the scheme provided that the hash function has no weakness, hence the name “security arguments”.

This model can also be seen as a restriction on the adversary’s capabilities. Indeed, it simply
means that the attack is generic without considering any particular instantiation of the hash functions.
Therefore, an actual attack would necessarily use a weakness or a specific feature of the hash function.
The replacement of the hash function by another one would rule out this attack.

On the other hand, assuming the tamper-resistance of some devices, such as smart cards, the
random-oracle model is equivalent to the standard model, which simply requires the existence of
pseudo-random functions [34, 51].

As a consequence, almost all the standards bodies by now require designs provably secure, at least
in that model, thanks to the security validation of very efficient protocols.

2.5 The General Framework

Before going into more details of this kind of proofs, we would like to insist on the fact that in the
current general framework, we give the adversary complete access to the cryptographic primitive, but
as a black-box. It can ask any query of its choice, and the box always answers correctly, in constant

time. Such a model does not consider timing attacks [44], where the adversary tries to extract the
secrets from the computational time. Some other attacks analyze the electrical energy required by a
computation to get the secrets [45], or to make the primitive fail on some computation [13, 16]. They
are not captured either by this model.

3 A First Formalism

In this section we describe more formally what a signature scheme and an encryption scheme are.
Moreover, we make precise the security notions one wants the schemes to achieve. This is the first
imperative step towards provable security.

3.1 Digital Signature Schemes

Digital signature schemes are the electronic version of handwritten signatures for digital documents: a
user’s signature on a message m is a string which depends on m, on public and secret data specific to
the user and —possibly— on randomly chosen data, in such a way that anyone can check the validity
of the signature by using public data only. The user’s public data are called the public key, whereas
his secret data are called the private key. The intuitive security notion would be the impossibility to
forge user’s signatures without the knowledge of his private key. In this section, we give a more precise
definition of signature schemes and of the possible attacks against them (most of those definitions are
based on [38]).

3.1.1 Definitions

A signature scheme S = (K, S, V) is defined by the three following algorithms:

e The key generation algorithm K. On input 1*, which is a formal notation for a machine with
running time polynomial in k (1* is indeed k in basis 1), the algorithm K produces a pair
(pk, sk) of matching public and private keys. Algorithm K is probabilistic. The input k is called
the security parameter. The sizes of the keys, or of any problem involved in the cryptographic
scheme, will depend on it, in order to achieve an appropriate security level (the expected minimal
time complexity of any attack).

e The signing algorithm S. Given a message m and a pair of matching public and private
keys (pk,sk), S produces a signature o. The signing algorithm might be probabilistic.

e The werification algorithm V. Given a signature o, a message m and a public key pk, V tests
whether o is a valid signature of m with respect to pk. In general, the verification algorithm
need not be probabilistic.

3.1.2 Forgeries and Attacks

In this subsection, we formalize some security notions which capture the main practical situations.
On the one hand, the goals of the adversary may be various:

e Disclosing the private key of the signer. It is the most serious attack. This attack is termed total

break.

e Constructing an efficient algorithm which is able to sign messages with good probability of
success. This is called universal forgery.

e Providing a new message-signature pair. This is called existential forgery. The corresponding
security level is called existential unforgeability (EUF).

In many cases the latter forgery, the existential forgery, is not dangerous because the output message
is likely to be meaningless. Nevertheless, a signature scheme which is existentially forgeable does not
guarantee by itself the identity of the signer. For example, it cannot be used to certify randomly looking

elements, such as keys. Furthermore, it cannot formally guarantee the non-repudiation property, since
anyone may be able to produce a message with a valid signature.

On the other hand, various means can be made available to the adversary, helping it into its
forgery. We focus on two specific kinds of attacks against signature schemes: the no-message attacks
and the known-message attacks (KMA). In the former scenario, the attacker only knows the public
key of the signer. In the latter, the attacker has access to a list of valid message-signature pairs.
According to the way this list was created, we usually distinguish many subclasses, but the strongest
is definitely the adaptive chosen-message attack (CMA), where the attacker can ask the signer to sign
any message of its choice, in an adaptive way: it can adapt its queries according to previous answers.

When signature generation is not deterministic, there may be several signatures corresponding
to a given message. And then, some notions defined above may become ambiguous [84]. First, in
known-message attacks, an existential forgery becomes the ability to forge a fresh message/signature
pair that has not been obtained during the attack. There is a subtle point here, related to the context
where several signatures may correspond to a given message. We actually adopt the stronger rule
that the attacker needs to forge the signature of message, whose signature was not queried. The
more liberal rule, which makes the attacker successful when it outputs a second signature of a given
message different from a previously obtained signature of the same message, is called malleability,
while the corresponding security level is called non-malleability (NM). Similarly, in adaptive chosen-
message attacks, the adversary may ask several times the same message, and each new answer gives it
some information. A slightly weaker security model, by now called single-occurrence adaptive chosen-
message attack (SO-CMA), allows the adversary at most one signature query for each message. In
other words the adversary cannot submit the same message twice for signature.

When one designs a signature scheme, one wants to computationally rule out at least existential
forgeries, or even achieve non-malleability, under adaptive chosen-message attacks. More formally,
one wants that the success probability of any adversary A with a reasonable time is small, where

Succ%”f(A) =Pr [(pk,sk) «— K(1%), (m, o) «— AS*(pk) : V(pk,m,0) = 1])

We remark that since the adversary is allowed to play an adaptive chosen-message attack, the
signing algorithm is made available, without any restriction, hence the oracle notation ASk. Of
course, in its answer, there is the natural restriction that, at least, the returned message-signature has
not been obtained from the signing oracle Sg itself (non-malleability) or even the output message has
not been queried (existential unforgeability).

3.2 Public-Key Encryption

The aim of a public-key encryption scheme is to allow anybody who knows the public key of Alice to
send her a message that she will be the only one able to recover, granted her private key.

3.2.1 Definitions

A public-key encryption scheme S = (K, &, D) is defined by the three following algorithms:

e The key generation algorithm K. On input 1¥ where k is the security parameter, the algorithm X
produces a pair (pk,sk) of matching public and private keys. Algorithm K is probabilistic.

e The encryption algorithm E£. Given a message m and a public key pk, £ produces a ciphertext ¢
of m. This algorithm may be probabilistic. In the latter case, we write Ey(m;r) where 7 is the
random input to &.

e The decryption algorithm D. Given a ciphertext ¢ and the private key sk, Dgk(c) gives back the
plaintext m. This algorithm is necessarily deterministic.

3.2.2 Security Notions

As for signature schemes, the goals of the adversary may be various. The first common security
notion that one would like for an encryption scheme is one-wayness (OW): with just public data, an
attacker cannot get back the whole plaintext of a given ciphertext. More formally, this means that
for any adversary A, its success in inverting £ without the private key should be negligible over the
probability space M x 2, where M is the message space and € is the space of the random coins 7 used
for the encryption scheme, and the internal random coins of the adversary:

Succg”(A) = 75,1;[(pk’5k) — IC(lk) s A(pk, Epk(m; 1)) = m)].

However, many applications require more from an encryption scheme, namely the semantic secu-
rity (IND) [35], a.k.a. polynomial security/indistinguishability of encryptions: if the attacker has some
information about the plaintext, for example that it is either “yes” or “no” to a crucial query, any
adversary should not learn more with the view of the ciphertext. This security notion requires com-
putational impossibility to distinguish between two messages, chosen by the adversary, which one has
been encrypted, with a probability significantly better than one half: its advantage Advg‘d (A), formally
defined as

2 % Pr (pk, Sk) — K(lk)7 (m07 mi, 8) <_ Al(pk)a

-1
br | ¢ = Epk(mp;r) : Aa(mg,my,s,¢) =b ’

where the adversary A is seen as a 2-stage attacker (Ap,.A3), should be negligible.

A later notion is non-malleability (NM) [26]. To break it, the adversary, given a ciphertext, tries
to produce a new ciphertext such that the plaintexts are meaningfully related. This notion is stronger
than the above semantic security, but it is equivalent to the latter in the most interesting scenario [7]
(the CCA attacks, see below). Therefore, we will just focus on one-wayness and semantic security.

On the other hand, an attacker can play many kinds of attacks, according to the available infor-
mation: since we are considering asymmetric encryption, the adversary can encrypt any plaintext of
its choice, granted the public key, hence the chosen-plaintext attack (CPA). It may furthermore have
access to additional information, modeled by partial or full access to some oracles:

e A validity-checking oracle which, on input a ciphertext ¢, answers whether it is a valid ciphertext
or not. Such a weak oracle, involved in the so-called reaction attacks [39] or Validity-Checking
Attack (VCA), had been enough to break some famous encryption schemes [15, 42].

e A plaintext-checking oracle which, on input a pair (m, ¢), answers whether ¢ encrypts the message
m. This attack has been termed the Plaintext-Checking Attack (PCA) [59].

e The decryption oracle itself, which on any ciphertext answers the corresponding plaintext. There
is of course the natural restriction not to ask the challenge ciphertext to that oracle.

For all these oracles, access may be restricted as soon as the challenge ciphertext is known, the attack
is thus said non-adaptive since oracle queries cannot depend on the challenge ciphertext, while they
depend on previous answers. On the opposite, access can be unlimited and attacks are thus called
adaptive attacks (w.r.t. the challenge ciphertext). This distinction has been widely used for the chosen-
ciphertext attacks, for historical reasons: the non-adaptive chosen-ciphertext attacks (CCAL) [52],
a.k.a. lunchtime attacks, and adaptive chosen-ciphertext attacks (CCA2) [71]. The latter scenario
which allows adaptively chosen ciphertexts as queries to the decryption oracle is definitely the strongest
attack, and will be named the chosen-ciphertext attack (CCA).

Furthermore, multi-user scenarios can be considered where related messages are encrypted under
different keys to be sent to many people (e.g. broadcast of encrypted data). This may provide many
useful data for an adversary. For example, RSA is well-known to be weak in such a scenario [40, 79],
namely with a small encryption exponent, because of the Chinese Remainders Theorem. But once
again, semantic security has been shown to be the appropriate security level, since it automatically
extends to the multi-user setting: if an encryption scheme is semantically secure in the classical sense,
it is also semantically secure in multi-user scenarios, against both passive [3] and active [5] adversaries.

NM-CPA NM-CCA
IND-CPA —= IND-CCA
OW-CPA = OW-VCA < OW-CCA
OW — One-Wayness CPA — Chosen-Plaintext Attack
IND — Indistinguishability VCA - Validity-Checking Attack
(a.k.a. Semantic Security) (a.k.a. Reaction Attack)
NM — Non-Malleability CCA — Chosen-Ciphertext Attack

Figure 1: Relations between the Security Notions for Asymmetric Encryption

A general study of these security notions and attacks was conducted in [7], we therefore refer the
reader to this paper for more details. See also the summary diagram on Figure 1. However, we can
just review the main scenarios we will consider in the following:

e one-wayness under chosen-plaintext attacks (OW-CPA) — where the adversary wants to recover
the whole plaintext from just the ciphertext and the public key. This is the weakest scenario.

e semantic security under adaptive chosen-ciphertext attacks (IND-CCA) — where the adversary
just wants to distinguish which plaintext, between two messages of its choice, has been encrypted,
while it can ask any query it wants to a decryption oracle (except the challenge ciphertext). This
is the strongest scenario one can define for encryption (still in our general framework.) Thus,
this is our goal when we design a cryptosystem.

4 The Computational Assumptions

There are two major families in number theory-based public-key cryptography:
1. the schemes based on integer factoring, and on the RSA problem [73];

2. the schemes based on the discrete logarithm problem, and on the Diffie-Hellman problems [25],
in any “suitable” group. The first groups in use were cyclic subgroups of Zj, the multiplicative
group of the modular quotient ring Z, = Z/pZ. But many schemes are now converted on cyclic
subgroups of elliptic curves, or of the Jacobian of hyper-elliptic curves, with namely the so-called
ECDSA [1], the US Digital Signature Standard [55] on elliptic curves.

4.1 Integer Factoring and the RSA Problem

The most famous intractable problem is factorization of integers: while it is easy to multiply two
prime integers p and g to get the product n = p - ¢, it is not simple to decompose n into its prime
factors p and q.

Currently, the most efficient algorithm is based on sieving on number fields. The Number Field
Sieve (NFS) method [46] has a super-polynomial, but sub-exponential, complexity in O(exp((1.923 4+
o(1))(Inn)'/3(Inlnn)2/3)). Tt has been used to establish the main record, in august 1999, by factoring
a 155-digit integer (512 bits), product of two 78-digit primes [20]. The factored number, called RSA-
155, was taken from the “RSA Challenge List”, which is used as a yardstick for the security of the

RSA cryptosystem (see later). The latter is used extensively in hardware and software to protect
electronic data traffic such as in the SSL (Security Sockets Layer) Handshake Protocol.

This record is very important since 155 digits correspond to 512 bits. And this is the size which is
in use in almost all the implementations of the RSA cryptosystem (namely for actual implementations
of SSL on the Internet).

RSA-155 =
109417386415705274218097073220403576120\
037329454492059909138421314763499842889\
347847179972578912673324976257528997818\
33797076537244027146743531593354333897

= 102639592829741105772054196573991675900\
716567808038066803341933521790711307779

* 106603488380168454820927220360012878679\
207958575989291522270608237193062808643

More recently, 576 and 640 bits have been factored, and the current record is

RSA-200 =
2799783391122132787082946763872260162107\
0446786955428537560009929326128400107609\
3456710529553608560618223519109513657886\
3710595448200657677509858055761357909873\
4950144178863178946295187237869221823983

= 3532461934402770121272604978198464368671\
1974001976250236493034687761212536794232\
00058547956528088349

* 7925869954478333033347085841480059687737\
9758573642199607343303414557678728181521\
35381409304740185467

It corresponds to a 664-bit integer.

Unfortunately, integer multiplication just provides a one-way function, without any possibility
to invert the process. No information is known to make factoring easier. However, some algebraic
structures are based on the factorization of an integer n, where some computations are difficult without
the factorization of n, but easy with it: the finite quotient ring Z,, which is isomorphic to the product
ring Zy X Zgq if n=1p-q.

For example, the e-th power of any element x can be easily computed using the square-and-multiply
method. It consists in using the binary representation of the exponent e = exer_1 ...eg, computing
the successive 2 powers of x (mQO, le, e ka) and eventually to multiply altogether the ones for
which e; = 1. However, to compute e-th roots, it seems that one requires to know an integer d such
that ed = 1 mod ¢(n), where ¢(n) is the totient Euler function which denotes the cardinality of the
multiplicative subgroup Z% of Z,. In the particular case where n = pq, ¢(n) = (p — 1)(¢ — 1). And
therefore, ed — 1 is a multiple of ¢(n) which is equivalent to the knowledge of the factorization of
n [50]. In 1978, Rivest, Shamir and Adleman [73] defined the following problem:

The RSA Problem. Let n = pg be the product of two large primes of similar size and e
an integer relatively prime to ¢(n). For a given y € Z*, compute the modular e-th root z
of y (i.e. x € Z}, such that ¢ = y mod n.)

The Euler function can be easily computed from the factorization of n, since for any n =[] p}",

1
n)=n X 1-——.
o) H< Pi)
Therefore, with the factorization of n (the trapdoor), the RSA problem can be easily solved. But

nobody knows whether the factorization is required, and how to do without it either:

The RSA Assumption. For any product of two primes, n = pq, large enough, the RSA
problem is intractable (presumably as hard as the factorization of n).

4.2 The Discrete Logarithm and the Diffie-Hellman Problems
The setting is quite general: one is given

e a cyclic group G of prime order ¢ (such as the finite group (Zy, +), a subgroup of (Zy, x) for
qlp — 1, of an elliptic curve, etc);

e a generator g (i.e. G = (g)).

We note in bold (such as g) any element of the group G, to distinguish it from a scalar z € Z,. But
such a g could be an element in Z} or a point of an elliptic curve, according to the setting. Above, we
talked about a “suitable” group G. In such a group, some of the following problems have to be hard
to solve (using the additive notation).

e the Discrete Logarithm problem (DL): given y € G, compute = € Z, such that y =z - g =
g+ ... +g (v times), then one writes z = logg y.

e the Computational Diffie-Hellman problem (CDH): given two elements in the group G,
a=a-gand b=">0-g, compute c = ab-g. Then one writes c = DH(a,b).

e the Decisional Diffie-Hellman Problem (DDH): given three elements in the group G, a = a-g,
b=b-gand c = c¢- g, decide whether c = DH(a, b) (or equivalently, whether ¢ = ab mod q).

It is clear that they are sorted from the strongest problem to the weakest one. Furthermore, one
may remark that they all are “random self-reducible”, which means that any instance can be reduced
to a uniformly distributed instance: for example, given a specific element y for which one wants to
compute the discrete logarithm z in basis g, one can choose a random z € Z,, and compute z = z - y.
The element z is therefore uniformly distributed in the group, and the discrete logarithm a = log, z
leads to x = a/z mod ¢q. As a consequence, there are only average complexity cases. Thus, the ability
to solve a problem for a non-negligible fraction of instances in polynomial time is equivalent to solve
any instance in expected polynomial time.

A new variant of the Diffie-Hellman problem has more recently been defined by Tatsuaki Okamoto
and the author [60], the so-called Gap Diffie-Hellman Problem (GDH), where one wants to solve the
CDH problem with an access to a DDH oracle. One may easily remark the following properties
about above problems: DL > CDH > {DDH, GDH}, where A > B means that the problem A is at
least as hard as the problem B. However, in practice, no one knows how to solve any of them without
breaking the DL problem itself.

Currently, the most efficient algorithms to solve the latter problem depend on the underlying
group. For generic groups (for which no specific algebraic property can be used), algorithms have a
complexity in the square root of ¢, the order of the generator g [78, 70]. For example, on well-chosen
elliptic curves only these algorithms can be used. The last record was established in April 2001 on
the curve defined by the equation y? + zy = 23 4+ 22 + 1 over the finite field with 2!%% elements.

However, for subgroups of Zy, some better techniques can be applied. The best algorithm is based
on sieving on number fields, as for the factorization. The General Number Field Sieve method [41]
has a super-polynomial, but sub-exponential, complexity in O(exp((1.923 4 o(1))(In p)*/3(In Inp)?/3)).
It was used to establish the last record, in April 2001 as well, by computing discrete logarithms in Z7,
for a 120-digit prime p. Therefore, 512-bit primes are still safe enough, as far as the generic attacks
cannot be used (the generator must be of large order ¢, at least a 160-bit prime)

For signature applications, one only requires groups where the DL problem is hard, whereas
encryption needs trapdoor problems and therefore requires groups where some of the DH’s problems
are also hard to solve.

5 Digital Signature Schemes

Until 1996, no practical DL-based cryptographic scheme has ever been formally studied, but heuris-
tically only. And surprisingly, at the Eurocrypt '96 conference, two opposite studies were conducted

10

Initialization — (p, g)
g a generator of Zy,

where p is a large prime

— (p,9)
K: Key Generation — (y,)
o1

public key y = ¢* mod p
— (y, 7)
S: Signature of m — (r,s)
K is randomly chosen in Z;_l
r=gfmodp s=(m—ar)/Kmodp—1
— (1, s) is a signature of m

private key =z € 7Z

V: Verification of (m,r, s)

check whether g™ Z y"r® mod p
— Yes/No

Figure 2: The El Gamal Signature Scheme.

on the El Gamal signature scheme [27], the first DL-based signature scheme designed in 1985 and
depicted on Figure 2.

Whereas existential forgeries were known for that scheme, it was believed to prevent universal
forgeries. The first analysis, from Daniel Bleichenbacher [14], showed such a universal forgery when
the generator g is not properly chosen. The second one, from Jacques Stern and the author [67], proved
the security against existential forgeries under adaptive chosen-message attacks of a slight variant with
a randomly chosen generator g. The latter variant simply replaces the message m by H(m,r) in the
computation, while one uses a hash function H that is assumed to behave like a random oracle. It is
amagzing to remark that the Bleichenbacher’s attack also applies on our variant. Therefore, depending
on the initialization, our variant could be a very strong signature scheme or become a very weak one!

As a consequence, a proof has to be performed in details, with precise assumptions and achieve-
ments. Furthermore, the conclusions have to be strictly followed by developers, otherwise the concrete
implementation of a secure scheme can be very weak.

5.1 Provable Security

The first secure signature scheme was proposed by Goldwasser et al. [37] in 1984. It used the notion
of claw-free permutations. A pair of permutations (f,g) is said claw-free if it is computationally
impossible to find a claw (z,y), which satisfies f(z) = g(y). Their proposal provided polynomial
algorithms with a polynomial reduction between the research of a claw and an existential forgery
under an adaptive chosen-message attack. However, the scheme was totally unpractical. What about
practical schemes?

5.1.1 The RSA Signature Scheme

Two years after the Diffie-Hellman paper [25], Rivest, Shamir and Adleman [73] proposed the first
signature scheme based on the “trapdoor one-way permutation paradigm”, using the RSA function:
the generation algorithm produces a large composite number N = pgq, a public key e, and a private
key d such that e - d = 1 mod ¢(N). The signature of a message m, encoded as an element in Z%;, is its
e-th root, 0 = m*/¢ = m% mod N. The verification algorithm simply checks whether m = o mod N.
However, the RSA scheme is not secure by itself since it is subject to existential forgery: it is easy
to create a valid message-signature pair, without any help of the signer, first randomly choosing a
certificate o and getting the signed message m from the public verification relation, m = ¢ mod N.

11

5.1.2 The Schnorr Signature Scheme

In 1986 a new paradigm for signature schemes was introduced. It is derived from fair zero-knowledge
identification protocols involving a prover and a verifier [36], and uses hash functions in order to create
a kind of virtual verifier. The first application was derived from the Fiat—Shamir [28] zero-knowledge
identification protocol, based on the hardness of extracting square roots, with a brief outline of its
security. Another famous identification scheme [75], together with the signature scheme [76], has been
proposed later by Schnorr, based on that paradigm: the generation algorithm produces two large
primes p and ¢, such that ¢ > 2F, where k is the security parameter, and ¢|p — 1, as well as an
element g in Zjy of order g. It also creates a pair of keys, the private key x € Z7 and the public key
y = g~ * mod p The signature of a message m is a triple (r, e, s), where r = ¢% mod p, with a random
K € Z, the “challenge” e = H(m,r) and s = K + ex mod ¢. The latter satisfies = ¢°y® mod p with
e = H(m,r), which is checked by the verification algorithm.

The security results for that paradigm have been considered as folklore for a long time but without
any formal validation.

5.2 DL-Based Signatures

In our papers [67, 68], with Jacques Stern, we formally proved the above paradigm when H is assumed
to behave like a random oracle. The proof is based on the by now classical oracle replay technique: by
a polynomial replay of the attack with different random oracles (the Q;’s are the queries and the p;’s
are the answers), we allow the attacker to forge signatures that are suitably related. This generic

(mhgl)
A Q ...Qi1Q9; ... Q5 ..

(m7 01, h= Piy 02)

H Pioee Pl

(m7 01, h/ = p;a 0/2)

Figure 3: The Oracle Replay Technique

technique is depicted on Figure 3, where the signature of a message m is a triple (o1, h,09), with
h = H(m,o1) which depends on the message and the first part of the signature, both bound not
to change for the computation of o9, which really relies on the knowledge of the private key. If the
probability of fraud is high enough, then with good probability, the adversary is able to answer to
many distinct outputs from the H function, on the input (m, o).

To be more concrete, let us consider the Schnorr signature scheme, which is presented on Figure 4,
in any “suitable” cyclic group G of prime order g, where at least the Discrete Logarithm problem is
hard. We expect to obtain two signatures (r = 01, h,s = 03) and (v = of, 1/, s’ = 0%) of an identical
message m such that o1 = o}, but h # h/. Thereafter, we can easily extract the discrete logarithm of
the public key:

= s-g + hy N e — (BB
S s ey,

5.2.1 General Tools

First, let us recall the “Splitting Lemma” which will be the main probabilistic tool for the “Forking
Lemma”. It translates the fact that when a subset A is “large” in a product space X x Y, it has many
“large” sections.

Lemma 1 (The Splitting Lemma) Let A C X x Y such that Pr[(x,y) € A] > e. For any o < ¢,
define

B= {(x,y) €EX xY| Pr[(z,y) € A 28—04},
y'ey

then the following statements hold:

12

Initialization (security parameter k) — (G, g, H)
g a generator of any cyclic group (G, +)
of order ¢, with 281 < ¢ < 2F
H a hash function: {0,1}* — Z,
— (G,9,'H)

K: Key Generation — (y,x)

private key z € Zj
publickey y=-z-g
— (v, 7)
S: Signature of m — (r,h,s)
K is randomly chosen in Zj
r=K-g h=H(m,r) s=K-+zhmodygq
— (r, h, s) is a signature of m

V: Verification of (m,r,s)
check whether h = H(m,r)

andr;s-g—kh-y
— Yes/No

Figure 4: The Schnorr Signature Scheme.

(i) Pr[B] > «
(ii) V(x,y) € B,Prycy|(z,y') € A] > ¢ — a.

(iti) Pr[B|A] > a/e.

Proof. In order to prove statement (i), we argue by contradiction, using the notation B for the
complement of B in X x Y. Assume that Pr[B] < a. Then

e < Pr[B]-Pr[A|B]+Pr[B] - Pr[A|B] < a-1+1- (¢ —a) = &.

This implies a contradiction, hence the result.
Statement (i7) is a straightforward consequence of the definition.
We finally turn to the last assertion, using Bayes’ law:

Pr[B|A] = 1-Pr[B|A4]
= 1-Pr[A|B]-Pr[B]/Pr[A] >1— (¢ —a)/e = a/e.

No-Message Attacks. The following Forking Lemma just states that the above oracle replay tech-
nique will often success with any good adversary.

Theorem 1 (The Forking Lemma) Let (K,S,V) be a digital signature scheme with security
parameter k, with a signature as above, of the form (m,o1,h,02), where h = H(m,o01) and o
depends on o1 and h only. Let A be a probabilistic polynomial time Turing machine whose input
only consists of public data and which can ask qp queries to the random oracle, with q; > 0.
We assume that, within the time bound T, A produces, with probability € > 7q, /2%, a valid
signature (m, o1, h, 09). Then, within time T' < 16q,T /e, and with probability e’ > 1/9, a replay
of this machine outputs two valid signatures (m, o1, h,o2) and (m,o1,h',0h) such that h # 1'.

Proof. We are given an adversary A, which is a probabilistic polynomial time Turing machine with
random tape w. During the attack, this machine asks a polynomial number of questions to the random
oracle H. We may assume that these questions are distinct: for instance, A can store questions and
answers in a table. Let Q1,..., Qg be the g, distinct questions and let p = (p1, ..., pg,) be the list of

13

the ¢, answers of H. It is clear that a random choice of ‘H exactly corresponds to a random choice of p.
Then, for a random choice of (w,H), with probability ¢, A outputs a valid signature (m, o1, h,o2).
Since H is a random oracle, it is easy to see that the probability for h to be equal to H(m,o1) is
less than 1/2%, unless it has been asked during the attack. So, it is likely that the question (m, o)
is actually asked during a successful attack. Accordingly, we define Indy(w) to be the index of this
question: (m,o01) = Qg (w) (We let Indy(w) = oo if the question is never asked). We then define
the sets

S = {(w,H)|A™(w) succeeds & Indy(w) # oo},
and S; = {(w,H)|A™(w) succeeds & Indy(w) =i} for i€ {l,...,q}.

We thus call S the set of the successful pairs (w, H).

One should note that the set {S; |7 € {1,...,¢n}} is a partition of S. With those definitions, we
find a lower bound for the probability of success, v = Pr[S] > ¢ — 1/2. Since we did the assumption
that € > 7q;,/2F > 7/2% then v > 6¢/7. Let I be the set consisting of the most likely indices 1,

I={i| Pr[S;|S] >1/2q}.
The following lemma claims that, in case of success, the index lies in I with probability at least 1/2.

Lemma 2

Pr{Indy(w) € I|S] > %
Proof. By definition of the sets S;, Pr[Indy(w) € I|S] =3, ; Pr[S;|S]. This probability is equal to
1-— Zig ; Pr[S;|S]. Since the complement of I contains fewer than ¢ elements, this probability is at
least 1 — g x 1/2q, > 1/2.

We now run the attacker 2/e times with random w and random H. Since v = Pr[S] > 6¢/7, with
probability greater than 1 — (1 — 6/7)%/¢, we get at least one pair (w,) in S. It is easily seen that
this probability is lower bounded by 1 — e~ 1%/ > 4/5.

We now apply the Splitting-lemma (Lemma 1, with £ = v/2¢;, and a = €/2) for each integer i € I:
we denote by H); the restriction of H to queries of index strictly less than 7. Since Pr[S;] > v/2qs,
there exists a subset €; of executions such that,

B

for any (w,H) € Qi,%"[(w,H') €S |H}; =Hy

v

N —

Since all the subsets S; are disjoint,
Pﬁ[(ﬂi €l) (w,H) € %NS;|8]

r U(Qmsi)|s] => Pr[;NS;|S]

i€l el

=) Pr(]S;]-Pr[S;|S] > <ZPrS|S>

el i€l

»&IH

We let 3 denote the index Indy(w) corresponding to the successful pair. With probability at least
1/4, 8 € I and (w,H) € SgNQg. Consequently, with probability greater than 4/5x1/5 = 1/5, the 2/¢
attacks have provided a successful pair (w, H), with 8 = Indy(w) € I and (w, H) € Sg. Furthermore,
if we replay the attack, with fixed w but randomly chosen oracle H’ such that HIIB = H3, we know

that Pryy[(w,H') € Sg| H"ﬁ = H3] > v/4qn. Then

Prl(w, ") € S and pp # pls | Hj = Hy]

> P NeSsz|lH = — Prlps = pgl > v/4q, — 1/2F
_Hy[(w,H)E 8l Hig =Myl H}”[Pﬁ pgl > v/dqn — 1/27,

14

where ps = H(Qp) and pj; = H'(Qp). Using again the assumption that e > 7qn/2", the above
probability is lower-bounded by £/14q;. We thus replay the attack 14¢p /e times with a new random
oracle H' such that H|/5 = H|3, and get another success with probability greater than

1—(1—¢/14g,)Mm/e > 1 — 71 > 3/5.

Finally, after less than 2/e + 14q, /e repetitions of the attack, with probability greater than
1/5 x 3/5 >1/9, we have obtained two signatures (m, o1, h,02) and (m', o7, ', 0}), both valid w.r.t.
their specific random oracle H or H’, and with the particular relations

Qy = (m,o1) = (m',04) and h = H(Qy) # H(Qy) = I.
One may have noticed that the mechanics of our reduction depend on some parameters related to

the attacker A, namely, its probability of success € and the number g of queries to the random oracle.
This induces a lack of uniformity. A uniform version, in expected polynomial time is also possible.

Theorem 2 (The Forking Lemma — The Uniform Case) Let (K,S,V) be a digital sig-
nature scheme with security parameter k, with a signature as above, of the form (m,o1,h,02),
where h = H(m,o01) and o9 depends on o1 and h only. Let A be a probabilistic polynomial time
Turing machine whose input only consists of public data and which can ask qn, queries to the ran-
dom oracle, with qn, > 0. We assume that, within the time bound T, A produces, with probability
€ > 7qh/2k, a valid signature (m,o1,h,092). Then there is another machine which has control
over A and produces two valid signatures (m, o1, h,09) and (m,o1,h',0k) such that h # h', in
expected time T' < 84480T'qy, /¢.

Proof. Now, we try to design a machine M which succeeds in expected polynomial time:
1. M initializes j = 0;

2. M runs A until it outputs a successful pair (w,H) € S and denotes by N; the number of calls
to A to obtain this success, and by [the index Indy(w);

3. M replays, at most 140N;a? times, A with fixed w and random H’ such that H‘ 5= = H|3, where
a=8/T,

4. M increments j and returns to 2, until it gets a successful forking.

For any execution of M, we denote by J the last value of j and by N the total number of calls to A.
We want to compute the expectation of N. Since v = Pr[S], and N; > 1, then Pr[N; > 1/5v] > 3/4.
We define ¢ = [log,, qx], so that, 140N;a’ > 28qy, /e for any j > ¢, whenever N; > 1/5v. Therefore, for
any j > ¢, when we have a first success in S, with probability greater than 1/4, the index 8 = Indy(w)
is in the set I and (w,H) € SN Qg. Furthermore, with probability greater than 3/4, N; > 1/5v.
Therefore, with the same conditions as before, that is € > 7q;, /2%, the probability of getting a successful
fork after at most 28¢y, /¢ iterations at step 3 is greater than 6/7.

For any t > ¢, the probability for .J to be greater or equal to ¢ is less than (1 —1/4 x 3/4 x 6/7)!~*
which is less than v*~*, with v = 6/7. Furthermore,

=t J=t t+1

141 141

E[N|J =1 <Y (E[N;] + 140E[N;]od) <—><§:a]< a -
i=0

So, the expectation of N is E[N] =), E[N|J =t]-Pr[J =t] and then it can be shown to be less
than 84480¢,/e. Hence the theorem.

15

Chosen-Message Attacks. However, this just covers the no-message attacks, without any oracle
access. Since we can simulate any zero-knowledge protocol, even without having to restart the simu-
lation because of the honest verifier (i.e. the challenge is randomly chosen by the random oracle H)
one can easily simulate the signer without the private key:

e one first chooses random h, s € Zg;

e one computes r = s-g + h -y and defines H(m,r) to be equal to h, which is a uniformly
distributed value;

e one can output (r,h,s) as a valid signature of the message m.

This furthermore simulates the oracle H, by defining H(m,r) to be equal to h. This simulation is
almost perfect since H is supposed to output a random value to any new query, and h is indeed a
random value. Nevertheless, if the query H(m,r) has already been asked, H(m,r) is already defined,
and thus the definition H(m,r) < h is impossible. But such a situation is very rare, which allows us
to claim the following result, which stands for the Schnorr signature scheme but also for any signature
derived from a three-round honest verifier zero-knowledge interactive proof of knowledge:

Theorem 3 Let A be a probabilistic polynomial time Turing machine whose input only con-
sists of public data. We denote respectively by qn and qs the number of queries that A can ask
to the random oracle and the number of queries that A can ask to the signer. Assume that,
within a time bound T, A produces, with probability e > 10(qs + 1)(qs + q1)/2", a valid signa-
ture (m, o1, h,o9). If the triples (o1, h,02) can be simulated without knowing the secret key, with
an indistinguishable distribution probability, then, a replay of the attacker A, where interactions
with the signer are simulated, outputs two valid signatures (m, o1, h,02) and (m,o1, 1, 0b) such
that h # h', within time T" < 23¢,T /e and with probability € > 1/9.

A uniform version of this lemma can also be found in [68]. From a more practical point of view,
these results state that if an adversary manages to perform an existential forgery under an adaptive
chosen-message attack within an expected time T, after g, queries to the random oracle and g5 queries
to the signing oracle, then the discrete logarithm problem can be solved within an expected time less
than CqpT, for some constant C'. This result has been more recently extended to the transformation
of any identification scheme secure against passive adversaries into a signature scheme [8].

Brickell, Vaudenay, Yung and the author also extended the forking lemma technique [69, 17] to
many variants of El Gamal [27] and DSA [55], such as the Korean Standard KCDSA [43]. However,
the original El Gamal and DSA schemes were not covered by this study, and are certainly not provably
secure, even if no attack has ever been found against DSA.

5.3 RSA-Based Signatures

Unfortunately, with the above signatures based on the discrete logarithm, as any construction using
the Fiat-Shamir paradigm, we do not really achieve our goal, because the reduction is costly, since gy
can be huge, as much as 2% in practice. This security proof is meaningful for very large groups only.

5.3.1 FDH-RSA: The Full-Domain Hash Signature

In 1996, Bellare and Rogaway [12] proposed other candidates, based on the RSA assumption. The first
scheme is the by-now classical hash-and-decrypt paradigm (a.k.a. the Full-Domain Hash paradigm):
as for the basic RSA signature, the generation algorithm produces a large composite number N = pq,
a public key e, and a private key d such that e-d =1mod ¢(N). In order to sign a message m,
one first hashes it using a full-domain hash function H : {0,1}* — Z%;, and computes the e-th root,
o = H(m)? mod N. The verification algorithm simply checks whether the following equality holds,
H(m) = 0 mod N.

More generally, the Full-Domain Hash signature can be defined as described on figure 5, for any
trapdoor one-way permutation f.

16

K: Key Generation — (f, f™1)
public key f: X — X, a trapdoor one-way permutation onto X
private key f!

— (£ fY

S: Signature of m — o

r=H(m) and o = f1(r)

— o is the signature of m

V: Verification of (m,o)

check whether f(o) z H(m)
— Yes/No

Figure 5: The FDH Signature.

5.3.2 Security Analysis

For this scheme, Bellare and Rogaway proved, in the random-oracle model:

Theorem 4 Let A be an adversary which can produce, with success probability e, an existential
forgery under a chosen-message attack within a time t, after q; and qs queries to the hash
function and the signing oracle respectively. Then the permutation f can be inverted with
probability € within time t' where

’ 3

> and t' <t+ (g + qn)Ty,
T <t+(gs+ qn)Ty

with Ty the time for an evaluation of f.

Let us present this proof, using the new formalism introduced by Victor Shoup in [81, 82, 83|, and
which will be extensively used in these notes. In this technique, we define a sequence Gy, Ga, etc.,
of modified attack games starting from the actual game Gg. Each of the games operates on the same
underlying probability space: the public and private keys of the cryptographic scheme, the coin tosses
of the adversary A and the random oracles. Only the rules defining how the view is computed differ
from game to game. To go from one game to another with a slightly different distribution probability,
we repeatedly use the following lemma:

Lemma 3 Let Ei, E5 and Fy, Fo be events defined on a probability space
Pr[E; | -F1] = Pr[E2 | =F2] and Pr[Fi] = Pr[Fs] = ¢ = |Pr[E;] — Pr[Es]| <e.
Proof. The proof follows from easy computations:

|Pr[E;] — Pr[Es]| = |Pr[E;|F1]- Pr[Fi] + Pr[E; | —F1] - Pr[-F4]
— Pr[Es | Fo] - Pr[Fo] — Pr[Es | =F2] - Pr[—Fy]|
= |(Pr[E1|F1] — Pr[Ea|F2]) - &
+ (Pr[E1 | =F1] = Pr[Es [=F2]) - (1 —¢)]
— |(Pr[E1 |F1] — Pr[Es|Fo]) -] <e.

Actually, this lemma will not be used in the proofs of the FDH signatures, because all the simulated
distributions will remain perfect.

Basic Proof of the FDH Signature. In this proof, we incrementally define a sequence of games
starting at the real game Gy and ending up at Gs. We make a very detailed sequence of games in
this proof, since this is the first one. Some steps will be skipped in the other proofs. The goal of this
proof is to reduce the inversion of the permutation f on an element y (find x such that y = f(x)) to
an attack. We are thus given such a random challenge y.

17

Game Gy: Thisis the real attack game, in the random-oracle model, which includes the verification
step. This means that the attack game consists in giving the public key to the adversary, and a full
access to the signing oracle. When it outputs its forgery, one furthermore checks whether it is actually
valid or not. Note that if the adversary asks ¢gs queries to the signing oracle and q; queries to the
hash oracle, at most ¢s + g, + 1 queries are asked to the hash oracle during this game, since each
signing query may make such a new query, and the last verification step too. We are interested in the
following event: Sy which occurs if the verification step succeeds (and the signature is new).

Succfif (A) = Pr[So). (1)

Game Gi: In this game, we simulate the oracles, the hash oracle H and the signing oracle S, and
the last verification step, as shown on Figure 6. From this simulation, we easily see that the game is
perfectly indistinguishable from the real attack.

PI‘[Sl] = PI‘[SQ] (2)
» | For a hash-query H(q), such that a record (q,*,r) appears in H-List, the answer is r.
T% Otherwise the answer r is defined according to the following rule:
3
T »Rule H)
Choose a random element r € X. The record (g, L,r) is added
to H-List.
Note: the second component of the elements of this list will be explained later.
o | For a sign-query S(m), one first asks for 7 = H(m) to the H-oracle, and then the
T% signature o is defined according to the following rule:
3
o »Rule S
‘ Computes o = f~1(r).
» | The game ends with the verification of the output (m, o) from the adversary. One first
'S | asks for r = H(m), and checks whether r = f(o).
3
N
Figure 6: Simulation of the Attack Game against FDH
Game Gos: Since the verification process is included in the attack game, the output message is

necessarily asked to the hash oracle. Let us guess the index ¢ of this (first) query. If the guess failed,
we abort the game. Therefore, only a correct guess (event GoodGuess) may lead to a success.

Pr[Sa] = Pr[S; A GoodGuess| = Pr[S; | GoodGuess| x Pr[GoodGuess]
1
> Pr[$] x ———. 3
N r[1] g +qs+1 ()
Game Gj3: We can now simulate the hash oracle, incorporating the challenge y, for which we want

to extract the pre-image = by f:

»Rule H®)
If this is the c¢-th query, set r < y; otherwise, choose a random element
r € X. The record (g, L,r) is added to H-List.

18

Because of the random choice for the challenge y, this rule lets the game indistinguishable from the
previous one.

PI‘[Sg] = PI‘[SQ] (4)
Game Gy: We now modify the simulation of the hash oracle for other queries, which may be used
in signing queries:
»Rule H®

If this is the c-th query, set r « y and s < L ; otherwise, choose a random

element s € X, and compute r = f(s). The record (g, s,r) is added to

H-List.
Because of the permutation property of f, and the random choice for s, this rule lets the game
indistinguishable from the previous one.

PI‘[S4] = PY[S:J,] (5)

Game Gs: By now, excepted for the c-th hash query, which will be involved in the forgery (and
thus not asked to the signing oracle), the pre-image is known. One can thus simulate the signing
oracle without quering f~!:

» Rule S®)

‘ Lookup for (m, s,r) in H-List, and set o = s.

Since the message corresponding to the c-th query cannot be asked to the signing oracle, otherwise it
would not be a valid forgery, this rule lets the game indistinguishable from the previous one.

Pr[Ss] = Pr[S4]. (6)

Note that now, the simulation can easily be performed, without any specific computational power or
oracle access. Just a few more evaluations of f are done to simulate the hash oracle, and the forgery
leads to the pre-image of y:

Pr(Ss] = Succd (¢t + (g + a5)T). (7)

As a consequence, using equations (1), (2), (3), (4), (5), (6) and (7)

SUCC?W(t + (Qh + qS)Tf) = PI‘[S5] = PI‘[Sg] = PY[S4] = PI‘[SQ]
! PrSi] > — 1 % Pr[S].

> — X >
gn +qs +1 qn +qs+1

And thus,
Succi(A) < (gn +gs + 1) % Succq(t + (qn + as)T).

a

Improved Security Result. This reduction has been thereafter improved [22], thanks to the ran-
dom self-reducibility of the RSA function. The following result applies as soon as the one-way permu-
tation has some homomorphic property on the group X:

flzey) = f(z)® f(y).

Theorem 5 Let A be an adversary which can produce, with success probability e, an existential
forgery under a chosen-message attack within a time t, after qn, and qs queries to the hash
function and the signing oracle respectively. Then the permutation f can be inverted with
probability € within time t' where

&> xexp(=2) and t <t+(qs+aq)T
gs

with Ty the time for an evaluation of f.

19

This proof can be performed as the previous one, and thus starts at the real game Gg, then we
can use the same simulation as in the game Gy. The sole formal difference in the simulation will be
the H-List which elements have one more field, and are thus initially of the form (¢, L, L,r). Things
differ much after that, using a real value p between 0 and 1, which will be made precise later. The
idea here, is to make any forgery useful for inverting the permutation f, not only a specific (guessed)
one. On the other hand, one must still be able to simulate the signing oracle. The probability p will
separate the two situations:

Game Go: A random coin decides whether we introduce the challenge y in the hash answer, or
an element with a known pre-image:

»Rule H?

One chooses a random s € X. With probability p, one sets r «— y ® f(s)
and t < 1; otherwise, r < f(s) and ¢ < 0. The record (q,t, s,r) is added
to H-List.

Because of the homomorphic property on the group X of the permutation f, this rule lets the game
indistinguishable from the previous one. Note again that elements in H-List contain one more field ¢
than in the previous proof. One may see that r = y* @ f(s).

Game Gg: For a proportion 1 — p of the signature queries, one can simulate the signing oracle
without having to invert the permutation f:

»Rule S
Lookup for (m,t,s,r) in H-List, if ¢ = 1 then halt the game, otherwise set
o=s.

This rule lets the game indistinguishable, unless one signing query fails (¢ = 1), which happens with
probability p, for each signature:

Pr[S3] = (1 — p)% x Pr[Sa]. (8)

Note that now, the simulation can easily be performed, without any specific computational power or
oracle access. Just a few more exponentiations are done to simulate the hash oracle, and the forgery
(m,o) leads to the pre-image of y, if (¢ = 1). The latter case holds with probability p. Indeed,
(m,t,s,7) can be found in the H-List, and then r = y' ® f(s) = y ® f(s) = f(o), which easily leads to
the pre-image of y by f:

Succ?(t + (qn +¢s)Ty) = p x Pr[S3]. 9)

Using equations (1), (2), (8) and (9)

Succ?(t + (gn +45)Ty) = p x Pr[Ss] =p x (1 —p)* x Pr[Sy]
= px (1—=p)% xPr[S1] =p x (1 —p)? x Pr[So].

And thus,
SuccU(A) < m % Succ(t + (g + 2)T}).

Therefore, the success probability of our inversion algorithm is p(1 — p)%e, if € is the success
probability of the adversary. If g; > 0, the latter expression is optimal for p = 1/(¢s+1). And for this
parameter, and a huge value gs, the success probability is approximately £/eqs. It is anyway larger
than e/e%qs (where e = exp(1) ~ 2.17...).

As far as time complexity is concerned, each random oracle simulation (which can be launched by
a signing simulation) requires a modular exponentiation to the power e, hence the result. a

This is a great improvement since the success probability does not depend anymore on g. Fur-
thermore, ¢, can be limited by the user, whereas g;, cannot. In practice, one only assumes g, < 260,
but ¢s can be limited below 230.

20

of [w ||

Figure 7: Probabilistic Signature Scheme

5.3.3 The Probabilistic Signature Scheme

However, one would like to get more, suppressing any coefficient. In their paper [12], Bellare and
Rogaway proposed such a better candidate, the Probabilistic Signature Scheme (PSS, see Figure 7):
the key generation is still the same, but the signature process involves three hash functions

F:{0,1}*2 — {0,1}%, G :{0,1}*2 — {0,1}M,
H: {0, 1} — {0,112,

where k = ko + k1 + ko + 1 satisfies {0,1}*7! ¢ X c {0,1}*. We remind that f is a trapdoor one-
way permutation onto X, with an homomorphic relationship. For each message m to be signed, one
chooses a random string r € {0,1}*1. One first computes w = H(m,r), s = G(w) ® r and t = F(w).
Then one concatenates y = 0| w||s||¢, where a||b denotes the concatenation of the bit strings a and
b. Finally, one computes the pre-image by f, o = f~!(y). The verification algorithm first computes
y = f(o0), and parses it as y = b||w||s||t. Then, one can get r = s & G(w), and checks whether b = 0,
w =H(m,r) and t = F(w).

About this PSS construction, Bellare and Rogaway proved the security in the random-oracle model.

Theorem 6 Let A be a CMA-adversary against f-PSS which produces an existential forgery
within a time t, after qr, qq, qn and qs queries to the hash functions F, G and 'H and the signing
oracle respectively. Then its success probability is upper-bounded by

W 1 s | qftqgtantgs+1
Succy (t+(qs+%)k‘2‘Tf)+272+(qs+%)'(2_/:1+ [T o ,

with Ty the time for an evaluation of f.

Proof. First, we assume the existence of an adversary 4 that produces an existential forgery with
probability e within time ¢, after qr, g, and ¢ queries to the random oracles 7, G and H and g,
queries to the signing oracle.

Game Gg: This is the real-world attack game. In any game G,, we denote by S, the event
V(pk, m,0) = 1, for a new signature o.

Game Gi: In this game, we make the classical simulation of the random oracles, with random
answers for any new query, as shown on Figure 8. This game is clearly identical to the previous one.
The ‘H simulation may seem a bit intricate, but the bit ¢ is never used. It will appear later.

Game Go: In this game, we introduce the random challenge y*, for which one is looking for z*
such that y* = f(2*). Thus, we replace the random oracle H by the following simulation, which may
abort:

21

Query F(w): if a record (w,t) appears in F-List, the answer is .
Otherwise the answer ¢ is chosen randomly: ¢ € {0,1}% and the record (w,t) is added

in F-list]
Query G(w): if a record (w, g) appears in G-List, the answer is g.

Otherwise the answer ¢ is chosen randomly: g € {0,1}*1 and the record (w, g) is added

in G-list
Query H(m,r): one first sets ¢ = 0 if the query is asked by the signing oracle, and

¢ = 1 otherwise (by the adversary directly). If a record (m,r,*, L, w) appears in H-List:

F, G and H oracles

» Rule H-01d()

‘ The answer is w.
Otherwise the answer w is defined according to the following rule:

»Rule H-New)

Choose a random element w € {0, 1}*2.
The record (m,r,c, L,w) is added in H-List.

Note: the fourth component of the elements of this list will be explained later.

For a sign-query S(m), one first chooses a random r € {0,1}*1 and asks for w =
H(m,r), s = G(w) ®r and t = F(w). Then one concatenates y = 0||wl|s||t and
computes the signature o according to the following rule:

S oracle

»Rule S
‘ Computes o = f~1(y).

Figure 8: Simulation of the Attack Game against PSS

»Rule H-New(?
Choose a random u € X, then if ¢ = 0, compute z = y* ® f(u), otherwise
compute z = f(u), until the most significant bit of z is 0, but at most
ko times (otherwise one aborts the game). Choose a random element
w € {0,1}*2. The record (m,r,c, L, w) is added in H-List.

Let us remark that the number of calls to H is upper-bounded by g + ¢s (direct queries and queries
asked by the signing oracle.) This game may only differ from the previous one during some H-
simulations, if the simulation aborts because z is still in the bad range, even after the ko attempts
(event BadRange,). Using the Lemma 3, noting that

Pr[Ss | ~BadRange,] = Pr[S; | -BadRange,] and Pr[BadRange,| < qhz—k:qs,
one gets
IPr[Ss] — Pr[S,]| < q’l;k;qg. (10)
Game G3: In the above game, one may have noted that z is uniformly distributed in X, because

of the permutation property of f, with the conditioning that the most significant bit is 0. One can
thus parse it into 0]|w)s||t, where w is uniformly distributed in {0, 1}%2:

»Rule H-New®)
Choose a random u € X, then if ¢ = 0, compute z = y* ® f(u), otherwise
compute z = f(u), until the most significant bit of z is 0, but at most
ko times (otherwise one aborts the game). Thereafter, z is parsed into
O||w||s||t, The record (m,r,c,u,w) is added in H-List.

22

This simulation is thus perfectly indistinguishable, since the additional field w in the H-List is never
used. But note that z = y*“ ® f(u).

Game Gy: Now, we furthermore anticipate some F or G answers, with random numbers, which
is the case of the above s and t:

»Rule H-New(?
Choose a random u € X, then if ¢ = 0, compute z = y* ® f(u), otherwise
compute z = f(u), until the most significant bit of z is 0, but at most
ko times (otherwise one aborts the game). Thereafter, z is parsed into
0||w||s||t, and one adds the record (w,t) to the F-List and (w, s @®r) to the
G-List. The record (m,r,c,u,w) is added in H-List.

This game may only differ from the previous one if during some H-simulations, F(w) or G(w) have
already been defined (either by a direct query, or by a H-simulation.)

(qn + as)(ar + a9+ an + qs)

|Pr[S4] — Pr[Ss]| < ok . (11)
Game Gj5: Now, we simply abort if the signing oracle makes a H(m, r)-query for some (m,r) that
has already been asked to H.
»Rule +-01d®
‘ If ¢ = 0, then one aborts the game, otherwise the answer is w.
Because of the possible abortion
|Pr[S5] — Pr(Sa]| < gs(qn + g5) /2" (12)
Game Gg: In the last game, we replace the signing oracle by an easy simulation, returning the

value u involved in the answer H(m,r), which defines z = f(u):

»Rule S©)

‘ Look up for (m,r, ¢, u,w) in H-List, and set o = w.

The simulation is perfect since ¢ = 0.

The event Sg means that, at the end of that game, the adversary outputs a valid message/signature
(m, o). The latter satisfies: y = f(o) = b||w||s||t. Then one gets r = s ® G(w), and checks whether
b=0,w=H(m,r) and t = f(w). Such a signature is valid

e without having queried H(m,r), which is possible with probability bounded by 272
e with y = y* ® f(u), where (m,r,1,u,w) € H-List, and thus one gets z*.
Pr([Sg] < Succi(t', k) +27%2, (13)

where ¢’ is the running time of the adversary, including the time for the simulations: ' < t+ (¢s+qp) -
ko-Ty. The important point in this security result is the very tight link between success probabilities,
but also the almost linear time of the reduction. Thanks to this exact and efficient security result,
RSA-PSS has become the new PKCS #1 v2.1 standard for signature [74]. Another variant has been
proposed with message-recovery: PSS-R which allows one to include a large part of the message inside
the signature. This makes a signed-message shorter than the size of the signature plus the size of the
message, since the latter is inside the former one.

23

6 Public-Key Encryption

6.1 History
6.1.1 The RSA Encryption Scheme

In the same paper [73] as the RSA signature scheme appeared, Rivest, Shamir and Adleman also
proposed a public-key encryption scheme, thanks to the “trapdoor one-way permutation” property
of the RSA function: the generation algorithm produces a large composite number N = pq, a public
key e, and a private key d such that e - d = 1 mod ¢(N). The encryption of a message m, encoded as
an element in Z%, is simply ¢ = m® mod N. This ciphertext can be easily decrypted thanks to the
knowledge of d, m = ¢? mod N. Clearly, this encryption is OW-CPA, relative to the RSA problem.
The determinism makes a plaintext-checking oracle useless. Indeed, the encryption of a message m,
under a public key pk is always the same, and thus it is easy to check whether a ciphertext c really
encrypts m, by re-encrypting it. Therefore the RSA-encryption scheme is OW-PCA relative to the
RSA problem as well.

Because of this determinism, it cannot be semantically secure: given the encryption ¢ of either myg
or my, the adversary simply computes ¢’ = m§ mod N and checks whether ¢ = ¢. Furthermore, with a
small exponent e (e.g. e = 3), any security vanishes under a multi-user attack: given ¢; = m?3 mod Ny,
c2 = m® mod Ny and ¢5 = m? mod N3, one can easily compute m?® mod N; Ny N3 thanks to the Chinese
Remainders Theorem, which is exactly m? in Z and therefore leads to an easy recovery of m.

6.1.2 The El Gamal Encryption Scheme

In 1985, El Gamal [27] also designed a public-key encryption scheme based on the Diffie-Hellman key
exchange protocol [25]: given a cyclic group G of order prime ¢ and a generator g, the generation
algorithm produces a random element x € Zj as private key, and a public key y = z - g. The
encryption of a message m, encoded as an element m in G, is a pair (c=a-g,d =a-y +m), for a
random a € Z,4. This ciphertext can be easily decrypted thanks to the knowledge of x, since

a-y=ar-g==1x-c,

and thus m =d — z - ¢. This encryption scheme is well-known to be OW-CPA relative to the Com-
putational Diffie-Hellman problem. It is also semantically secure (against chosen-plaintext attacks)
relative to the Decisional Diffie-Hellman problem [85]. For OW-PCA, it relies on the Gap Diffie-Hellman
problem [60].

As we have seen above, the expected security level is IND-CCA, whereas the RSA encryption just
reaches OW-CPA under the RSA assumption, and the El Gamal encryption achieves IND-CPA under
the DDH assumption. Can we achieve IND-CCA for practical encryption schemes?

6.2 A First Generic Construction

In [10], Bellare and Rogaway proposed the first generic construction which applies to any trapdoor
one-way permutation f onto X. We need two hash functions G and H:

G:X —{0,1}" and H:{0,1}* — {0,1}}1,

where n is the bit-length of the plaintexts, and k; a security parameter. Then the encryption scheme
BR = (K, &,D) can be described as follows:

e IC(1¥): specifies an instance of the function f, and of its inverse f~'. The public key pk is
therefore f and the private key sk is f~1.

o Eok(m;r): given a message m € {0,1}", and a random value r £ X, the encryption algorithm
Epk computes
a= f(r), b=m®G(r) and c¢=H(m,r),

and outputs the ciphertext y = al|bl|c.

24

e D (allbl|c): thanks to the private key, the decryption algorithm Dy extracts
r=f"Ya), andnext m=>ba®G(r).
If ¢ = H(m,r), the algorithm returns m, otherwise it returns “Reject.”

About this construction, one can prove:

Theorem 7 Let A be a CCA-adversary against the semantic security of the above encryption
scheme BR. Assume that A has advantage € and running time 7 and makes g4, ¢, and g, queries
to the decryption oracle, and the hash functions G and H, respectively. Then

W,/ € qu dhn
SUCC? (’T) Z 5 — % — 2—n,
with 7 < 71+ (qg + an) - T¥,

where Ty denotes the time complexity for evaluating f.

Proof. In the following we use starred letters (r*, a*, b*, ¢* and y*) to refer to the challenge
ciphertext, whereas unstarred letters (r, a, b, ¢ and y) refer to the ciphertext asked to the decryption
oracle.

Game Gg: A pair of keys (pk,sk) is generated using K(1%). Adversary A; is fed with pk, the
description of f, and outputs a pair of messages (mg,m1). Next a challenge ciphertext is produced
by flipping a coin b and producing a ciphertext y* = a*||b*||c* of my. This ciphertext comes from a
random r* & X and a* = f(r*), b* = mp ® G(r*) and ¢ = H(my,r*). On input y*, A2 outputs bit
b'. In both stages, the adversary is given additional access to the decryption oracle Dg,. The only
requirement is that the challenge ciphertext y* cannot be queried from the decryption oracle.

We denote by Sp the event &’ = b and use a similar notation S; in any G; below. By definition, we
have

1 ¢
Pr[So| ==+ =. 14
rfSo] = 5 + = (14)
Game Gi: In this game, one makes the classical simulation of the random oracles, with random

answers for any new query, as shown on Figure 9. This game is clearly identical to the previous one.
Game Ga: In this game, one randomly chooses h & {0,1}*1, and uses it instead of H(m*,r*).

» Rule Chal-Hash®

The value h+ & {0,1}*1 has been chosen ahead of time, choose randomly
r*, then set a* = f(r*), g* = G(r*), b* = m* ® g*, and ¢* = h™.

The two games Gy and G; are perfectly indistinguishable unless (m*,r*) is asked for H, either by
the adversary or the decryption oracle. But the latter case is not possible, otherwise the decryption
query would be the challenge ciphertext. More generally, we denote by AskRy the event that r* has
been asked to G or to H, by the adversary. We have:

| Pr[Sq] — Pr[S1]| < Pr[AskRa]. (15)
Game Gj3: We start modifying the simulation of the decryption oracle, by rejecting any ciphertext
(al|b||c) for which the corresponding (m,r) has not been queried to H:

»Rule Decrypt—H®)

Look up in H-List for (m,r,¢). If such a triple does not exist, then output
“Reject”, otherwise output m.

25

Query G(r): if a record (r, g) appears in G-List, the answer is g.
Otherwise the answer g is chosen randomly: g € {0,1}" and the record (r, g) is added

in G-list i
Query H(m,r): if a record (m,r, h) appears in H-List, the answer is h.

Otherwise the answer h is chosen randomly: h € {0,1}*1 and the record (m,r,h) is
added in H-List.

G, H Oracles

Query Dy (allb]|c): one applies the following rules:

»Rule Decrypt—R®)
‘ Compute 7 = f~!(a);

D Oracle

Then, compute m = b® G(r), and finally,

»Rule Decrypt—H®

If ¢ = H(m,r), one returns m, otherwise one returns “Reject.”

For two messages (mg, m1), flip a coin b and set m* = my,.

»Rule Chal-Hash®
Choose randomly 7*, then set
a* = f(r*),
g =00, b =m @
c* = H(m*,r*).

Challenger

Then, output y* = a*||b*||c*.

Figure 9: Formal Simulation of the IND-CCA Game against the BR Construction

Such a simulation differs from the previous one if the value ¢ has been correctly guessed, by chance:

| Pr[Ss] — Pr[Sq]| < ;’Td | Pr[AskR3] — Pr[AskRy] | < 2qu (16)

Game Gy: In this game, one randomly chooses 7+ £ X and g hid {0,1}", and uses r* instead
of r*, as well as g* instead of G(r*).

» Rule Chal-Hash®

The three values r+ & X, gt & {0,1}"™ and ht & {0,1}* have been
chosen ahead of time, then set a* = f(r™), b*=m*®g", c=h".

The two games G4 and Gg are perfectly indistinguishable unless r* is asked for G, either by the
adversary or the decryption oracle. The former case has already been cancelled in the previous game,
in AskRj3. The latter case does not make any difference since either H(m, r*) has been queried by the
adversary, which falls in AskR3, or the ciphertext is rejected in both games. We have:

PI‘[S4] = PI‘[Sg] PI‘[ASkR4] = PI‘[ASkRg] (17)

In this game, m* is masked by g, a random value which never appears anywhere else. Thus, the
input to A follows a distribution that does not depend on b. Accordingly:

1
Game Gsj: Finally, one randomly chooses a™ Ex , which implicitly defines a random r* in X.

Actually, a* is the given random challenge for which one is looking for the pre-image 7.

26

» Rule Chal-Hash®

The three values a* & X, g* E {0,1}"™ and h* & {0,1}*1 have been
chosen/given ahead of time, then set a* = a™, b =m*®g", c=ht.

The two games G5 and G4 are perfectly indistinguishable, thanks to the permutation property of f.

Game Gg: In the simulation of the decryption oracle, we may reject even earlier, if the corre-
sponding r has not been queried to G:

»Rule Decrypt—R®©®)

Look up in G-List for (r,g) such that a = f(r). If no r is found, then
output “Reject”.

Such a simulation differs from the previous one if the value (m,r) has been queried to H, while G(r)
is unpredictable, and thus m = G(r) @ b is unpredictable too:

| Pr[AskRg] — Pr[AskRs] | < ‘21—2 (19)

One may now note that the event AskRg leads to the pre-image of a™ by f in the queries asked to G
and H, by the adversary. By checking all of them, one gets it:

Pr[AskRg] < Succt" (7 + (g9 + qn)Ty). (20)

6.3 OAEP: the Optimal Asymmetric Encryption Padding.
6.3.1 Description

The problem with the above generic construction is the high over-head. When one encrypts with a
trapdoor one-way permutation onto X, one could hope the ciphertext to be an element in X, without
anything else. In 1994, Bellare and Rogaway proposed such a more compact generic conversion [11],
in the random-oracle model, the “Optimal Asymmetric Encryption Padding” (OAEP, see Figure 10),
obtained from a trapdoor one-way permutation f onto {0, 1}k, whose inverse is denoted by f~!. We

m 0k T

U

)

IR e A

Figure 10: Optimal Asymmetric Encryption Padding

need two hash functions G and H:
G:{0,1}k0 — {0,1}F*0 and H:{0,1}f "R — {0, 1}k,

for some kg. We also need n and k; which satisfy & = n + kg + k1. Then the encryption scheme
OAEP = (K, &,D) can be described as follows:

e IC(1¥): specifies an instance of the function f, and of its inverse f~'. The public key pk is
therefore f and the private key sk is f~1.

27

e Eok(m;r): given a message m € {0,1}", and a random value r & {0,1}%0, the encryption
algorithm &g computes

s=(m[[0")®G(r) and t=ra@H(s),
and outputs the ciphertext ¢ = f(s,).

e Dy (c): thanks to the private key, the decryption algorithm Dy, extracts
(s,t) = f'(c), andnext r=t®H(s) and M =s®G(r).
If [M]y, = 0%, the algorithm returns [M]", otherwise it returns “Reject.”

In the above description, [M]x, denotes the k; least significant bits of M, while [M]™ denotes the n
most significant bits of M.

6.3.2 About the Security

Paper [11] includes a proof that, provided f is a one-way trapdoor permutation, the resulting OAEP
encryption scheme is both semantically secure and weakly plaintext-aware. This implies the semantic
security against indifferent chosen-ciphertext attacks, also called security against lunchtime attacks
(IND-CCA1). Indeed, the Weak Plaintext- Awareness means that the adversary cannot produce a new
valid ciphertext, until it has seen any valid one, without knowing (awareness) the plaintext. This is
more formally defined by the existence of a plaintext-extractor which, on input a ciphertext and the
list of the query-answers of the random oracles, outputs the corresponding plaintext. This plaintext-
extractor is thus enough for simulating the decryption oracle, but in the first step of the attack only.
We briefly comment on the intuition behind (weak) plaintext-awareness. When the plaintext-extractor
receives a ciphertext ¢, then:

e cither s has been queried to H and r has been queried to G, in which case the extractor finds
the cleartext by inspecting the two query lists G-List and H-List,

e or else the decryption of (s,t) remains highly random and there is little chance to meet the
redundancy 0%: the plaintext extractor can safely declare the ciphertext invalid.

The argument collapses when the plaintext-extractor receives additional valid ciphertexts, since this
puts additional implicit constraints on G and H. These constraints cannot be seen by inspecting the
query lists. Hence the requirement of a stronger notion of plaintert-awareness. In [7], Bellare, Desai,
Rogaway and the author defined such a stronger notion which extends the previous awareness of the
plaintext even after having seen valid ciphertexts. But such a plaintext-awareness notion had never
been studied for OAEP, while it was still widely admitted.

Shoup’s Counter-Example. In his papers [82, 83], Shoup showed that it was quite unlikely to
extend the results of [11] to obtain adaptive chosen-ciphertext security, under the sole one-wayness of
the permutation. His counter-example made use of the ad hoc notion of an XOR-malleable trapdoor
one-way permutation: for such permutation fy, one can compute fo(x @ a) from fo(z) and a, with
non-negligible probability.

Let fo be such an XOR-malleable permutation. Define f by f(s||t) = s||fo(t). Clearly, f is also
a trapdoor one-way permutation. However, it leads to a malleable encryption scheme as we now
show. Start with a challenge ciphertext y = f(s||t) = s||lu, where s||t is the output of the OAEP
transformation on the redundant message m/|0" and the random string r (see Figure 11),

5= G(r) @ (m|0*), t=H(s)®r and u= fo(t).

Since f is the identity on its leftmost part, we know s, and can define A = §||0¥', for any random
string ¢, and s’ = s@® A. We then set ¢’ = H(s') ®@r =t @ (H(s) DH(s')). The XOR-malleability of fy

28

Figure 11: Shoup’s attack.

allows one to obtain u' = fy(t') from u = fo(t) and H(s) ® H(s'), with significant probability. Finally,
y' = §'||u’ is a valid ciphertext of m’ =m @ §, built from 7’ = r, since:

= ft() =te (H(s) @ H(s") = H(s) @, ' =HE) et =7

and
SBG)=ABs®Gr) =Ad (m||0F) = (m e §)| 0k

Note that the above definitely contradicts adaptive chosen-ciphertext security: asking the decryp-
tion of " after having received the ciphertext ¥, an adversary obtains m’ and easily recovers the actual
cleartext m from m’ and §. Also note that Shoup’s counter-example exactly stems from where the
intuition developed at the end of the previous section failed: a valid ciphertext 3’ was created without
querying the oracle at the corresponding random seed 7/, using in place the implicit constraint on G
coming from the received valid ciphertext y.

Using methods from relativized complexity theory, Shoup [82, 83] built a non-standard model of
computation, where there exists an XOR-malleable trapdoor one-way permutation. As a consequence,
it is very unlikely that one can prove the IND-CCA security of the OAEP construction, under the sole
one-wayness of the underlying permutation. Indeed, all methods of proof currently known still apply
in relativized models of computation.

6.3.3 The Actual Security of OAEP

Shoup [82, 83] furthermore provided a specific proof for RSA with public exponent 3. However, there
is little hope of extending this proof for higher exponents. Hopefully, Fujisaki, Okamoto, Stern and
the author provided a general security analysis, but under a stronger assumption about the underlying
permutation [32, 33]. Indeed, we prove that the scheme is IND-CCA in the random-oracle model [10],
relative to the partial-domain one-wayness of permutation f.

Partial-Domain One-Wayness. Let us first introduce this new computational assumption. Let f
be a permutation f : {0,1}* — {0,1}*, which can also be written as

£{0, 137 {0, 11R0 — {0, 1} x {0, 1}F0,

with & = n + ko + k1. In the original description of OAEP from [11], it is only required that f
is a trapdoor one-way permutation. However, in the following, we consider two additional related
problems, namely partial-domain one-wayness and set partial-domain one-wayness:

e Permutation f is (7,¢)-one-way if any adversary A whose running time is bounded by 7 has
success probability Succ?”(A) upper-bounded by €, where

Succs(A4) = PrLA(/(5,1) = (s.1)]

e Permutation f is (7, £)-partial-domain one-way if any adversary .4 whose running time is bounded

by 7 has success probability Succ?d_ow(.A) upper-bounded by &, where

Succh™™(A) = Pr[A(f(s,t)) = s].

s,t

29

e Permutation f is (¢,7,¢)-set partial-domain one-way if any adversary A, outputting a set of

¢ elements within time bound 7, has success probability Succjc_pd_ow(./l) upper-bounded by &,
where
SuccT P (A) = Prls € A(f(s,t))].
We denote by Succ?(7) (resp. Succ?d_OW(T) and Succ‘}_pd_ow(fﬁ)) the maximal success probability

Succ}”(A) (resp. Suchpcd_OW(.A) and Succj[pd_ow(A)). The maximum ranges over all adversaries whose

running time is bounded by 7. In the third case, there is an obvious additional restriction on this

range from the fact that A outputs sets with ¢ elements. It is clear that for any 7 and £ > 1,
Succj[pd'ow(ﬁ, T) > SUCC?@d_OW(T) > Succ (7).

Note that, by randomly selecting an element in the set returned by an adversary to the set partial-

domain one-wayness, one breaks partial-domain one-wayness with probability Succjc_pd_OW (A)/¢. This

provides the following inequality

SUCC]pcd_OW(T) > Succj{pd_o‘”(ﬁ, 7) /L.

However, for specific choices of f, more efficient reductions may exist. Also, in some cases, all three
problems are polynomially equivalent. This is the case for the RSA permutation [73], hence the global
security result for RSA-OAEP.

6.3.4 The Proof of Security

In the following we use starred letters (r*, s*, t* and y*) to refer to the challenge ciphertext, whereas
unstarred letters (7, s, t and y) refer to the ciphertext asked to the decryption oracle.

The Intuition. Referring to our description of the intuition behind the original OAEP proof of
security, given above, we can carry a more subtle analysis by distinguishing the case where s has not
been queried from oracle H from the case where r has not been queried from G. If s is not queried,
then H(s) is random and uniformly distributed and r is necessarily defined as ¢ @ H(s). This holds
even if s matches with the string s* coming from the valid ciphertext y*. There is a minute probability
that ¢t @ H(s) is queried from G or equals 7*. Thus, G(r) is random: there is little chance that the
redundancy 0% is met and the extractor can safely reject.

We claim that r cannot match with r*, unless s* is queried from H. This is because r* = t* ®@H(s*)
equals r = t @ H(s) with minute probability. Thus, if r is not queried, then G(r) is random and we
similarly infer that the extractor can safely reject. The argument fails only if s* is queried.

Thus rejecting when it cannot combine elements of the lists G-List and H-List so as to build a pre-
image of y, the plaintext-extractor is only wrong with minute probability, unless s* has been queried
by the adversary. This seems to show that OAEP leads to an IND-CCA encryption scheme if it is
difficult to invert f “partially”, which means: given y* = f(s*||t*), find s*.

The Strategy. Based on the intuition just described, we can formally prove that applying OAEP
encoding to a trapdoor permutation which is difficult to partially invert, leads to an IND-CCA encryp-
tion scheme, hence the partial-domain one-wayness, which expresses the fact that the above partial
inversion problem is difficult.

Chosen-ciphertext security is actually addressed, by turning the intuition explained above into a
formal argument, involving a restricted variant of plaintext-awareness (where the list C' of ciphertexts
is limited to only one ciphertext, the challenge ciphertext y*).

30

Theorem 8 Let A be a CCA-adversary against the semantic security of the encryption scheme
OAEP. Assume that A has advantage ¢ and running time 7 and makes g4, g4 and g queries to
the decryption oracle, and the hash functions G and H, respectively. Then

e (2(qa+2)(qa+2qg) | 3qq
2 2ko okr)
with 7 < 7+ 49 - qn - (Tr + O(1)),

s-pd-ow

Succy (qn, ™)

v

where Ty denotes the time complexity for evaluating f.

6.3.5 The Plaintext-Extractor

Description. In order to prove the security against adaptive chosen-ciphertext attacks, it is nec-
essary to simulate calls to a decryption oracle. As in the original paper [11], we design a plaintext-
extractor (which is actually the same). But the analysis is more intricate because the success proba-
bility of the extractor cannot be estimated unconditionally but only relatively to some computational
assumption. When the plaintext-extractor receives a ciphertext c, then:

e cither s has been queried to H and r has been queried to G, in which case the extractor finds
the cleartext by inspecting the two query lists G-List and H-List. One indeed looks up for
(7,Gy) € G-List and (8, Hs) € H-List. For such a pair, one defines 0 =9, 0 = y®Hs, p = G, D9,
and checks whether ¢ = f(,6). If [u]y, = 0%, then the tailing part is the plaintext.

e or else the decryption of (s,t) remains highly random and there is little chance to meet the
redundancy 0*1: the plaintext extractor can safely declare the ciphertext invalid.

Comments. One can easily check that the output of the plaintext-extractor is uniquely defined,
regardless of the ordering of the lists. To see this, observe that since f is a permutation, the value
of 0 = s is uniquely defined and so is §. Keep in mind that the G-List and H-List correspond to
input-output pairs for the functions G and H, and at most one output is related to a given input. This
makes Hs uniquely defined as well. Similarly, 6 = ¢ is uniquely defined, and thus v and G,: at most
one p may be selected, which is output depending on whether [u]x, = 0% or not.

Furthermore, if both r and s have been queried by the adversary, the plaintext-extractor perfectly
simulates the decryption oracle.

6.3.6 Proof

In the following, y* is the challenge ciphertext, obtained from the encryption oracle. Since we have

in mind using the plaintext-extractor instead of the decryption oracle, trying to contradict semantic
security, we assume that y* is a ciphertext of m; and denote by 7* its random seed. We have

=H(s)@t* and G(r*) = s* @ (my0*).

In what follows, all unstarred variables refer to the decryption queries.
We now present a proof with games which sequentially discard all cases for which the above
plaintext-extractor may fail.

Game Gg: A pair of keys (pk,sk) is generated using K(1%). Adversary A; is fed with pk, the
description of f, and outputs a pair of messages (mg, m1). Next a challenge ciphertext is produced
by flipping a coin b and producing a ciphertext y* of my. This ciphertext comes from a random
& {0,1}*0 and s* and ¢* such that y* = f(s*,t*), where s* = (m[|0*1) @ G(r*) and t* = r* & H(s*).
On input y*, As outputs bit &. In both stages, the adversary is given additional access to the
decryption oracle Dg,. The only requirement is that the challenge ciphertext cannot be queried from
the decryption oracle.
We denote by Sp the event &’ = b and use a similar notation S; in any G; below. By definition, we
have
Pr[So| =

+ (21)

N | =
N ™

31

Game Gj:

In this game, one makes the classical simulation of the random oracles, with random

answers for any new query, as shown on Figure 12. This game is clearly identical to the previous one.

. | Query G(r): if a record (7, g) appears in G-List, the answer is g.
~ | Otherwise the answer g is chosen randomly: g € {0, 1}#=*0 and the record (r,g) is
£ | added in G-List _
O | Query H(s): if a record (s,h) appears in H-List, the answer is h.
<& | Otherwise the answer h is chosen randomly: h € {0,1}*0 and the record (s, k) is added
S | in H-List.
o | Query Dg(c):the value M is defined according to the following rules:
)
g »Rule Decrypt—Init(!)
Q ‘ Compute (s,t) = f~1(c);
Look up for (s,h) € H-List:
e if the record is found, compute r =t @ h.
Look up for (r,g) € G-List:
— if the record is found
»Rule Decrypt—SR(")
h=H(s), r=tdh,
g=G(r), M=sdg.
— otherwise
»Rule Decrypt—SnoR ()
‘ same as rule Decrypt—SR ™.
e otherwise
»Rule Decrypt—noS®
‘ same as rule Decrypt—SR ™.
If [M], = 01, one returns m = [M]", otherwise one returns “Reject.”
.| For two messages (mg,m1), flip a coin b and set m* = my, M* = m*||0.
&
= »Rule Chal—Hash(!)
Z@ Choose randomly 7*, then set
5 ¢ =G0, =M e,
h*=H(s*), t"=r*ah*.
»Rule Chal—Output()
‘ Compute and output y* = f(s*,t*).
Figure 12: Formal Simulation of the IND-CCA Game against OAEP
Game G,: In this game, one randomly chooses 1= & {0,1}% and ¢ & {0, 1} %0, and uses r+

instead of r*, as well as g™ instead of G(r*).

» Rule Chal-Hash®

The two values r+ & {0,11%0, g+ & {0,1}*~*0 have been chosen ahead
of time, then set r* =r*, g¢*=g7,
s =M*®g", h*=H(s*), t'=rtdh*.

32

The two games Go and G are perfectly indistinguishable unless r* is asked for G, either by the
adversary or by the decryption oracle. We define this event AskG,. We have:

| Pr[Ss] — Pr[S1]| < Pr[AskGa). (22)

In this game, g* is used in (s,t) but does not appear in the computation since G(r™) is not defined to
be equal to g. Thus, the input to Ay follows a distribution that does not depend on b. Accordingly:

1
Pr[Sq] = 3 (23)
Game Gs: We start dealing with the decryption oracle, which has remained perfect up to this

game, but using the ability to invert f. We first make the decryption oracle reject all ciphertexts c
such that the corresponding r value has not been previously queried from G by the adversary.

»Rule Decrypt—SnoR(g)
| 9=06(r), M=1~

This new rule leads to a Reject since the 0¥ is not verified. This makes a difference only if ¢ is
a valid ciphertext, while G(r) has not been asked. Since G(r) is uniformly distributed, equality
[s ® G(r)]x, = 0¥ happens with probability 1/2¥'. Summing up for all decryption queries, we get

IPr[AskGs] — Pr[AskGy]| < 2qu (24)

Note that we cannot remove the query G(r) from this rule, even if it would not change anything in
the simulation of the output of this decryption. However, it would remove a pair (r,g) from G-List,
which could be 7* itself, and this would have a non-negligible impact on the event AskGs.

Game G4: We now make the decryption oracle reject all ciphertexts ¢ such that the corresponding
s value has not been previously queried from H by the adversary.

»Rule Decrypt—noS®
h="H(s), r=tdh,
g=G(r), M=1*

This makes a difference only if y is a valid ciphertext, while H(s) has not been asked. First, since
r = H(s)®t is uniformly distributed, it has been queried from G with probability less than (¢4+qq)/ 2ko.
Then, if G(r) has not been queried, the redundancy is satisfied with probability less than 1/2"1.
Summing up for all decryption queries, we get

q4(qg +49a) | qa
|Pr[AskGy4] — Pr[AskGs]| < ;T + ok (25)
Game Gs;: Here, we can make the first formal modification in the previous game since, whatever

the h-value is, the message M is 1¥, and ¢g and h are never revealed:

»Rule Decrypt—noS(5)
| h=H(s), M =1"

This will just postpone the definition of G(r) and also remove one pair (r, g) from G-List. The latter
removal may have some impact:

e on the simulation of a later decryption ¢, if v’ = r was found in the previous game, but that is
no longer in the list. A rule Decrypt—SR is thus replaced by the rule Decrypt—SnoR, which
means that ¢’ = g was just defined in the modified rule, and never revealed (by any means: no
information is leaked.) Therefore, the probability for M’ to satisfy the redundancy was 27*1;

e the removed r could be r*, but this is ¢ @ H(s), for s ¢ H-List. Such a case is bounded by 27,

33

Summing up for all decryption queries, we get

1 1
Pr[AskGs] — Pr[AskGy]| < qq x (27 + 27) . (26)

Game Gg: We follow in making formal modifications:

»Rule Decrypt—noS(6)
M = 1%,

This will postpone the definition of H(s), and also remove the pair (s,h) from H-List. The latter
removal may have some impact on the simulation of a later decryption ¢’: if s’ = s was found in the
previous game, but that is no longer in the list:

e a rule Decrypt—SnoR is replaced by the rule Decrypt—noS (which just cancels 7’ from
G-List), which means that h’ = h was just defined in the modified rule, and never revealed. The
probability for 7 to be equal to r* is 2750,

e a rule Decrypt—SR is replaced by the rule Decrypt—noS, which means that A’ = h was just
defined in the modified rule, and never revealed. The probability for ' = t' & h’ to be in G-List
was less than g4/ 2k0 which is an upper-bound of this case to appear.

In both cases, the decryption is anyway still the same. Summing up for all decryption queries, we get

qa(gg +1)

[Pr[AskGs] — Pr{AskGs]| < 5

(27)

Furthermore, in the decryption simulation, when both r and s have been asked, no new query
occurs:

»Rule Decrypt—SR(©)
‘ M=s®g.

As a consequence, the new decryption simulation makes no new H-query.

Game Gr: We now define s* independently of anything else, as well as H(s*), by randomly
choosing s £ {0,1}+=*0 and h* £ {0,1}*0, and using st instead of s*, as well as At instead of
H(s*). The only change is that s* = s instead of M*@® g™, which in some sense defines g7 = M*@s™
but we do not need it. The game obeys the following rule:

» Rule Chal-Hash("

The three values r= £ {0, 1}, s7 £ {0, 1}¥=%0 and A+ £ {0,1}* have
been chosen ahead of time, then set s* = s, t*=rt @ hT.

The two games G7 and Gg are perfectly indistinguishable unless s* is asked for H by the adversary, or
used by the decryption oracle. The former event is denoted AskH7, while the latter makes a difference
only if the rule Decrypt—SR(®) was used, with an accepted ciphertext, or the rule Decrypt—SnoR(©)
was used, with 7 = r* (because this rule becomes Dec1t'ypt—noS(6)7 where no G(r) query is done,
since it could have been r*, and thus made the event AskG happen.)

We thus insist here on that the event AskH7 denotes the fact that s* is asked for H by the
adversary, whereas the event AskG denotes the fact that r* is asks for G by the adversary or the
decryption oracle/simulation.

Let us briefly deal with the bad cases:

e the rule Decrypt—SR(G) was used, with an accepted ciphertext. This means that there exists
a valid ciphertext ¢ = f(s*||t) that is queried to the decryption oracle, with the corresponding r
queried to G, where r =t ® H(s*) =t @ t* @ rT, and r* is a random value.

e the rule Decrypt—SnoR®) was used, with r = 7, where r* is a random value.

34

| Pr[AskGy] — Pr[AskGg] | < Pr|[AskHq] + W + 2%‘0 (28)

In this new game, r* = t* @ h" is uniformly distributed, and independent of the adversary’s view,

since hT1 is never revealed: .
Pr[AskG] < % (29)

where ¢, and ¢4 denote the number of queries asked by the adversary to G, or to the decryption oracle,
respectively. As a consequence,

3¢a (2qa+1)(q9 +qa) | qalgg +3)

PI‘[ASkGQ] < % + 2k0 + 2k0 + PI‘[ASkH7] (30)

Game Gg: Finally, we define s* and t* independently of anything else, by randomly choosing
st & {0, 1}k_k° and t+ & {0, 1}k0:
» Rule Chal-Hash®

The two values st & {0,1}¢=%0 and t+ £ {0,1}* have been chosen
ahead of time, then set s* = s*, t*=1¢T.

The two games Gg and G7 are perfectly indistinguishable.

Game Gg: We now completely manufacture the challenge ciphertext: we randomly choose
yt E {0, 1}k, and simply set y* = y*, ignoring the encryption algorithm altogether. This implicitly
defines s and t*, because of the permutation property of f. Actually, ¥ is the given random
challenge for which one is looking for the partial pre-image s*.

»Rule Chal—Hash(®)
‘ Do nothing.

»Rule Chal—Output®

The challenge y™ hid {0,1}* has been given ahead of time, then set and
output y* = y*.

The distribution of y* remains the same: due to the fact that f is a permutation, the previous method
defining y* = f(s*[|t*), with s* = sT and ¢* = ¢ was already generating a uniform distribution over
the k-bit elements.

Game Gg: Before concluding, one may remark that the new simulation of the decryption oracle
is exactly the way the plaintext-extractor previously explained would operate, with some extra but
unuseful G-queries. Since we do not care anymore about the event AskGyg, they can be simplified:

»Rule Decrypt—SR(0)

‘ M=s®g.
»Rule Decrypt—SnoR (%)

| M =1k,
»Rule Decrypt—noS1?)

| M =1~
Finally, simply outputting the list of queries to H during this game, one gets

Pr[AskH1o] < SuccT " (g, 7). (31)

To conclude the proof of Theorem 8, one just has to comment on the running time 7/. Although

the plaintext-extractor is called gy times, there is no ¢4 multiplicative factor in the bound for 7’.

35

This comes from a simple bookkeeping argument. Instead of only storing the lists G-List and H-List,
one stores an additional structure consisting of tuples (v, Gy, 0, Hs,y). A tuple is included only for
(7,Gy) € G-List and (8, Hs) € H-List. For such a pair, one defines 0 = 6, 0 = v ® Hs, pp = G, B 4,
and computes y = f(,0). If [u]g, = 0*1, one stores the tuple (v, G, 6, Hs,y). The cumulative cost of
maintaining the additional structure is g4 - g5, - (T + O(1)) but, handling it to the plaintext-extractor
allows one to output the expected decryption of y, by table lookup, in constant time. Of course,
a time-space tradeoff is possible, giving up the additional table, but raising the computing time to

aq-qq - an - (Tr + O(1)). O

6.3.7 Particular Case: RSA-OAEP

Theorem 8 unfortunately requires a very strong assumption on the trapdoor permutation: the partial-
domain one-wayness. Hopefully, in [33], we furthermore proved that for RSA, this is not a stronger
assumption than the classical RSA assumption:

Lemma 4 Let A be an algorithm that outputs a q-set containing k — ko of the most significant bits
of the e-th root of its input (partial-domain RSA, for any modulus N, which 281 < N < 2F and
k > 2kg), within time bound t, with probability €. There exists an algorithm that solves the RSA
problem (N, e) with success probability €', within time bound t' where

g > e x (g — 2%k —kF6), t' <2t + ¢* x O().

Combining this lemma with the previous general security result about OAEP, one gets

Theorem 9 Let A be a CCA-adversary against the “semantic security” of RSA-OAEP (where
the modulus is k-bit long, k > 2kg), with running time bounded by ¢ and advantage ¢, making
44, 9¢ and g, queries to the decryption oracle, and the hash functions G and H, respectively.
Then the RSA problem can be solved with probability ¢ greater than

e (2(ga+2)(qa+2g9) | 3qa | 32
4 = 9ko 92k1 9k—2ko

within time bound ¢’ < 2t + g5, - (gn + 2g,) x O(k?).

There is actually a slight inconsistency in piecing together the two above results, coming from the
fact that RSA is not a permutation over k-bit strings. Research papers usually ignore the problem.
Of course, standards have to cope with it. Observe that one may decide only to encode a message of
n — 8 bits, where n is k — kg — k1 as before, as is done in the PKCS #1 standard. The additional
redundancy leading bit can be treated the same way as the 01 redundancy, especially with respect
to decryption. However, this is not enough since G(r) might still carry the string (s||t) outside the
domain of the RSA encryption function. An easy way out is to start with another random seed if this
happens. On average, 256 trials will be enough.

This security result does not achieve the practical security, because of the expensive reduction.
In [33], we improved the reduction cost, with a more intricate proof. More precisely:

Theorem 10 Let A be a CCA-adversary against the “semantic security” of RSA-OAEP (where
the modulus is k-bit long, k > 2kg), with running time bounded by ¢ and advantage e, making
dd, q¢ and g, queries to the decryption oracle, and the hash functions G and H, respectively.
Then the RSA problem can be solved with probability ¢ greater than

2 _o.. (2949 t 494t | 20a 32
2k0 2k;1 2k‘—2k0

within time bound ¢’ < 2t + gy, - (gn + 2g,) x O(k?).

Unfortunately, the reduction is still very expensive, and is thus meaningful for huge moduli only,
more than 4096-bit long. Indeed, the RSA inverter we can build, thanks to this reduction, has a

36

complexity at least greater than gy - (gn + 2g,) x O(k3). As already remarked, the adversary can
ask up to 260 queries to the hash functions, and thus this overhead in the inversion is at least 2151,
However, current factoring algorithms can factor up to 4096 bit-long integers within this number of
basic operations (see [47] for complexity estimates of the most efficient factoring algorithms).

Anyway, the formal proof shows that the global design of OAEP is sound, and that it is still
probably safe to use it in practice (e.g. in PKCS #1 v2.0, while being very careful during the imple-
mentation [49]).

6.4 REACT: a Rapid Enhanced-security Asymmetric Cryptosystem Transform

Unfortunately, there is no hope to use OAEP with any DL-based primitive, because of the “per-
mutation” requirement. The OAEP construction indeed requires the primitive to be a permutation
(trapdoor partial-domain one-way), which is the case of the RSA function. However, the only trapdoor
problem known in the DL-setting is the Diffie-Hellman problem, and it does not provide any bijection.
Thus, first Fujisaki and Okamoto [30] proposed a generic conversion from any IND-CPA scheme into
an IND-CCA one, in the random-oracle model. While applying this conversion to the above El Gamal
encryption (see Section 6.1), one obtains an IND-CCA encryption scheme relative to the DDH prob-
lem. Later, independently, Fujisaki and Okamoto [31] and the author [62] proposed better generic
conversions since they apply to any OW-CPA scheme to make it into an IND-CCA one, still in the
random-oracle model.

This high security level is just at the cost of two more hashings for the new encryption algorithm,
as well as two more hashings but one re-encryption for the new decryption process.

6.4.1 Description

The re-encryption cost is the main drawback of these conversions for practical purposes. There-
fore, Okamoto and the author tried and succeeded in providing a conversion that is both secure and
efficient [59]: REACT, for “Rapid Enhanced-security Asymmetric Cryptosystem Transform”. It is ac-
tually quite similar to the BR construction, excepted that it applies to any trapdoor one-way function,
not permutations only.

K': Key Generation — (pk,sk)

(pk, sk) «— KC(1%)

— (pk, Sk)

£": Encryption of m € M’ = {0,1}¢ — (a,b,¢)
R €M and r € R are randomly chosen
a=Ex(R;r) b=m&G(R) c¢=H(R,m,a,b)
— (a, b, c) is the ciphertext

D': Decryption of (a,b,c)

Given a € C, b€ {0,1}f and c € {0,1}"

R:Dsk(a) m = b@g(R)

if c="H(R,m,a,b) and R € M — m is the plaintext
(otherwise, “Reject: invalid ciphertext”)

Figure 13: Rapid Enhanced-security Asymmetric Cryptosystem Transform REACT = (K, &', D’)
The latter conversion is indeed very efficient in many senses
e the computational overhead is just the cost of two hashings for both encryption and decryption

e if one can break IND-CCA of the resulting scheme with an expected time 7', one can break OW-
PCA of the basic scheme within almost the same amount of time, with a low overhead (not as
with OAEP). It thus provides a practical security result.

Let us describe this generic conversion REACT [59] on any encryption scheme S = (K, &, D)
E:PKxMxR — C, D:SK x C— M,

37

where PK and SK are the sets of the public and private keys, M is the messages space, C is the
ciphertexts space and R is the random coins space. One should remark that R may be small and
even empty, with a deterministic encryption scheme, such as RSA. But in many other cases, such as
the El Gamal encryption, it is as large as M. We also need two hash functions G and H,

G:M— {0,1}, H:Mx{0,1}* x C x {0,1}* — {0,1}",

where x is the security parameter, while £ denotes the size of the messages to encrypt. The REACT
conversion is depicted on Figure 13.

6.4.2 Security Result

About this construction, one can prove:

Theorem 11 Let A be a CCA-adversary against the semantic security of the encryption scheme
REACT = (K',&',D’). Assume that A has advantage ¢ and running time 7 and makes gq4, g4
and gy, queries to the decryption oracle, and the hash functions G and H, respectively. Then

Succh—Pca(T/) 2 E _ @ _ q_h
with ’7'/ < + (Qg + Qh) . Tpcaa

where T,c, denotes the times required by the PCA oracle to answer any query.

Proof. In the following we use starred letters (r*, a*, b*, ¢* and y*) to refer to the challenge
ciphertext, whereas unstarred letters (r, a, b, ¢ and y) refer to the ciphertext asked to the decryption
oracle.

Game Gg: A pair of keys (pk,sk) is generated using IC(1¥). Adversary A; is fed with pk, and
outputs a pair of messages (mg,m1). Next a challenge ciphertext is produced by flipping a coin b
and producing a ciphertext y* = a*||b*||c* of m;. This ciphertext comes from random R* £ M and
r* &£ R and a* = Eok(R*,1%), b* = myp @ G(R*) and ¢ = H(R*, my,a*,b*). On input y*, Az outputs
bit . In both stages, the adversary is given additional access to the decryption oracle DY, . The only
requirement is that the challenge ciphertext cannot be queried from the decryption oracle.

We denote by Sp the event &’ = b and use a similar notation S; in any G; below. By definition, we
have

PrSol = 5 + 5. (32)

N ™

Game Gi: In this game, one makes the classical simulation of the random oracles, with random
answers for any new query, as shown on Figure 14. This game is clearly identical to the previous one.

Game Go: One randomly chooses h™ & {0,1}", and uses it instead of H(R*, m*,a*,b*).

» Rule Chal-Hash®

The value A+ & {0,1}" has been chosen ahead of time, choose randomly
R* and r*, then set
a* =Exk(RY, 1Y), ¢~ =G(R*), b*=m*®g*, " =h".

The two games Gy and G are perfectly indistinguishable unless (R*, m*, a*, b*) is asked for H, either
by the adversary or the decryption oracle. But the latter case is not possible, otherwise the decryption
query would be the challenge ciphertext itself. More generally, we denote by AskRy the event that R*
has been asked to G or to H, by the adversary. We have:

| Pr[Sy] — Pr[S1] | < Pr[AskRs] (33)

Game Gj3: We start modifying the simulation of the decryption oracle, by rejecting any ciphertext
(al|b||c) for which the corresponding (R, m,a,b) has not been queried to H:

38

. | Query G(r): if a record (r, g) appears in G-List, the answer is g.
éj Otherwise the answer g is chosen randomly: ¢ € {0,1}* and the record (r, g) is added
= in G-List
O | Query H(R,m,a,b): if a record (R, m,a,b, h) appears in H-List, the answer is h.
t'\\i Otherwise the answer h is chosen randomly: h € {0,1}* and the record (R, m,a,b, h)
O | is added in H-List.
o | Query D (allbllc): one applies the following rules:
)
g »Rule Decrypt—R®)
a ‘ Compute R = Dg(a);
Then, compute m = b® G(R), and finally,
»Rule Decrypt—H®W
If ¢ = H(R,m,a,b), one returns m, otherwise one returns
“Reject.”
.. | For two messages (mg,m1), flip a coin b and set m* = my,.
&0
= » Rule Chal—Hash(!)
Z@ Choose randomly R* and r*, then set
@) a* = Epu(R*, 1),
g-=G(R"), b*=m"ag",
& =H(R*,m*,a*,b").
Then, output y* = a*||b*||c*.

Figure 14: Formal Simulation of the IND-CCA Game against REACT

»Rule Decrypt—H®)
Look up in H-List for (R, m,a,b,c). If such a triple does not exist, then
output “Reject”, otherwise output m.

Such a simulation differs from the previous one if the value ¢ has been correctly guessed, by chance:

| Pr[Ss] — Pr[Ss]| < g—j | Pr[AskR3] — Pr[AskRy] | < g—j (34)

Game Gy: In this game, one randomly chooses R E M and r+ & R, and ¢g* kil {0,1}*, and
uses RT instead of R*, r* instead of 7*, as well as g™ instead of G(R*).

» Rule Chal-Hash®

The four values R+ & M, r+ £ R, g+ £ {0,1} and h+ & {0,1}* have

been chosen ahead of time, then set

a* =Ex(RT,rt), =m*@g", &=hn".
The two games G4 and Gg are perfectly indistinguishable unless R* is asked for G, either by the
adversary or the decryption oracle. The former case has already been cancelled in the previous game
in AskRs. The latter case makes no difference since either H(R*,m,a,b) has been queried by the
adversary, which falls in AskR3, or the ciphertext is rejected in both games. We have:

Pr[S4] = Pr[S3] Pr[AskRy] = Pr[AskRs]. (35)
In this game, m* is masked by g, a random value which never appears anywhere else. Thus, the

input to A follows a distribution that does not depend on b. Accordingly:

Pr(Sy] = % (36)

39

Game Gj: Finally, one chooses a™ £ ¢, according the following distribution: R™ En et &

R,at «— Ex(R",rT). This implicitly defines one pair (R*,r1), but the latter is unknown to the
simulator.

» Rule Chal-Hash®

The three values at & C, g* & {0,1}* and At £ {0,1}" have been
chosen/given ahead of time, then set a* = a™, b*=m*®g", c=ht.

The two games G5 and G4 are perfectly indistinguishable.

Game Gg: In the simulation of the decryption oracle, we may reject even earlier, if the corre-
sponding R has not been queried to G:

»Rule Decrypt—R®©®)

Look up in G-List for (R, g) such that R = Dg(a) (using the PCA-oracle).
If no R is found, then output “Reject”.

Note that this game differs from the analogous one for the first generic construction BR, because the
encryption function is not deterministic, as was the permutation f. Such a simulation differs from the
one in the previous game if the value (R, m,a,b) has been queried to H, while G(R) is unpredictable,
and thus m = G(R) @ b in unpredictable too:
dn

| Pr[AskRg] — Pr[AskRs] | < o (37)
One may now note that the event AskRg leads to the plaintext RT of a™ by S in the queries asked to
G and H. By checking all of them, one gets it:

Pr[AskRg] < Succd” P (7 + (g9 + qn)Tpea)- (38)

This construction is very generic, and achieves practical security.

6.4.3 Hybrid REACT

In this REACT conversion, one can even improve efficiency, replacing the one-time pad [87] by any
symmetric encryption scheme: indeed, we have computed some b = m & K, where K = G(R) can be
seen as a session key used in a one-time pad encryption scheme. But one could use any symmetric

Figure 15: Hybrid Rapid Enhanced-security Asymmetric Cryptosystem Transform

encryption scheme (E, D) that is just semantically secure (under no plaintext nor ciphertext attacks).
Indeed, the one-time pad achieves perfect semantic security, against this kind of very weak attacks.
But one can tolerate some imperfection. Anyway, most of the candidates to the AES process (the call
for symmetric encryption schemes, from the NIST, to become the new international standard), and
the AES itself (the winner), resisted to more powerful attacks, and thus can be considered strongly
secure in our scenario. Therefore, plaintexts of any size could be encrypted using this conversion (see
Figure 15), with a very high speed rate.

40

7 Conclusion

10 years ago, Cramer and Shoup proposed the first schemes, for both encryption [23] and signature [24],
with formal security proofs in the standard model (without any ideal assumption). The encryption
scheme achieves IND-CCA under the sole DDH assumption, which says that the DDH problem is
intractable. The signature scheme prevents existential forgeries, even against adaptive chosen-message
attacks, under the Strong RSA assumption [2, 29], which claims the intractability of the Flexible RSA
problem:

Given an RSA modulus N and any y € Z};, produce = and a prime integer e such that
y =z mod N.

Both schemes are very nice because they are the first efficient schemes with formal security proofs
in the standard model, but under stronger computational assumptions. We have not presented them,
nor the reductions either, which can be found in the original papers (or in the slides for the encryption
scheme).

No ideal assumptions (such as the random-oracle model) are required, but stronger computational
assumptions are needed: the final decision for the best for practical use is not easy.

Moreover, even if the schemes are much more efficient than previous proposals in the standard
model, they are still more than twice as expensive as the schemes presented along this paper, in the
random-oracle model. This is enough to rule them out from most of the practical applications. Indeed,
everybody wants security, but only if it is quite transparent. Therefore, provable security must not
decrease efficiency. It is the reason why strong security arguments (which are in an ideal model, but
this can be seen as realistic restrictions on the adversary’s capabilities) for efficient schemes have a
more practical impact than security proofs in the standard model for less efficient schemes.

Of course, quite efficient schemes with formal security proofs are still the target, and thus an
exciting challenge.

References

[1] American National Standards Institute. Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm. ANSI X9.62-1998. January 1999.

[2] N. Bari¢ and B. Pfitzmann. Collision-Free Accumulators and Fail-Stop Signature Schemes without
Trees. In Furocrypt "97, LNCS 1233, pages 480-484. Springer-Verlag, Berlin, 1997.

[3] O. Baudron, D. Pointcheval, and J. Stern. Extended Notions of Security for Multicast Public
Key Cryptosystems. In Proc. of the 27th ICALP, LNCS 1853, pages 499-511. Springer-Verlag,
Berlin, 2000.

[4] M. Bellare. Practice-Oriented Provable Security. In ISW ’97, LNCS 1396. Springer-Verlag, Berlin,
1997.

[5] M. Bellare, A. Boldyreva, and S. Micali. Public-key Encryption in a Multi-User Setting: Security
Proofs and Improvements. In Furocrypt 00, LNCS 1807, pages 259-274. Springer-Verlag, Berlin,
2000.

[6] M. Bellare, A. Boldyreva, and A. Palacio. A Separation between the Random-Oracle Model
and the Standard Model for a Hybrid Encryption Problem, 2003. Cryptology ePrint Archive
2003/077.

[7] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions of Security
for Public-Key Encryption Schemes. In Crypto 98, LNCS 1462, pages 26-45. Springer-Verlag,
Berlin, 1998.

[8] M. Bellare and A. Palacio. GQ and Schnorr Identification Schemes: Proofs of Security against
Impersonation under Active and Concurrent Attacks. In Crypto 02, LNCS 2442, pages 162-177.
Springer-Verlag, Berlin, 2002.

41

[9]

[10]

[11]

[12]

[16]

[17]

[18]

[21]

22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against Dic-
tionary Attacks. In Furocrypt ‘00, LNCS 1807, pages 139-155. Springer-Verlag, Berlin, 2000.

M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient
Protocols. In Proc. of the 1st CCS, pages 62-73. ACM Press, New York, 1993.

M. Bellare and P. Rogaway. Optimal Asymmetric Encryption — How to Encrypt with RSA. In
FEurocrypt "94, LNCS 950, pages 92-111. Springer-Verlag, Berlin, 1995.

M. Bellare and P. Rogaway. The Exact Security of Digital Signatures — How to Sign with RSA
and Rabin. In Furocrypt ‘96, LNCS 1070, pages 399-416. Springer-Verlag, Berlin, 1996.

E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In Crypto
’97, LNCS 1294, pages 513-525. Springer-Verlag, Berlin, 1997.

D. Bleichenbacher. Generating El Gamal Signatures without Knowing the Secret Key. In Furo-
crypt ’96, LNCS 1070, pages 10-18. Springer-Verlag, Berlin, 1996.

D. Bleichenbacher. A Chosen Ciphertext Attack against Protocols based on the RSA Encryption
Standard PKCS #1. In Crypto 98, LNCS 1462, pages 1-12. Springer-Verlag, Berlin, 1998.

D. Boneh, R. DeMillo, and R. Lipton. On the Importance of Checking Cryptographic Protocols
for Faults. In Eurocrypt '97, LNCS 1233, pages 37-51. Springer-Verlag, Berlin, 1997.

E. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design Validations for Discrete Logarithm
Based Signature Schemes. In PKC ’00, LNCS 1751, pages 276-292. Springer-Verlag, Berlin, 2000.

D. R. L. Brown and D. B. Johnson. Formal Security Proofs for a Signature Scheme with Partial
Message Recovery. In CT — RSA ’01, LNCS 2020, pages 126-142. Springer-Verlag, Berlin, 2001.

R. Canetti, O. Goldreich, and S. Halevi. The Random Oracles Methodology, Revisited. In Proc.
of the 30th STOC, pages 209-218. ACM Press, New York, 1998.

S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Murphy, H. te Riele,
K. Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand, F. Morain, A. Muffett, Ch.
Putnam, Cr. Putnam, and P. Zimmermann. Factorization of a 512-bit RSA Modulus. In Furocrypt
00, LNCS 1807, pages 1-18. Springer-Verlag, Berlin, 2000.

B. Chor and R. L. Rivest. A Knapsack Type Public Key Cryptosystem based on Arithmetic in
Finite Fields. In Crypto ’84, LNCS 196, pages 54-65. Springer-Verlag, Berlin, 1985.

J.-S. Coron. On the Exact Security of Full-Domain-Hash. In Crypto 00, LNCS 1880, pages
229-235. Springer-Verlag, Berlin, 2000.

R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure against Adaptive
Chosen Ciphertext Attack. In Crypto 98, LNCS 1462, pages 13-25. Springer-Verlag, Berlin, 1998.

R. Cramer and V. Shoup. Signature Scheme based on the Strong RSA Assumption. In Proc. of
the 6th CCS, pages 46-51. ACM Press, New York, 1999.

W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Informa-
tion Theory, 1T-22(6):644-654, November 1976.

D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing,
30(2):391-437, 2000.

T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.
IEEE Transactions on Information Theory, IT-31(4):469-472, July 1985.

A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions of Identification and Signature
Problems. In Crypto 86, LNCS 263, pages 186-194. Springer-Verlag, Berlin, 1987.

42

[29]

[30]

[31]

32]

[37]

[38]

[39]

[40]

[41]

[42]

E. Fujisaki and T. Okamoto. Statistical Zero Knowledge Protocols to Prove Modular Polynomial
Relations. In Crypto ’97, LNCS 1294, pages 16-30. Springer-Verlag, Berlin, 1997.

E. Fujisaki and T. Okamoto. How to Enhance the Security of Public-Key Encryption at Minimum
Cost. In PKC ’99, LNCS 1560, pages 53—68. Springer-Verlag, Berlin, 1999.

E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric Encryption
Schemes. In Crypto ’99, LNCS 1666, pages 537-554. Springer-Verlag, Berlin, 1999.

E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is Secure under the RSA
Assumption. In Crypto ’01, LNCS 2139, pages 260-274. Springer-Verlag, Berlin, 2001. Also
appeared as RSA-OAEP is Still Alive in the Cryptology ePrint Archive 2000/061. November
2000.

Available from http://eprint.iacr.org/.

E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is Secure under the RSA
Assumption. Journal of Cryptology, 17(2):81-104, 2004.

O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal of

the ACM, 33(4):792-807, 1986.

S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences,
28:270-299, 1984.

S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof Sys-
tems. In Proc. of the 17th STOC, pages 291-304. ACM Press, New York, 1985.

S. Goldwasser, S. Micali, and R. Rivest. A “Paradoxical” Solution to the Signature Problem. In
Proc. of the 25th FOCS, pages 441-448. IEEE, New York, 1984.

S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against Adaptative
Chosen-Message Attacks. SIAM Journal of Computing, 17(2):281-308, April 1988.

C. Hall, I. Goldberg, and B. Schneier. Reaction Attacks Against Several Public-Key Cryptosys-
tems. In Proc. of ICICS ’99, LNCS, pages 2-12. Springer-Verlag, 1999.

J. Hastad. Solving Simultaneous Modular Equations of Low Degree. SIAM Journal of Computing,
17:336-341, 1988.

A. Joux and R. Lercier. Improvements to the general Number Field Sieve for discrete logarithms
in prime fields. Mathematics of Computation, 2000. to appear.

M. Joye, J. J. Quisquater, and M. Yung. On the Power of Misbehaving Adversaries and Security
Analysis of the Original EPOC. In CT — RSA 01, LNCS 2020, pages 208-222. Springer-Verlag,
Berlin, 2001.

KCDSA Task Force Team. The Korean Certificate-based Digital Signature Algorithm. Submission
to IEEE P1363a. August 1998.
Available from http://grouper.ieee.org/groups/1363/.

P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. In Crypto ’96, LNCS 1109, pages 104-113. Springer-Verlag, Berlin, 1996.

P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Crypto 99, LNCS 1666, pages
388-397. Springer-Verlag, Berlin, 1999.

A. Lenstra and H. Lenstra. The Development of the Number Field Sieve, volume 1554 of Lecture
Notes in Mathematics. Springer-Verlag, 1993.

43

[47]

[48]

[49]

[50]

[51]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

A. Lenstra and E. Verheul. Selecting Cryptographic Key Sizes. In PKC ’00, LNCS 1751, pages
446-465. Springer-Verlag, Berlin, 2000.

H.W. Lenstra. On the Chor-Rivest Knapsack Cryptosystem. Journal of Cryptology, 3:149-155,
1991.

J. Manger. A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding
(OAEP) as Standardized in PKCS #1. In Crypto 01, LNCS 2139, pages 230-238. Springer-
Verlag, Berlin, 2001.

G. Miller. Riemann’s Hypothesis and Tests for Primality. Journal of Computer and System
Sciences, 13:300-317, 1976.

D. M’Raihi, D. Naccache, D. Pointcheval, and S. Vaudenay. Computational Alternatives to
Random Number Generators. In Fifth Annual Workshop on Selected Areas in Cryptography
(SAC ’98), LNCS 1556, pages 72-80. Springer-Verlag, Berlin, 1998.

M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen Ciphertext
Attacks. In Proc. of the 22nd STOC, pages 427-437. ACM Press, New York, 1990.

V. I. Nechaev. Complexity of a Determinate Algorithm for the Discrete Logarithm. Mathematical
Notes, 55(2):165-172, 1994.

J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-
committing Encryption Case. In Crypto ‘02, LNCS 2442, pages 111-126. Springer-Verlag, Berlin,
2002.

NIST. Digital Signature Standard (DSS). Federal Information Processing Standards PUBlication
186, November 1994.

NIST. Secure Hash Standard (SHS). Federal Information Processing Standards PUBlication
180-1, April 1995.

NIST. Descriptions of SHA-256, SHA-384, and SHA-512. Available from
http://www.nist.gov/sha/, October 2000.

K. Ohta and T. Okamoto. On Concrete Security Treatment of Signatures Derived from Identifi-
cation. In Crypto 98, LNCS 1462, pages 354-369. Springer-Verlag, Berlin, 1998.

T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryptosystem
Transform. In CT — RSA ’01, LNCS 2020, pages 159-175. Springer-Verlag, Berlin, 2001.

T. Okamoto and D. Pointcheval. The Gap-Problems: a New Class of Problems for the Security
of Cryptographic Schemes. In PKC ’01, LNCS 1992. Springer-Verlag, Berlin, 2001.

D. Pointcheval. Les Preuves de Connaissance et leurs Preuves de Sécurité. PhD thesis, université
de Caen, December 1996.

D. Pointcheval. Chosen-Ciphertext Security for any One-Way Cryptosystem. In PKC' 00, LNCS
1751, pages 129-146. Springer-Verlag, Berlin, 2000.

D. Pointcheval. About Generic Conversions from any Weakly Secure Encryption Scheme into a
Chosen-Ciphertext Secure Scheme. In Proceedings of the Fourth Conference on Algebraic Geom-
etry, Number Theory, Coding Theory and Cryptography, pages 145-162, Tokyo, Japan, 2001.

D. Pointcheval. Practical Security in Public-Key Cryptography. In Proc. of ICISC °01, LNCS
2288. Springer-Verlag, Berlin, 2001.

D. Pointcheval. How to Encrypt Properly with RSA. CryptoBytes, 5(1):10-19, winter/spring
2002.

44

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

D. Pointcheval. Le chiffrement asymétrique et la sécurité prouvée. PhD thesis, université de Paris
VII, May 2002. These d’habilitation.

D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In Furocrypt 96, LNCS
1070, pages 387-398. Springer-Verlag, Berlin, 1996.

D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures.
Journal of Cryptology, 13(3):361-396, 2000.

D. Pointcheval and S. Vaudenay. On Provable Security for Digital Signature Algorithms. Technical
Report LIENS-96-17, LIENS, October 1996.

J. M. Pollard. Monte Carlo Methods for Index Computation (mod p). Mathematics of Compu-
tation, 32(143):918-924, July 1978.

C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen
Ciphertext Attack. In Crypto '91, LNCS 576, pages 433—444. Springer-Verlag, Berlin, 1992.

R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, The Internet Engineering Task Force,
April 1992.

R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public
Key Cryptosystems. Communications of the ACM, 21(2):120-126, February 1978.

RSA Data Security, Inc. Public Key Cryptography Standards — PKCS.
Available from http://www.rsa.com/rsalabs/pubs/PKCS/.

C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In Crypto '89, LNCS 435,
pages 235-251. Springer-Verlag, Berlin, 1990.

C. P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology, 4(3):161—
174, 1991.

C. P. Schnorr and M. Jakobsson. Security of Signed ElGamal Encryption. In Asiacrypt ’00,
LNCS 1976, pages 458-469. Springer-Verlag, Berlin, 2000.

D. Shanks. Class Number, a Theory of Factorization, and Genera. In Proceedings of the Sympo-
stum on Pure Mathematics, volume 20, pages 415-440. AMS, 1971.

H. Shimizu. On the Improvement of the Hastad Bound. In 1996 IEICE Fall Conference, Volume
A-162, 1996. In Japanese.

V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In Furocrypt ’97, LNCS
1233, pages 256—266. Springer-Verlag, Berlin, 1997.

V. Shoup. A Proposal for an ISO Standard for Public-Key Encryption, december 2001. ISO/IEC
JTC 1/SC27.

V. Shoup. OAEP Reconsidered. In Crypto 01, LNCS 2139, pages 239-259. Springer-Verlag,
Berlin, 2001. Also appeared in the Cryptology ePrint Archive 2000/060. November 2000.
Available from http://eprint.iacr.org/.

V. Shoup. OAEP Reconsidered. Journal of Cryptology, 15(4):223-249, September 2002.

J. Stern, D. Pointcheval, J. Malone-Lee, and N. Smart. Flaws in Applying Proof Methodologies
to Signature Schemes. In Crypto ’02, LNCS 2442, pages 93-110. Springer-Verlag, Berlin, 2002.

Y. Tsiounis and M. Yung. On the Security of El Gamal based Encryption. In PKC "98, LNCS.
Springer-Verlag, Berlin, 1998.

45

[86] S. Vaudenay. Cryptanalysis of the Chor-Rivest Scheme. In Crypto '98, LNCS 1462, pages 243-256.
Springer-Verlag, Berlin, 1998.

[87] G. S. Vernam. Cipher Printing Telegraph Systems for Secret Wire and Radio Telegraphic Com-
munications. Journal of the American Institute of FElectrical Engineers, 45:109-115, 1926.

46

