This is the full version of the extended abstract which appears in
Proceedings of the 10th ACM Conference on Computer and Communications Security, pages 241-250
(October 27 — 30, 2003, Washington, DC, USA.)

Security Proofs for an Efficient Password-Based Key Exchange

E. Bresson!, O. Chevassut?, and D. Pointcheval®

! Département Cryptologie, CELAR, 35174 Bruz Cedex, France
Emmanuel .Bresson@m4x.org.
2 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
OChevassut@lbl.gov.
3 ONRS-Ecole normale supérieure, 75230 Paris Cedex 05, France
David.Pointcheval@ens.fr.

Abstract. Password-based key exchange schemes are designed to provide entities communicating over
a public network, and sharing a (short) password only, with a session key (e.g, the key is used for data
integrity and/or confidentiality). The focus of the present paper is on the analysis of very efficient schemes
that have been proposed to the IEEE P1363 Standard working group on password-based authenticated
key-exchange methods, but for which actual security was an open problem. We analyze the AuthA key
exchange scheme and give a complete proof of its security. Our analysis shows that the AuthA protocol and
its multiple modes of operation are provably secure under the computational Diffie-Hellman intractability
assumption, in both the random-oracle and the ideal-cipher models.

1 Introduction

Problem. The need for secure authentication seems obvious when two entities—a client and a server—
communicate on the wired-Internet, but proving an identity over a public link is complex. The method
deployed by the engineers of the Secure Shell protocol (SSH) [2] to determine a client’s identity to
log him/her into another computer, execute commands on a remote machine, and move files from
one machine to another is to ask him to type-in a password. The remote machine maintains the
association between the client name and the password. Another method is to take advantage of a
public-key infrastructure (PKI) to check that an entity knows the secret-key corresponding to the
public-key embedded in a certificate. This method was adopted by the IETF TLS Working Group
to secure the traffic between a web browser and a bank server over the wired-Internet, but work is
currently under way to enrich this “transport layer” security protocol (TLS) with password-based
authentication methods [18].

The primary raison d’étre for password-based authentication is to enable clients to identify them-
selves to servers through a lightweight process since no security infrastructure or special hardware to
carry the passwords is required. One example is when a password is used as a means to establish a
secure communication channel from the computing device a human relies on to the remote machine he
wants to talk to. This process, or password-authenticated key-exchange as it is often termed [6, 7, 21],
provides the two computing devices with a session key to implement an authenticated communication
channel within which messages sent over the wire are cryptographically protected. Humans directly
benefit from this approach since they only need to remember a low-quality string (i.e. 4 decimal digits)
chosen from a relatively small dictionary rather than a high-quality symmetric encryption key.

The fundamental security goal for a password-authenticated key exchange protocol to achieve is
security against dictionary attacks. One can not actually prevent the adversary from guessing a value
for the password and using this value in an attempt to impersonate a player. If the attack fails, the
adversary can eliminate this value from the list of possible passwords. However, one would like this
attack to be the only one the adversary can mount: after n active interactions with some participants
the adversary should not be able to eliminate a greater number of passwords than n. Namely, a passive
eavesdropping should be of no help to the adversary since an off-line exhaustive search on the password
should not get any bias on the actual password. The off-line exhaustive search is called a dictionary
attack.

The need for lightweight authentication processes is even greater in the case of the wireless-Internet.
Wireless nodes are devices with particular mobility, computation and bandwidth requirements (disk-
less base station, cellular phone, pocket PC, palm pilot, laptop computer, base station gateway) that

© ACM Press, 2003.

place severe restrictions when designing cryptographic mechanisms. The TLS protocol has been en-
riched with elliptic-curve cipher suites to run on low-power devices [8] and has within the WAP
Forum evolved into a “transport layer” security protocol to secure mobile-commerce (WTLS) [22].
The Wired Equivalent Privacy (WEP) protocol, which is part of the IEEE 802.11 standard, does rely
on high-quality symmetric encryption keys for protecting the wireless local-area network (WLAN)
traffic between a mobile device equipped with a wireless ethernet-card and a fixed access point, but
the WEP does not specify how the keys are established [9]. Currently, the IEEE 802.11 standard does
not specify any method for key exchange.

Contributions. This paper examines the security of the AuthA password-authenticated key exchange
protocol proposed to the IEEE P1363 Study Group on standard specifications for public-key cryptog-
raphy [20]. Although AuthA has been conjectured cryptographically secure by its authors, it has still
not been proven to resist dictionary attacks [4]. In this paper we provide a complete proof of security
for the AuthA protocol. We work out our proofs by first defining the execution of AuthA in the com-
munication model of Bellare et al. [3] and then adapting the proof techniques recently published by
Bresson et al. [12] for the password-based group key exchange.

We have defined the execution of AuthA in Bellare et al.’s model wherein the protocol entities are
modeled through oracles, and the various types of attacks are modeled by queries to these oracles.
This model enables a treatment of dictionary attacks by allowing the adversary to obtain honest
executions of the AuthA protocol. The security of AuthA against dictionary attacks depends on how
many interactions the adversary carries out against the protocol entities rather than on the adversary’s
computational power. Our analysis shows that some of the AuthA modes of operation achieve provable
security against dictionary attacks in both the random oracle and ideal-cipher models [3,5] under the
computational Diffie-Hellman intractability assumption.

Related Work. The IEEE P1363 Standard working group on password-based authenticated key-
exchange methods [21] has been focusing on key exchange protocols wherein clients use short passwords
in place of certificates to identify themselves to servers. This standardization effort has its roots in the
works of Bellare et al. [3] and Boyko et al. [11], wherein formal models and security goals for password-
based key agreement were first formulated. Bellare et al. analyzed the EKE protocol [6] (where EKE
stands for Encrypted Key Exchange), a classical Diffie-Hellman key exchange wherein the two flows
are encrypted using the password as common symmetric key. While they announced a security result
of this “elegant” and efficient structure in both the random oracle and ideal-cipher models, the full
proof never appeared anywhere. On the other hand, Boyko et al. [11] provided such a proof, but it was
in another security model, the multi-party simulatability model. We thus provide a complete proof
in the Bellare et al. security model, in a model where both a random oracle and an ideal-cipher are
available.

One should note that Boyko et al.’s security result [11] holds in the random oracle model, while
Bellare et al.’s one [3] holds in both the random oracle model and the ideal-cipher one together.
More recent works provided password-based schemes for which security holds in the standard model
only [15-17]. These are either based on general computational assumptions, or on the Decisional Diffie-
Hellman problem (using a variant of the Cramer-Shoup encryption scheme [14].) While relying on a
strong computational assumption, they are neither practical nor very efficient.

These provably secure schemes in the standard model are from a theoretical point of view very
interesting, but fails to be practical. Ideal models (i.e. random-oracle, ideal-cipher) have thus been
defined to provide alternative security results. While not being formal proofs, they give strong evidence
that the schemes are not flawed. They often rely on weaker computational assumptions (e.g. the
computational Diffie-Hellman problem instead of the decisional one.)

More interestingly, EKE later evolved into the proposal AuthA [4], which is formally modeled by
the One-Encryption Key-Exchange (OEKE) in the present paper: only one flow is encrypted (using
either a symmetric-encryption primitive or a multiplicative function as the product of a Diffie-Hellman
value with a hash of the password). The advantage of such a scheme over the classical EKE, wherein
the two Diffie-Hellman values are encrypted, is its easyness of integration. An OEKE cipher enables us

to avoid many compatibility problems when adding password-based capabilities to existing network
security protocols since the initial messages of the security protocols do not need to be modified.
This argument in favor of OEKE was put forward when discussions were under way to enrich the
Transport Layer Security (TLS) protocol with password-based key-exchange cipher suites [18,19]. In
a TLS One-Encryption Key-Exchange initiated by the server, the server does not need to know the
client’s name (a name is mapped to a password by the server using a local database) to compute and
send out the server’s TLS key-exchange message, but does need it to process the incoming client’s
TLS key-exchange message. Therefore, engineers embodied the client’s name in the client’s TLS key-
exchange message rather than embodying it in the client’s TLS hello message [18]. OEKE is thus of
great practical interest, but none of the previous security analyses ever dealt with it.

Our paper is organized as follows. In Section 2, we recall the model and the definitions that
should be satisfied by a password-based key exchange protocol. In Section 3, we show that OEKE,
a “simplified” variant of a AuthA mode of operation, is secure. In Section 4, we build on this result
to show that some of the AuthA modes of operation proposed to the IEEE P1363 Study Group are
secure.

2 Model

In this section we recall the formal model for security against dictionary attacks where the adversary’s
capabilities are modeled through queries. In this model, the players do not deviate from the protocol
and the adversary is not a player, but does control all the network communications.

2.1 Security Model

Players. We denote a server S and a user, or client, U that can participate in the key exchange
protocol P. Each of them may have several instances called oracles involved in distinct, possibly
concurrent, executions of P. We denote client instances and server instances by U’ and S’ (or by I
when we consider any kind of instance).

The client and the server share a low-entropy secret pw which is (uniformly) drawn from a small
dictionary Password of size IN. The assumption of the uniform distribution for the password is just
to make notations simpler, but everything would work with any other distribution, replacing the
probability ¢/N by the sum of the probabilities of the ¢ most probable passwords.

Abstract Interface. The protocol AuthA consists of the following algorithm:

— The key exchange algorithm KeyExcH(U?, S7) is an interactive protocol between U’ and S’ that
provides the instances of U and S with a session key sk.

Queries. The adversary A interacts with the participants by making various queries. Let us explain
the capability that each query captures:

— Execute(U?, S7): This query models passive attacks, where the adversary gets access to honest
executions of P between U’ and S7 by eavesdropping.

— Reveal(I): This query models the misuse of the session key by instance I. The query is only
available to A if the targetted instance actually “holds” a session key and it releases sk to A.

— Send(I,m): This query models A sending a message to instance I. The adversary A gets back
the response I generates in processing the message m according to the protocol P. A query
Send(U?, Start) initializes the key exchange algorithm, and thus the adversary receives the flow
the client should send out to the server.

The Execute-query may at first seem useless since using the Send-query the adversary has the ability
to carry out honest executions of P among parties. Yet the Execute-query is essential for properly
dealing with dictionary attacks. The number g5 of Send-queries directly asked by the adversary does
not take into account the number of Execute-queries. Therefore, g5 represents the number of flows the
adversary may have built by itself, and thus the number of passwords it would have tried.

4

2.2 Security Notions

Freshness. The freshness notion captures the intuitive fact that a session key is not “obviously”
known to the adversary. An instance is said to be Fresh in the current protocol execution if the
instance has accepted and neither it nor the other instance with the same session tag have been asked
for a Reveal-query.

The Test-query. The semantic security of the session key is modeled by an additional query Test([).
The Test-query can be asked at most once by the adversary 4 and is only available to A if the attacked
instance I is Fresh. This query is answered as follows: one flips a (private) coin b and forwards sk
(the value Reveal(I) would output) if b = 1, or a random value if b = 0.

AKE Security. The security notions take place in the context of executing P in the presence of
the adversary A. The game Gameake(A, P) is initialized by drawing a password pw from Password,
providing coin tosses to A, all oracles, and then running the adversary by letting it asking a polynomial
number of queries as described above. At the end of the game, A outputs its guess b’ for the bit b
involved in the Test-query.

We denote the AKE advantage as the probability that A correctly guesses the value of b; more
precisely we define Adv3®(A) = 2Pr[b = b'] — 1, where the probability space is over all the random
coins of the adversary and all the oracles. The protocol P is said to be AKE-secure if A’s advantage

is negligible in the security parameter.

Authentication. Another goal of the adversary is to impersonate the client or the server. In the
present paper, we focus on unilateral authentication of the client, thus we denote by Succ‘;a“th(.A)
the probability that A successfully impersonates a client instance in an execution of P: this means
that a server would accept a key while the latter is shared with no client. The protocol P is said to
be C-Auth-secure if such a probability is negligible in the security parameter.

2.3 Computational Diffie-Hellman Assumption

Let G = (g) be a finite cyclic group of order a ¢-bit prime number ¢, where the operation is denoted
multiplicatively. A (¢,e)-CDH attacker in G is a probabilistic machine A running in time ¢ such that

Succi(4) = PrlA(g",g") = 7] 2 ¢

where the probability is taken over the random values x and y. The CDH-Problem is (¢, ¢)-intractable
if there is no (¢, ¢)-attacker in G. The CDH-assumption states that is the case for all polynomial ¢ and
any non-negligible €.

3 One-Encryption Key Exchange

In this section, we describe OEKE, a “simplified” variant of a AuthA mode of operation [4], and prove
its security in the random oracle and the ideal-cipher models. At the core of this variant resides only
one flow of the basic Diffie-Hellman key exchange encrypted under the password and two protocol
entities holding the same password. It therefore slightly differs from the original EKE [3, 6] in the sense
that only one flow is encrypted using the password; instead of the two as usually done. But then, it is
clear that at least one authentication flow has to be sent. We prove this is enough to satisfy the above
security notions.

3.1 Description of the Scheme

The arithmetic is in a finite cyclic group G = (g) of order a ¢-bit prime number ¢, where the operation
is denoted multiplicatively. Hash functions from {0,1}* to {0,1}% and {0,1}** are denoted Hy and
Hi. A block cipher is denoted (&x, Dy) where k € Password. We also define G to be equal to G\{1},
thus G = {¢” |z € Z}}.

Client U Server S
pw pw
accept « false accept < false
terminate < false terminate < false
v & 1,91 y & [1q—1]
U X
Xe—g°® —2——— Y g¥
S, Y*
Y — Dy (Y) : Y* e Epu(Y)
Ky «—Y”® Kg «— XY

Auth — Hy (US| XY Kv)
sku — Ho(U|ISIIX[|Y|| Kv)
Auth

accept — true —— 2L Ayth < H(U||S|| XY Ks)
if true, accept « true
sks — Ho(U|IS|IX||Y]| Ks)

terminate < true terminate < true

Fig.1. An execution of the protocol OEKE, run by the client U and the server S. The session key is sk =
Ho(U[ISIXNYNY®) = Ho(U IS X[Y] XY).

As illustrated on Figure 1 (with an honest execution of the OEKE protocol), the protocol runs
between a client U and a server S, and the session-key space SK associated to this protocol is {0, 1}60
equipped with a uniform distribution. Client and server initially share a low-quality string pw, the
password, uniformly drawn from the dictionary Password.

The protocol consists of three flows. The client chooses a random exponent x and computes the
value ¢ which he sends to the server. The server in turn chooses a random exponent y, computes
the value ¢¥, and encrypts the latter under the password pw before to send it out on the wire. Upon
receiving the client’s flow, the server computes the Diffie-Hellman secret value ¢g*¥, and from it the
session key sk. Upon receiving the server’s flow, the client decrypts the ciphertext, computes the Diffie-
Hellman secret value, and an authentication tag Auth for client-to-server unilateral authentication.
The client then sends out this authenticator. If the authenticator verifies on the server side, the client
and the server have successfully exchanged the session key sk.

3.2 Semantic Security

In this section, we assert that under reasonable and well-defined intractability assumptions the protocol
securely distributes session keys. More precisely, in this section, we deal with the semantic security
goal. We consider the unilateral authentication goal in the next section. In the proof below, we do
not consider forward-secrecy, for simplicity, but the semantic security still holds in this context, with
slightly different bounds. The details can be found in the Appendix D. However, remember that any
security result considers concurrent executions.

Theorem 1. Let us consider the OEKE protocol, where SK is the session-key space and Password is
a finite dictionary of size N equipped with the uniform distribution. Let A be an adversary against
the AKFE security of OEKE within a time bound t, with less than qs interactions with the parties and
qp passive eavesdroppings, and, asking qn hash-queries and q. encryption/decryption queries. Then we
have
(QQe +3¢s + 3Qp)2 Q}QZ + 4qs

+ .

qg—1 24

where t' <t + (gs + qp + g + 1) - 7¢, with 7¢ denoting the computational time for an exponentiation
in G. (Recall that q is the order of G.)

oeke

Adve_(A) < 3 x qﬁ + 8gp, x Succsh(#) +

This theorem shows that the OEKE protocol is secure against dictionary attacks since the advantage
of the adversary essentially grows with the ratio of interactions (number of Send-queries) to the number
of passwords. This is particularly significant in practice since a password may expire once a number of
failed interactions has been achieved, whereas adversary’s capability to enumerate passwords off-line
is only limited by its computational power. Of course, this security result only holds provided that the
adversary does not solve the computational Diffie-Hellman problem.

Proof (of Theorem 1). In this section we incrementally define a sequence of games starting at the real
game Gg and ending up at Gs.

Game Gg: This is the real attack game, in the random oracle and ideal-cipher models. Several oracles
are thus available to the adversary: two hash oracles (Hy and H;), the encryption/decryption oracles
(€ and D), and all the instances U’ and S’ (in order to cover concurrent executions). We define several
events in any game Gy,:

— event S, occurs if b = ¥', where b is the bit involved in the Test-query, and ¥’ is the output of the
AKE-adversary;

— event Encrypt,, occurs if A submits a data it has encrypted by itself using the password;

— event Auth,, occurs if A submits an authenticator Auth that will be accepted by the server and
that has been built by the adversary itself.

By definition,
Adv3e (A) = 2Pr[Sg] — 1. (1)

oeke

In the games below, we furthermore assume that when the game aborts or stops with no answer v’
outputted by the adversary A, we choose this bit &’ at random, which in turn defines the actual value
of the event Si. Moreover, if the adversary has not finished playing the game after ¢; Send-queries
or lasts for more than time ¢, we stop the game (and choose a random bit ¥’), where ¢5 and ¢ are
predetermined upper-bounds.

Game Gj: In this game, we simulate the hash oracles (Hy and H;, but also two additional hash
functions Hy : {0,1}* — {0,1}*2 and H3 : {0,1}* — {0,1}%, with f5 = £y and 3 = /1, that will
appear in Game Gy) and the encryption/decryption oracles, as usual by maintaining a hash list Ay
(and another list A 4 containing the hash-queries asked by the adversary itself) and an encryption list
Ag (see Figure 2) We also simulate all the instances, as the real players would do, for the Send-queries
(see Figure 3) and for the Execute, Reveal and Test-queries (see Figure 4).

From this simulation, we easily see that the game is perfectly indistinguishable from the real attack,
unless the permutation property of £ or D does not hold. One could have avoided collisions but this
happens with probability at most g2/2(q — 1) since |G| = (¢ — 1), where gg is the size of Ag:

2
| Pr[S1] — Pr[So]| < ﬁ (2)

Game Ga: We define game Go by modifying the way the server processes the Send-queries so that
the adversary will be the only one to encrypt data. We use the following rule:

»Rule S1() — Choose a random Y* € G and compute Y = D,,,(Y*). Look for the record
(pw,Y,p, %, Y*) in the list A¢ to define ¢ (we thus have Y = g¢¥), and finally compute
Kg = X¥.

The two games Go and G are perfectly indistinguishable unless ¢ = 1. This happens when
Y™ has been previously obtained as the ciphertext returned by an encryption-query. Note that this
may happen when processing a Send-query, but also during a passive simulation when processing an
Execute-query:

[PriSa] — Prfsa) | < 3)

For a hash-query H;(q) (with ¢ € {0,1,2,3}), such that a record (i,q,r) appears in Ay, the answer is r.
Otherwise the answer 7 is defined according to the following rule:

»Rule H") — Choose a random element r € {0,1}%.

The record (i, q,r) is added to Ax. If the query is directly asked by the adversary, one adds (i,q,7) to A4.

For an encryption-query £x(Z), such that a record (k, Z, %, %, Z*) appears in Ag, the answer is Z*. Otherwise
the answer Z* is defined according to the following rule:

»Rule £ — Choose a random element Z* € G.

Then one adds the record (k, Z, L, &, Z*) to Ag¢.

For a decryption-query Dx(Z*), such that a record (k, Z, %, *, Z*) appears in Ag, the answer is Z. Otherwise,
one applies the following rule to obtain the answer Z:

»Rule D — Choose a random element ¢ € Zy,, compute the answer Z = g¥ and add the record
(k, Z, 0, D, Z*) to Ag.

Fig. 2. Simulation of the random oracles, and the encryption/decryption oracles

We answer to the Send-queries to the client as follows:

— A Send(U*, Start)-query is processed according to the following rule:
»Rule U1 — Choose a random exponent 6 € Z; and compute X = gg.
Then the query is answered with U, X, and the client instance goes to an expecting state.
— If the client instance U’ is in an expecting state, a query Send(U?, (S,Y™)) is processed by computing
the session key and producing an authenticator. We apply the following rules:
»Rule U2V — Compute Y = Dpy, (Y*) and Ky = y?.
»Rule U3 — Compute the authenticator Auth = H; (U||S||X||Y || Kv) and the session key
sku = Ho(U||S|| X ||Y | Ku).
Finally the query is answered with Auth, the client instance accepts and terminates. Our simulation
also adds ((U, X), (S,Y™), Auth) to Ag. The variable Ay keeps track of the exchanged messages.

We answer to the Send-queries to the server as follows:

— A Send(87, (U, X))-query is processed according to the following rule:
»Rule S1V — Choose a random exponent ¢ € Zy, compute Y = g%, Y* = £,,(Y) and
Ks = X*%.
Finally, the query is answered with S, Y™ and the server instance goes to an expecting state.
— If the server instance S7 is in an expecting state, a query Send(S’, H) is processed according to the
following rules:
»Rule S2(V) — Compute H' = H, (U||S|| X||Y||Ks), and check whether H = H'. If the equality
does not hold, the server instance terminates without accepting.
If equality holds, the server instance accepts and goes on, applying the following rule:
»Rule S3") — Compute the session key sks = Ho(U||S||X||Y||Ks).
Finally, the server instance terminates.

Fig. 3. Simulation of the Send-queries

An Exe_cute(Ui,Sj)-query is processed using successively the simulations of the Send-queries: (U, X) «
Send(U*, Start), (S,Y™) < Send(S7, (U, X)) and Auth < Send(U"’, (S,Y™)), and outputting the transcript
(U, X), (S,Y™), Auth).

A Reveal(I)-query returns the session key (sku or sks) computed by the instance I (if the latter has accepted).

A Test(I)-query first gets sk from Reveal(I), and flips a coin b. If b = 1, we return the value of the session
key sk, otherwise we return a random value drawn from {0, 1}%.

Fig. 4. Simulation of the Execute, Reveal and Test-queries

where ¢g is the number of involved server instances: g5 < gs + ¢p. Furthermore note that from now,
only the adversary may ask encryption queries, since the server is simulated using the decryption
oracle.

Game Gj: In this game, we avoid collisions amongst the hash queries asked by the adversary to H;,
amongst the passwords and the ciphertexts, and amongst the output of the Send-queries. We play the
game in a way that: no collision has been found by the adversary for H1; no encrypted data corresponds
to multiple identical plaintext; at most one password corresponds to each plaintext-ciphertext pair;
abort if two instances of the server have used the same random values. This will help us later on to
prove Lemma 2, the key step in proving Theorem 1. We use the following rules:

»Rule H® — Choose a random element r € {0,1}%. If i = 1, this query is directly asked by
the adversary, and (1,x*,7) € A4, then we abort the game.

Then, for any H, #{(1,%, H) € A4} < 1. But this rule may make the game to abort with probability
bounded by q,%/2él‘H

»Rule £3) — Choose a random element Z* € G. If (%, %, L,E,7Z*) € Ag, we abort the game.

Then, for any Z*, #{(x,*, L,&,Z*) € A¢} < 1. But this rule may make the game to abort with
probability bounded by ¢2/2(g — 1).

»Rule D) — Choose a random element ¢ € Zy and compute Z = g?. If (%, Z,x, %, Z*) € Ag,
we abort the game. Otherwise, we add the record (k, Z, ¢, D, Z*) to Ag.

Then, for any pair (Z,Z*), #{(*, Z,*,%,Z*) € A¢} < 1. But this rule may make the game to abort
with probability bounded by ¢2/2(¢q — 1).

»Rule S1(® — Choose a random Y* € G. If (x,Y*) € Ag, abort the game, otherwise add the
record (j,Y™) to Ag. Then, compute Y = D,,,(Y™*), look for the record (pw,Y, ¢, *,Y*) in Ag
to define ¢ (we thus have Y = ¢¥), and compute Kg = X¥. The variable Ag keeps track of
the messages sent out by the server S.

Then, there is no collision among the Y* outputted by the server instances (and thus the used Y'). But
this rule may make the game to abort with probability bounded by the birthday paradox, q% /2(qg—1),
where gg is again the number of involved server instances.

The two games G and Go are perfectly indistinguishable unless one of the above rules make the
game to abort:

2% + ¢ e
Pr[Ss] — Pr[Sq] | < =&~ 15 h 4
Game Gy: We define game G4 by aborting the executions wherein the adversary may have guessed
the password and used it to send an encrypted data to the client. We achieve this aim by modifying
the way the client processes the queries. We use the following rule:

»Rule U2®) — Look for (pw,*, L,E,Y*) € Ag. If the record is found, define Encrypt, as true
and abort the game. Otherwise, compute Y = D,,,(Y*) and Ki; = Y?.

The two games G4 and Gg are perfectly indistinguishable unless event Encrypt, occurs:
| Pr(S4] - Pr[Ss] | < PrlEncrypt,]. (5)

Game Gs: We define game Gy by aborting the executions wherein the adversary may have been
lucky in guessing the authenticator (that is, without asking the corresponding hash query). We reach
this aim by modifying the way the server processes the queries:

»Rule S2(°) — Check whether H = H’', where H' = H,(U||S|| X||Y || Ks). If the equality does
hold, check if (1,U||S||X||Y||Ks,H) € A4q or (U, X),(S,Y*),H) € Ay. If these two latter
tests fail, then reject the authenticator: terminate, without accepting. If this rule does not
make the server to terminate, the server accepts and moves on.

This rule ensures that all accepted authenticators will come from either the simulator, or an adversary
that has correctly decrypted Y* into Y, (computed Kg) and asked the query to the oracle H;. The two
games Gy and Gy are perfectly indistinguishable unless the server rejects a valid authenticator. Since
Y did not appear in a previous session (since the Game Gg), this happens only if the authenticator
had been correctly guessed by the adversary without asking H; (U||S|| XY || Ks):

as

| Pr[Encrypts] — Pr[Encrypt,] | < 51

q
| Pr[Ss] — Pr[S4]| < 2751 (6)
Game Gg: We define game Gg by aborting the executions wherein the adversary may have guessed
the password (that is the adversary has correctly decrypted Y* into Y') and then used it to build and
send a valid authenticator to the server. We reach this aim by modifying the way the server processes
the queries:

»Rule S2(6 — Check if (U, X),(S,Y*), H) € Ag. If this is not the case, then reject the
authenticator: terminate, without accepting. Check if (1, U||S|| X||Y||*, H) € A 4. If this is the
case, we define the event Authf to be true, and abort the game.

This rule ensures that all accepted authenticators come from the simulator. The two games Gg and Gj
are perfectly indistinguishable unless either (1, U||S|| X ||Y||Ks, H) € Aqor (1, U||S||X||Y||*, H) € A,
which both lead to Authg to be true:

| Pr[Encryptg] — Pr[Encrypt;] | < Pr[Authg] | Pr[S¢] — Pr[S5]| < Pr[Authg]. (7)

Game Gr: In this game, we do no compute the authenticator Auth and the session key sk using
the oracles Hy and Hi, but using the private oracles Hs and Hs so that the values Auth and sk are
completely independent from Hg and Hq, but also Y, pw and any of Ky or Kg. We reach this aim by
using the following rules:

»Rule U3(W — Compute the session key sky = Ha(U||S||X||Y*) and the authenticator
Auth = Hy(U]|S|X[[Y*).

»Rule S3(") — Compute the session key skg = Ho(U||S|| X[Y*).

Since we do no longer need to compute the values Ky and Kg, we can also simplify the way client
and server process the queries:

»Rule U2(" — Look for a record (pw,*, L,E,Y*) in Ag. If the record is found, we define
Encrypt; as true and abort the game.

»Rule S1(7 — Choose a random Y* € G. If (%,Y*) € Ag, one aborts the game, otherwise
adds the record (j,Y*) to Ag. Then, compute Y = Dy, (Y*).

The games G7 and Gg are indistinguishable unless the following event AskH occurs: A queries
the hash functions Hy or H; on U||S||X||Y|| Ky or on U||S||X| Y| Kg, that is on the common value
UlISI XY ICDH(X, Y):

| Pr[Encrypt;| — Pr[Encryptg] | < Pr[AskH7] | Pr[S7] — Pr[Se] | < Pr[AskH-]
| Pr[Auth?] — Pr[Authg] | < Pr[AskH7]. (8)

Lemma 2. The probabilities of the events Sz, Encrypt,, and Auth’ in game G can be upper-bounded
by the following values:
1 s

Pr[S7] = 3 Pr[Encrypt,] < 2?]\7

Pr[Auth’] < 2‘—’];. 9)

10

Proof. The formal proof of this lemma can be found in the Appendix A.1. The main idea in simulating
this game is to choose the password pw at the end of the game. The password pw is in fact only needed
to determine whether the events Encrypt,; or Auth’ have occurred, and it turns out that determining
whether these events have occurred can be postponed until the time limit has been reached or the
adversary has asked g5 queries. The probabilities of Encrypt; or Auth’, can then be easily upper-bounded
since no information, in the information theoretical sense, about the password pw is known by the
adversary along this simulation. a

Game Gg: In this game, we simulate the executions using the random self-reducibility of the
Diffie-Hellman problem, given one CDH instance (A, B). We do not need to known the values of 6 and
, since the values Ky or Kg are no longer needed to compute the authenticator and the session keys:

»Rule U1(®) — Choose a random element « € Zy, and compute X = A®. Also add the record
(Oz, X) to AA.

»Rule D® — Choose a random element 3 € Zy, and compute the answer Z = BB Also add
the record (8, Z) to Ap. If (x, Z,*,%, Z*) € Ag then we abort the game; otherwise we add the
record (k,Z, L, D, Z*) to Ag.

Pr[AskHs] = Pr[AskHs]. (10)

Remember that AskHg means that the adversary A had queried the random oracles Hy or Hi
on U||S||X||Y]|Z, where Z = CDH(X,Y). By picking randomly in the A4-list we can get the Diffie-
Hellman secret value with probability 1/g,. This is a triple (X,Y,CDH(X,Y")). We can then simply
look in the lists A4 and Ap to find the values o and such that X = A% and Y = B?:

CDH(X,Y) = CDH(A®, B%) = CDH(4, B)*".

Thus:
Pr[AskHg] < g, Succ(¢'). (11)

This concludes the proofs (the details of the computations can be found in the Appendix A.2. Simply
note that gg is the size of Ag, which contains all the encryption/decryption queries directly asked by
the adversary, but also all the decryption queries made by our simulation: at most one per Send-query
(direct or through Execute-queries), which makes g¢ < ¢e + ¢s + gp. Similarly, ¢g is the number of
involved server instances, and thus gs < ¢s + ¢p. Furthermore, one can easily see that in this last
game, t' <t+ (¢gs+¢qp+ge +1) - 1G. O

3.3 Unilateral Authentication

The following theorem shows that the OEKE protocol furthermore ensures authentication from client
to server, in the sense that a server instance will never accept an authenticator that has not actually
been sent by the corresponding/expected client instance with probability significantly greater than

qs/N.

Theorem 3. Let us consider the OEKE protocol, where SK is the session-key space and Password a
finite dictionary of size N equipped with the uniform distribution. Let A be an adversary against the
AKE security of OEKE within a time bound t, with less than qs interactions with the parties and g
passive eavesdroppings, and, asking qn hash-queries and qe encryption/decryption queries. Then we

have))
(2(16 + 3¢5 + 3C.7p) q, + 4q,

2(¢—1) 2641

where t <t + (qs + gp + ge + 1)7G, with 7¢ denoting the computational time for an exponentiation in
G. (Recall that q is the order of G.)

s
X

Advcfauth (A) <

oeke

+ 3qp, x Succg(t') +

o1 o
2[R

Proof. The proof is similar to the previous one. But one can find more details in the Appendix B. O

11

Client Server
pwy pws = gpwU
accept « false accept < false
terminate < false terminate < false
v & 1,q-1] y & 1,g-1]
Xe—g" X=X Y g¥, Y Epug(Y)
UX* U X*
S, Y* S, Y™
Y « Dpug(Y?), Ky« Y" X X", Ks— XY
PWy « YPU PWs «— pws¥

My — HU|S|X|Y] Ko)
Auth — H(MKy||PWy)
sku — H(M Kyl|0)
accept « true
Auth Auth

MKs — H(U|IS| XY Ks)

Auth = H(MKs|PWs)
if true, accept < true
sks — H(MKs||0)

terminate < true terminate < true

Fig. 5. The AuthA protocol run by the client U and the server S — The session key for U is sky = H(H(U||S|| X||Y||Y*)]|0).
The session key for S is sks = H(H(U||S|| X||Y]X")]0).

4 Applications

We describe some applications of our security results. We first show that some of the AuthA modes
of operations [4] proposed to the IEEE P1363 Standard working group encompass particular cases of
OEKE. Then, we make the ideal-cipher model more concrete.

4.1 Verifier-based Key Exchange

The AuthA protocol standardized by the IEEE organization is slightly different from our protocol
since client and server do not share a password pw. The AuthA has an added mechanism preventing
an adversary corrupting the password table of a server from impersonating a client at once. The AuthA
protocol takes advantage of the asymmetric cryptography principles when generating the passwords
hold by the client and the server. The client holds a derived password pwy = H'(U||S||PW) (where
PW is the actual password, and pwy has the same entropy but in Zg) and the server holds a value
pwg derived from the latter password as follows pwg = gP¥V. It has the same entropy as PW too. It
is then straightforward to modify our protocol to make use of these values pwy and pwg rather than
just the shared password pw (see Figure 5): pwg plays the role of the common password, and

Ho(U||SIIXY [|12) — HHUS[X[Y|2)]10) HAUISIXNY][2) — HHUIS[XNY2)[[Y 7).
As a consequence, one can claim exactly the same security results about this scheme as the ones

stated in the Theorems 1 and 3. More details can be found in the Appendix C.

4.2 The AuthA Modes of Operation

When engineers choose a password-based key exchange scheme, they take into account its security,
computation and communication efficiency, and easiness of integration. Since they do not all face the

12

same computing environment, they may want to operate the AuthA protocol in different ways: encrypt
both flows of the basic Diffie-Hellman key exchange; achieve mutual-authentication; the server sends
out the first protocol flow. These different ways have already been described in [4] and do not seem to
alter the security of the AuthA protocol. But more precise security analyses similar to the above ones
should be performed before actually using the other modes.

4.3 Instantiating the Encryption Function

It is clear that a simple block-cipher can not be used in place of the ideal-cipher required by the security
result. We indeed need permutations onto G for all the secret keys, otherwise partition attacks can be
mounted [10]. In specific cases where the encoding of the elements is compact, on can use the iterated
technique [1]: one encrypts the element, and reencrypts the result, until one finally falls in the group G.
Decryption operates the same way. With well-chosen elliptic curves, the average number of iterations
can be bounded by 2. Furthermore, the size of the blocks can thus be less than 256 bits. However, one
must be careful in the implementation to prevent timing attacks.

A promising avenue is to also instantiate the encryption primitive as the product of a Diffie-
Hellman value with a hash of the password, as suggested in AuthA [4]. Preliminary investigations have
shown that this multiplicative function leads to a password-based key-exchange scheme secure in the
random-oracle model only [13].

5 Conclusion

The reductions presented in this paper are not optimal, but our intend was to present easy to read,
understand and meaningful proofs rather than very efficient ones. We think that the terms 3¢s/2N
or 3¢s/N can be improved to ¢s/N, but the proof would then in turn becomes very intricate. For
technical reasons the hash function H; used to build the authenticator has to be collision-resistant in
our proofs, but the authors of AuthA [4] suggest to use a 64-bit authenticator. This may turn out
to be enough in practice, but the proof presented in the paper would then need to be modified. It,
however, seems a bad idea to use the same hash function H everywhere in AuthA.

Acknowledgments

The second author was supported by the Director, Office of Science, Office of Advanced Scientific
Computing Research, Mathematical Information and Computing Sciences Division, of the U.S. De-
partment of Energy under Contract No. DE-AC03-76SF00098. This document is report LBNL-51868.
Disclaimer available at http://www-1library.1lbl.gov/disclaimer.

References

1. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-Privacy in Public-Key Encryption. In Asiacrypt 01,
LNCS 2248, pages 566—-582. Springer-Verlag, Berlin, 2001.

2. M. Bellare and T. Kohno and C. Namprempre. Authenticated Encryption in SSH: Provably Fixing the SSH Binary
Packet Protocol. In Proc. of the 9th CCS. ACM Press, New York, 2002.

3. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against Dictionary Attacks. In
FEurocrypt 00, LNCS 1807, pages 139-155. Springer-Verlag, Berlin, 2000.

4. M. Bellare and P. Rogaway. The AuthA Protocol for Password-Based Authenticated Key Exchange. Contributions
to IEEE P1363. March 2000. Available from http://grouper.ieee.org/groups/1363/.

5. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient Protocols. In Proc.
of the 1st CCS, pages 62-73. ACM Press, New York, 1993.

6. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols Secure against Dictionary
Attacks. In Proc. of the Symposium on Security and Privacy, pages 72-84. IEEE, 1992.

7. S. M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-Based Protocol Secure against
Dictionary Attacks and Password File Compromise. In Proc. of the 1st CCS, pages 244-250. ACM Press, New York,
1993.

13

8. S. Blake-Wilson, V. Gupta, C. Hawk, and B. Moeller. ECC Cipher Suites for TLS, February 2002. IEEE RFC
20296.

9. N. Borisov, I. Goldberg, and D. Wagner. Intercepting Mobile Communications: The Insecurity of 802.11. In Proc.
of ACM International Conference on Mobile Computing and Networking (MobiCom’01), 2001.

10. C. Boyd, P. Montague, and K. Nguyen. Elliptic Curve Based Password Authenticated Key Exchange Protocols. In
ACISP 01, LNCS 2119, pages 487-501. Springer-Verlag, Berlin, 2001.

11. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password Authenticated Key Exchange Using Diffie-Hellman.
In Eurocrypt *00, LNCS 1807, pages 156-171. Springer-Verlag, Berlin, 2000.

12. E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman Key Exchange Secure against Dictionary
Attacks. In Asiacrypt 02, LNCS 2501, pages 497-514. Springer-Verlag, Berlin, 2002.

13. E. Bresson, O. Chevassut, and D. Pointcheval. Encrypted Key Exchange using Mask Generation Function. Work in
progress.

14. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext
Attack. In Crypto 98, LNCS 1462, pages 13-25. Springer-Verlag, Berlin, 1998.

15. O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords Only. In Crypto 01, LNCS 2139,
pages 408-432. Springer-Verlag, Berlin, 2001.

16. J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Exchange Using Human-Memorizable
Passwords. In Furocrypt ‘01, LNCS 2045, pages 475-494. Springer-Verlag, Berlin, 2001.

17. J. Katz, R. Ostrovsky, and M. Yung. Forward Secrecy in Password-only Key Exchange Protocols. In Proc. of SCN
’02, 2002.

18. M. Steiner, P. Buhler, T. Eirich, and M. Waidner. Secure Password-Based Cipher Suite for TLS. ACM Transactions
on Information and System Security (TISSEC), 4(2):134-157, 2001.

19. D. Taylor. Using SRP for TLS Authentication, november 2002. Internet Draft.

20. IEEE Standard 1363-2000. Standard Specifications for Public Key Cryptography. IEEE. Available from
http://grouper.ieee.org/groups/1363, August 2000.

21. IEEE Standard 1363.2 Study Group. Password-Based Public-Key Cryptography. Available from
http://grouper.ieee.org/groups/1363/passwdPK.

22. Wireless Application Protocol. Wireless Transport Layer Security Specification, February 2000. WAP TLS, WAP-
199 WTLS.

A Complements for the Proof of Theorem 1

A.1 Proof of Lemma 2

Game G7: In this game, we compute the authenticator sky and the session key skg using the private
oracles Hs and Hs as depicted on Figure 6. Generating these values by querying the private oracles
only X and Y™* enable us to no longer need to compute the values Y, Ky, and Kg for the simulation,
but just to compute them at the end with the actual value of pw for defining the events Encrypt, and
Auth’.

The Rule U2("), Rule S1(" and Rule S2(7) can indeed be rewritten as rules that do not need
the password along the simulation, but only make use of it at the end of the simulation. One can
easily see on Figure 7 that the Rule U2—|—(7) and Rule S2—|—(7) are not useful for the simulation, but
that they are only useful to determine whether events Encrypt; or Auth’ occurred. They can thus be
postponed until the adversary has asked ¢s queries, or time limit expired. But then, one can note that
the password pw is not used anymore, until these last rules are proceeded: one can run the simulation,
without any password, and just choose it before processing these two rules.

Let us denote by R(U) the set of Y* received by a client instance, and by R(S) the set of (H,Y™)
used by a server instance. From an information theoretical point of view, since we have avoided
collisions in the Game Gg,

#R(U)

Pr[Encrypt,] = Pr[3Y™* € R(U), (pw,*, L,E,Y™) € A¢g] < —
pw

R(S
PriAutht] = Pr(3(H,Y*) € R(S), Y « Dyus(¥*), (LUNSIX[Y |, 1) € 4] < T02)
pw
By definition of the sets R(U) and R(S), since Y* is received in the second query to the user, and H
in the second query to the server, the cardinalities are both upper-bounded by ¢5/2.
Moreover, the session keys are random, independent from any other data (from an information

theoretical point of view, since Hy and Hs are private random oracles). Then, Pr[S7] = 1/2. O

14

We answer to the Send-queries to the client as follows:

— A Send(U*, Start)-query is processed according to the following rule:
»Rule U1 — Choose a random exponent 0 € Z; and compute X = q°.
Then the query is answered with U, X, and the client instance goes to an expecting state.
— If the client instance U’ is in an expecting state, a query Send(U?, (S,Y™*)) is processed by computing
the session key and producing an authenticator. We apply the following rules:
»Rule U2 — Lookup (pw,*, L,E,Y™) € Ag. If found, define Encrypt, as true and abort the
game.
»Rule U3™ — Compute the session key sky = H2(U||S||X||Y*) and the authenticator
Auth = Hs(U||S|| X||]Y™).
Finally the query is answered with Auth, the client instance accepts and terminates. OQur simulation
also adds ((U, X), (S,Y™), Auth) to Ag.

We answer to the Send-queries to the server as follows:

— A Send(S7, (U, X))-query is processed according to the following rule:
»Rule S17 — Choose a random Y* € G. If (*,Y™) € Ag, one aborts the game, otherwise
adds the record (j,Y™) to Ag. Then, compute Y = D, (Y).
Finally, the query is answered with S, Y™* and the server instance goes to an expecting state.
— If the server instance S7 is in an expecting state, a query Send(S?, H) is processed according to the
following rules:

»Rule S2(7 — Check if (X,Y*, H) € Ay. If this is not the case, then reject the authenticator:
terminate, without accepting. Check if (1, U||S|| X||Y||*, H) € A.a. If this is the case, we define
the event Auth’ to be true, and abort the game.

If the server instance has not terminated, it accepts and moves on to apply the following rule:

»Rule S3(” — Compute the session key sks = Hao(U||S||X|[Y*).

Finally, the server instance terminates.

Fig. 6. Simulation of the Send-queries in Gr

We first rewrite the Rule U2:

»Rule U2-(" — Does nothing.

»Rule U2+ — Lookup (pw,*, L,E,Y™) € Ag. If found, define Encrypt, as true (and abort the
game).

We then modify the organization of the Rule S1 and the Rule S2:

»Rule S1-(" — Choose a random Y* € G. If (*,Y™) € Ag, one aborts the game, otherwise adds
the record (j,Y™) to As.

»Rule S2-(7 — Check if (U, X), (S,Y™*), H) € Ay. If this is not the case, then reject the authen-
ticator: terminate, without accepting.

»Rule S2+(— Compute Y = D,,,(Y™*), and lookup (1,U||S||X||Y ||, H) € Aa. If found, define
Auth? as true (and abort the game).

Fig. 7. Rewriting of some Rules in G~

A.2 Conclusion of the Proof of Theorem 1

15

By summing up all the relations, one completes the proof. From Equations (1), (2), (3), (4) and (5),

2 2 2 2
qz qsqs | 29z +qg qh
@D b 2 1) + 5a 1 + PriEncrypty]

2 2
< (2g¢ + gs) L
2(q—1) 20H

| Pr{S] - PrfSo] | <

+ Pr[Encrypt,]

From Equations (6 — 8), | Pr[Encrypt;] — Pr[Encrypt,] | and | Pr[S7] — Pr[S4] | are both upper-bounded

by
ds ds
o + Pr[Authg] + Pr[AskH7] < o + Pr[Auth’] + 2 Pr[AskH~].

Then,

(2¢s +qs5)®> @& 2gs
| Pr[S7] — Pr[So] | < 2= 1) + ont t 5n

+ Pr[Encrypt;] + 2 Pr[Auth?] + 4 Pr[AskH~].

From Equations (9), (10) and (11), one gets

ds
2N

Pr[Authl] < &5
x| Ut?]_2N

Pr[Encrypt;] < Pr[AskH7] < g, Succ@"(t),

which concludes the proof.

B Proof of Theorem 3

We can actually use the proof presented in Section 3.2, since

Advc—auth (A) — PI‘[AUthO]a

oeke

and see that in game Gg, Pr[Authg] = 0, and Equations (2), (3), (4), (5), (6), and (7) extends to

'
2(q—1)
202 +q% g4
2(¢—1) 26

qsqe
q—1

| Pr[Auth;] — Pr[Authg] | < | Pr[Auths] — Pr[Auth;]| <

| Pr[Auths] — Pr[Auths] | <

| Pr[Auths] — Pr[Authy] | < % | Pr[Authg] — Pr[Auths] | < Pr[Authg].

| Pr[Authy] — Pr[Auths] | < Pr[Encrypt,]

(12)

(13)

Then, using Equations (12) from the conclusion of the previous proof, and Equation (8), one gets,

2 2 2 2

_ 2qs +q q
Adveauth(4 < dg asqe £ S h
Yooe (=00 T -1 T a1 T 20

(2qs +gs)* 4} + 2qs
2(¢ - 1) 2641

ds
+ (Pr[Encrypt7] + oo + PriAuth?] +2 Pr[AskH7]>

<

+ (Pr[Auth?] + Pr[AskH])

(2q¢ + gs)? N g7 + 4qs
2(g—1) 2641

which concludes the proof, using Equation (13).

q
+ Pr[Encrypt,| + 2781 + Pr[Authg]

+ Pr[Encrypt;] + 2 Pr[Auth?] 4 3 Pr[AskH7],

16

C Security Proof of AuthA

Proving the security of this new protocol follows the same path as the one in Section 3.2, until the
Game Gg:

Game Gg: In that game, we simulate the executions using the random self-reducibility of the Diffie-
Hellman problem, given one Diffie-Hellman instance (A4, B). We first choose a random element ~ € Zy
and define pwg = A7. We also add the record (v, pwg) to A4.

»Rule U1®) — Choose a random element a € Zy, and compute X = A®. Also add the record
(CM,)() to /1A'

»Rule D® — Choose a random element 8 € Zy, and compute the answer Z = BA. Also
add the record (3, Z) to Ap. If (x, Z,x,%, Z*) € Ag, one aborts the game, otherwise adds the
record (k,Z, L, D, Z*) to Ag.

Pr[AskHs] = Pr[AskH-]. (14)

Remember that AskHg means that the adversary A queried the random oracles Hy or Hi on
U||S[|X]|Y||CDH(X,Y), and thus H on U||S||X||Y||CDH(X,Y) or *||CDH(pws,Y’). By picking ran-
domly in the A 4-list, with probability 1/¢,, we can get the Diffie-Hellman secret value. This is a triple
(X,Y,CDH(X,Y)). One then simply looks up into A4 and Ap to get @ and (3 such that X = A% and
Y = B

CDH(X,Y) = CDH(A%, B?) = CDH(A, B)*¥.

Thus:
Pr[AskHg] < ¢, SuccE(t'). (15)

This concludes the proof. a

D Forward-Secrecy

The previous security results and proofs do not deal with forward-secrecy. Considering forward-secrecy
requires to take into account a new kind of query that we call the Corrupt-query (any other kinds of
queries can still be asked, before but also after this one):

— Corrupt(]): This query models the attacks resulting in the password pw of this party I to be
revealed. A gets back from its query pw but does not get any internal data of I.

Then we define a new flavor of freshness, saying that an instance is Fresh (or holds a Fresh key
sk) if the following conditions hold. First, the instance has computed and accepted a session key.
Second, no Corrupt-query has been made by the adversary since the beginning of the game (before the
session key is accepted). Third, neither it nor its partner have been asked for a Reveal-query.

This security level means that the adversary does not learn any information about previously
established session keys when making a Corrupt-query. We thus denote by Adv?;t‘e_fs(A) the advantage
an adversary can get on a fresh key, in the protocol P, with the ability to make a Corrupt-query.

Theorem 4 (AKE-FS Security). Let us consider the OEKE protocol, where SK is the session-key
space and Password a finite dictionary of size N equipped with the uniform distribution. Let A be an
adversary against the AKE security of OEKE within a time bound t, with less than qs interactions with
the parties and g, passive eavesdroppings, and, asking qp hash-queries and g. encryption/decryption
queries. Then we have

(2¢e + 3¢5 +3¢p)° ¢} + 4qs
+ A=
q—1 24

AdVaEs, B(A) < 8 T+ 4gn(L+ (s + gp)?) x Suec™(¢) +

oeke

where t' <t + (qs + qp + ¢e) - TG, with 7¢ denoting the computational time for an exponentiation in G.
(Recall that q is the order of G.)

17

Proof. To deal with forward-secrecy, we define event Corrupted as the event that A asks a Corrupt-query,
and we refine events Encrypt, Auth, Auth’ and AskH respectively into EncryptBC, AuthBC, AuthBC’
and AskHBC respectively:

EncryptBC,, := Encrypt; < Corrupted AuthBCy := Authg < Corrupted
AuthBC), := Auth), < Corrupted AskHBC), := AskHj, < Corrupted

that is EncryptBC;, AuthBCy, AuthBC), or AskHBCy, respectively occur if Encrypt, Authy, Auth}, or
AskH}, respectively occur before corrupting a player.

We can base the proof on a similar sequence of games as before, but just modifying some rules
before any corruption:

»Rule S2(0) — If (X, Y* H) ¢ Ay, and either Corrupted = false or (Corrupted = true and
(LU|S|X||Y||Ks,H) ¢ Ay), then reject the authenticator: terminate, without accepting.
Moreover, if Corrupted = false and (1, U||S|| X ||Y||*, H) € A4 we define the event AuthBCj to

be true, and abort the game.

»Rule U3 — If Corrupted = false, then compute the session key sky = Ha(U||S| X||Y™*)
and the authenticator Auth = H3(U||S||X||Y™*). Otherwise, compute the session key sky =
Ho(U||S)| X ||Y || Krr) and the authenticator Auth = Hi(U||S|| X ||Y || Kv).

»Rule S3(— If Corrupted = false, then compute the session key skg = Ho(U|S|| X[Y*).
Otherwise, compute the session key skg = Ho(U||S|| X ||Y || Ks).

»Rule U2(" — Lookup (pw,*, L, E,Y*) € Ag. If found, define Encrypt, as true and abort the
game. Otherwise, compute Y = D, (Y*). If Corrupted = false, furthermore define K;; = Y.

»Rule S1(" — Choose a random Y* € G. If (x,Y*) € Ag, one aborts the game, otherwise
adds the record (j,Y™) to Ag. Then, compute Y = D,,,(Y*). If Corrupted = false, furthermore
lookup (pw,Y, @, *, Y*) € Ag to define ¢ (we thus have Y = ¢¥), and compute Kg = X%.

By evaluating the events Encrypt; and Auth7 at the corruption time, one gets as before

(2¢e +qs)* 4}
| Pr[S¢] — Pr[So] | < 2q—1) + 51

+ Pr[EncryptBC,] + % + Pr[AuthBCj],

q q
Pr[EncryptBC,] < NS + 2731

+ qpSucch (') Pr[AuthBC)] < ;;V + g Succsh(¢').

As a consequence,
(2ge +9s)®> @F 2qs

34s cdh 4/
| Pr[S¢] — Pr[So] | < oy T 2an % SuccE"(t') + 2~ 1) + o+ g

(16)

We now go back the game Gg, as presented on Figure 8. We furthermore abort the game where
the events EncryptBCq or AuthBCy happen to be true.

Game Gr7: We now have to make a different analysis: we need to know the private exponents of
(almost) all the instances of the parties, since the adversary may send the authenticator after making
the Corrupt-query, and thus knowing the password. Otherwise, a later Reveal-query would not be
perfect. Therefore, one first bets on an execution (passive or active) to be tested: one chooses a
random index p € {1,...,¢s + ¢p} and a random index v € {1,...,qs + gp}. If the Test-query does
not correspond to the client involved in the u-th Send-query, and the server involved in the v-th Send-
query, then one aborts the game, outputting a random bit b'. Since the Test-query can only be asked
to an instance that has accepted before any corruption and that only simulated keys can be asked,

1 1 1
Pr[S7] = @t o) x Pr[Sg] + (1 - w) X 5

18

We answer to the Send-queries to the client as follows:

— A Send(U*, Start)-query is processed according to the following rule:
»Rule U1 — Choose a random exponent 6 € Z; and compute X = q°.
Then the query is answered with U, X, and the client instance goes to an expecting state.
— If the client instance U’ is in an expecting state, a query Send(U?, (S,Y™*)) is processed by computing
the session key and producing an authenticator. We apply the following rules:
»Rule U2©® — Lookup (pw,*, L,E,Y™) € Ag. If found, define Encryptg as true. Otherwise,
compute Y = Dy, (Y*). Furthermore define Ky = Y.

»Rule U3® — Compute the session key sku = Ho(U||S||X|Y||Kv) and the authenticator
Auth = H1(UHS||XHYHKU)

Finally the query is answered with Auth, the client instance accepts and terminates. Our simulation
also adds (X,Y™, Auth) to Aw.

We answer to the Send-queries to the server as follows:

— A Send(S7, (U, X))-query is processed according to the following rule:
»Rule S1® — Choose a random Y* € G. If (%, Y™) € Ag, one aborts the game, otherwise
adds the record (j,Y™) to Ag. Then, compute Y = Dy, (Y*), lookup (pw,Y, p,*,Y™) € A¢ to
define ¢ (we thus have Y = ¢g¥), and compute Kg = X?.
Finally, the query is answered with S, Y™ and the server instance goes to an expecting state.
— If the server instance S is in an expecting state, a query Send(S?, H) is processed according to the
following rules:
»Rule S2(9 — If (X,Y*,H) ¢ Ay, and either Corrupted = false or (Corrupted = true and
(1, U|S||IX||Y||Ks,H) ¢ Aa), then reject the authenticator: terminate, without accepting.
Moreover, if (1, U||S||X||Y||*, H) € A4 we define the event Authg to be true.
If the server instance has not terminated, it accepts and goes on, applying the following rule:
»Rule S3(°) — Compute the session key sks = Ho(U||S|| XY || Ks).
Finally, the server instance terminates.

Fig. 8. Simulation of the Send-queries in Gg

Then,
Pr[Ss] — % ‘ . (17)

1
‘ Pr[Se] - 5 ’ = (g5 +p)* %

Game Gg: We now inject a CDH instance into this specific execution: we are given (A, B), with the
discrete logarithms a and b

»Rule U1(® — If this corresponds to the p-th instance of the client, set § = a, otherwise,
choose a random element ¢ € Z7. Then compute X = q°.

»Rule D®) — If this corresponds to the v-th instance of the server, set ¢ = b, otherwise choose
a random element ¢ € Z7. Then compute Z = B?. If (¥, Z,*,%,Z*) € Ag, one aborts the
game. One finally adds the record (k, Z, p, D, Z*) to Ag.

The games Gg and Gy are perfectly indistinguishable:
PI’[S7] = PI‘[SS] (18)

Game Gg: In that game, the session key and the authenticator of this specific execution of the
protocol is defined using private random oracles Hy and Hs, independent from Hy and H;. For that,
we modify the following rules:

»Rule U2 — Lookup (pw,*, L,E,Y*) € Ag. If found, define Encryptqy as true. If this does
not correspond to the p-th instance of the client, one computes Y = D,,,(Y*) and defines
Ky =YY (otherwise we won’t need it).

»Rule U3® — If this corresponds to the p-th instance of the client, one computes the
session key sky = Ha2(U||S||X||Y™*) and the authenticator Auth = H3(U||S||X||Y™*). Oth-
erwise, compute the session key sky = Ho(U||S|| X||Y||Kv) and the authenticator Auth =
H(U|SIIXNY | Ky).

19

»Rule S1¥ — Choose a random Y* € G. If (x,Y™*) € Ag, one aborts the game, otherwise adds
the record (j,Y™) to Ag. If this does not correspond to the v-th instance of the server, one
computes Y = Dy, (Y™*), looks up (pw,Y,p,*,Y*) € A¢ to define ¢ (we thus have Y = g¥),
and computes Kg = X% (otherwise we won’t need it).

»Rule S3 — If this corresponds to the v-th instance of the server, one computes the
session key sks = Ha(U||S||X||Y™*). and the authenticator Auth = H3(U|| S| X|Y™*). Oth-
erwise, compute the session key sky = Ho(U||S||X||Y]|Kg) and the authenticator Auth =
HA(U]IS[I XY (| Ks).

The games Gg and Gg are indistinguishable unless the following event AskHg occurs: A queries the
hash functions Hy or Hy on U||S||X||Y||CDH(X,Y):

| Pr[So] — Pr[Ss] | < Pr[AskHs). (19)

Game Gqy: Now, we are not given the discrete logarithms a and b anymore:

»Rule U119 — If this corresponds to the u-th instance of the client, set X = A, otherwise,
choose a random element ¢ € Z7 and compute X = q°.

»Rule DU — If this corresponds to the v-th instance of the server, set Z = B and ¢ = L,
otherwise choose a random element ¢ € Zj and compute Z = B¥. Finally, if (%, Z,%,%, Z*) €
Ag, one aborts the game. One then adds the record (k, Z, p, D, Z*) to Ag.

Since Ky and Kg are not required for this execution of the protocol (the session key and the authen-
ticator are defined using independent private random oracles on X and Y* only), the two games are
indistinguishable:

Pr[Sg] = Pr[S10] Pr[AskHg] = Pr[AskH1q]. (20)

Furthermore, it is now clear that
Pr[AskH1o] = g, x Succ&(¢'). (21)

As a conclusion, from the Equations (16), (17), (18), (19), (20) and (21),

1
‘ Pr[S¢] — 5 ' < 2(gs + qp)2 x Pr[AskHo] < 2(gs + qp)zqh X Succgh(t’).
This security result can definitely be improved using the random self-reducibility of the Diffie-Hellman
problem. Namely, one could remove the factor (g5 + qp)2, but this would make the reduction much
more intricate. O

This extended abstract appeared in
Proceedings of the Cryptographers’ Track at the RSA Conference (CT-RSA ’08)
April 8-11, 2008, 2008, San Francisco, CA, USA — T. Malkin Ed. Springer-Verlag, LNCS 4964, pages 335-351.

Efficient Two-Party Password-Based Key Exchange Protocols in the
UC framework

Michel Abdalla', Dario Catalano?, Céline Chevalier!', and David Pointchevall

1 Ecole Normale Supérieure, LIENS-CNRS-INRIA, Paris, France
2 Universit di Catania, Italy

Abstract. Most of the existing password-based authenticated key exchange protocols have proofs either
in the indistinguishability-based security model of Bellare, Pointcheval, and Rogaway (BPR) or in the
simulation-based of Boyko, MacKenzie, and Patel (BMP). Though these models provide a security level
that is sufficient for most applications, they fail to consider some realistic scenarios such as participants
running the protocol with different but possibly related passwords. To overcome these deficiencies, Canetti
et al. proposed a new security model in the universal composability (UC) framework which makes no
assumption on the distribution on passwords used by the protocol participants. They also proposed a new
protocol, but, unfortunately, the latter is not as efficient as some of the existing protocols in BPR and
BMP models. In this paper, we investigate whether some of the existing protocols that were proven secure
in BPR and BMP models can also be proven secure in the new UC model and we answer this question in
the affirmative. More precisely, we show that the protocol by Bresson, Chevassut, and Pointcheval (BCP)
in CCS 2003 is also secure in the new UC model. The proof of security relies in the random-oracle and
ideal-cipher models and works even in the presence of adaptive adversaries, capable of corrupting players
at any time and learning their internal states.

1 Introduction

Password-based authenticated key exchange (PAKE) protocols allow users to securely establish a
common key over an insecure channel only using a low-entropy, human-memorizable, secret key called
a password. Since PAKE protocols do not require complex public-key infrastructure (PKI) or trusted
hardware capable of storing high-entropy keys, they have become quite popular since being introduced
by Bellovin and Merritt [3].

Due to the low entropy of passwords, PAKE protocols are subject to dictionary attacks in which
the adversary tries to break the security of the scheme by trying all values for the password in the small
set of the possible values (i.e., the dictionary). Unfortunately, these attacks can be quite damaging
since the attacker has a non-negligible probability of succeeding. To address this problem, one should
invalidate or block the use of a password whenever a certain number of failed attempts occurs. However,
this is only effective in the case of online dictionary attacks in which the adversary must be present
and interact with the system in order to be able to verify whether its guess is correct. Thus, the goal
of PAKE protocol is restrict the adversary to online dictionary attacks only. In other words, off-line
dictionary attacks, in which the adversary verifies if a password guess is correct without interacting
with the system, should not be possible in a PAKE protocol.

SECURITY MODELS. Even though the notion of password-based authentication dates back to the
seminal work by Bellovin and Merritt [3], it took several years for the first formal security mod-
els to appear in the literature [5,4]. In [5], Bellare, Pointcheval, and Rogaway (BPR) proposed an
indistinguishability-based security model extending the framework of Bellare and Rogaway [7, 8] while,
in [4], Boyko, MacKenzie, and Patel (BMP) proposed a simulation-based security model based on the
framework of Shoup [18]. In both cases, the level of security provided by the models is quite reasonable
and sufficient for most applications and it captures the intuition given above in which the success of
an adversary in breaking the security of a scheme should be limited to its online attempts.
Unfortunately, as pointed out by Canetti et al. [10], the BPR and BMP security models are not
as general or as strong as they could be and they fail to consider some realistic scenarios such as
participants running the protocol with different but possibly related passwords. To overcome these
deficiencies, Canetti et al. [10] proposed a new security model for PAKE schemes in the universal
composability (UC) framework [9] which makes no assumption on the distribution on passwords used

© Springer-Verlag 2008.

by the protocol participants. Their model was later extended to the verifier-based scenario by Gentry
et al. [13].

In addition to the new security model, Canetti et al. [10] also proposed a new protocol based
on the PAKE schemes by Katz, Ostrovsky, and Yung [15] and by Gennaro and Lindell schemes [12]
and proved it secure in the new model against static adversaries based on standard computational
assumptions. Unfortunately, the new protocol is not as efficient as some of the existing protocols in
BPR and BMP models (e.g., [2,1,15,17]), an issue that can significantly limit its applicability. Given
this limitation, one natural question to ask is whether some of the more efficient protocols that were
proven secure in BPR and BMP models can also be proven secure in the model of Canetti et al. [10].
In this paper, we answer this question in the affirmative by showing that the protocol by Bresson,
Chevassut, and Pointcheval (BCP) [2] is also secure in the model of Canetti et al. [10]. We view this
as the main contribution of our paper.

In addition to proving the security of the BCP protocol in the model of Canetti et al. [10], an-
other contribution of our paper is to show that their protocol remains secure even against adaptive
adversaries, capable of corrupting adversaries at any time and learning their internal states. Despite
this being first time that such a strong security level is achieved in the password-based scenario, we
do not consider this result very surprising given the use of the random-oracle and ideal-cipher models
in the security proof.

ORGANIZATION. In Section 2, we extend the ideal functionality of PAKE protocols to include client
authentication, which not only ensures the parties that nobody else knows the common secret, but
also that they actually share the same secret. As in [10], passwords are chosen by the environment
who then hands them to the parties as input. This is the strongest security model, since it does
not assume any distribution on passwords. Furthermore, it allows the environment to even make
players run the protocol with different (possibly related) passwords. For example, this models a user
mistyping a password. As in [10], we also provide the adversary with a Test-Password query to model
the vulnerability of the passwords (whose entropy may be low). This models the case in which the
adversary tries to impersonate a player by guessing its password. If the guess is correct (which may
happen with non-negligible probability), the adversary should succeed in its impersonation.

Next, in Section 3, we recall the password-based protocol of [2] and prove it secure in the new
extended model, even against adaptive adversaries which can perform strong corruptions at any time.
The proof is given in Section 4. As we mentioned above, this is the first time that such a strong
security level is achieved in the password-based scenario: adaptive and strong corruptions in the UC
framework.

In the appendix, we also provide ideal functionalities for the ideal-cipher and the random-oracle
models [6].

2 Definition of Security

Notations. We denote by k the security parameter. An event is said to be negligible if it happens with

probability that is less than the inverse of any polynomial in k. If G is a finite set, = & G indicates
the process of selecting = uniformly and at random in G (thus we implicitly assume that G can be
sampled efficiently).

The UC Framework. Throughout this paper we assume basic familiarity with the universal com-
posability framework. Here we provide a brief overview of the framework. The interested reader is
referred to [9] for complete details. In a nutshell, security in the UC framework is defined in terms
of an ideal functionality F, which is basically a trusted party that interacts with a set of players to
compute some given function f. In particular, the players hand their input to F which computes f
on the received inputs and gives back to each player the appropriate output. Thus, in this idealized
setting, security is inherently guaranteed, as any adversary, controlling some of the parties, can only
learn (and possibly modify) the data of corrupted players. In order to prove that a candidate protocol

7 realizes the ideal functionality, one considers an environment Z, which is allowed to provide inputs
to all the participants and that aims to distinguish the case where it receives the outputs produced
from a real execution of the protocol (involving all the parties and an adversary A, controlling some
of the parties and the communication among them), from the case where it receives outputs obtained
from an ideal execution of the protocol (involving only dummy parties interacting with F and an ideal
adversary S also interacting with F). Then we say that 7 realizes the functionality F if for every (poly-
nomially bounded) A, there exists a (polynomially bounded) S such that no (polynomially bounded)
Z can distinguish a real execution of the protocol from an ideal one with a significant advantage. In
particular, the universal composability theorem assures us that 7 continues to behave like the ideal
functionality even if it is executed in an arbitrary network environment.

SEsSION ID’s AND PLAYER’S IDS. In the UC framework there may be many copies of the ideal
functionality running in parallel. Each one of such copies is supposed to have a unique session identifier
(SID). Every time a message has to be sent to a specific copy of F, such a message should contain
the SID of the copy it is intended for. Following [10], we decided to make things simple and to assume
that each protocol that realizes F expects to receive inputs that already contain the appropriate SID.
See [10] for further details about this. Moreover we assume that every player starts a new session of
the protocol with input (NewSession, sid, P;, P;, pw, role), where P; is the identity of the player, pw
his or her password, P; the identity of the player with whom he or she intends to share a session key
and role being either client or server.

UC WiTH JOINT STATE. The original UC theorem allows to analyze the security of a system viewed
as a single unit, but it says nothing if different protocols share some amount of state and randomness
(such as a common reference string, for instance). Thus for the application we have in mind, the UC
theorem cannot be used as it is, since different sessions of the protocol share the same random oracles
and the same ideal cipher.

In [11] Canetti and Rabin introduced the notion of universal composability with joint state. In-
formally, they put forward a new composition operation that allows different protocols to have some
common state, while preserving security. Very informally, this is done by defining a multisession ex-
tension F of F, which basically runs multiple executions of F. Each copy of F is identified by means
of a sub-session id (SSID). This means that, if F receives a message m with SSID ssid it hands m to
the copy of F having SSID ssid. If no such copy exists, F invokes a new one on the spot. Notice that,
whenever F is executed, the calling protocol has to specify both the SID (i.e. the usual session id, as
in any ideal functionality) and the SSID.

Adaptive Adversaries. In this paper, we will consider protocols that are secure against adaptive
adversaries, i.e. adversaries that are allowed to arbitrarily corrupt players at any moment during the
execution of the protocol. The adversary corrupts a player by getting complete access to its internal
memory. Note that at the end of an execution of the protocol, the adversary recovers nothing, as if
the internal state has been completely erased. In a real execution of the protocol this is modeled by
letting the adversary 4 obtain the password and the internal state of the corrupted player. Moreover,
the adversary can arbitrarily modify the player’s strategy. In an ideal execution of the protocol, the
simulator S gets the player’s password and has to simulate its internal state, in a way that remains
consistent to what already provided to the environment.

The Random Oracle and the Ideal Cipher For lack of space, a description of these functionalities
is given in Appendix A.

The Password-Based Key-Exchange Functionality With Client Authentication. In this
section, we motivate and present our formulation of an ideal functionality for password-based key
exchange with client authentication (see Figure 1). The starting point for our approach is the definition
for universally composable password-based key exchange with no authentication [10]. Our aim is to
define a functionality that achieves the same effect, except that we also incorporate the authentication
of the client. Mutual authentication would have been easier to model. However, client-authentication
is usually enough in most cases and often results in more efficient protocols.

First notice that the functionality is not in charge of providing the password(s) to the participants
(the client Alice and the server Bob). Rather we let the environment do this. As already pointed out
in [10], such an approach allows to model, for example, the case where some users may use the same
password for different protocols and, more generally, the case where password(s) are chosen according
to some arbitrary distribution (i.e. not necessarily the uniform one). Moreover, notice that allowing
the environment to choose the password(s) guarantees forward secrecy, basically for free.

The queries NewSession and TestPwd are dealt with in the same manner as in [10], but we introduce
the client authentication in the way the functionality answers the NewKey queries. In the definition
of fgj}(1> the server receives an error if the players don’t meet all the conditions to receive the same,
randomly-chosen key. We could have chosen to send to the server a pair consisting of a key chosen
independently from that of the client and a flag warning the server that the protocol has failed, but
we preferred to keep the functionality as straightforward as possible.

CLIENT AUTHENTICATION. The first reason why the initial functionality didn’t achieve this property
is that we had to deal with the order of the queries NewKey. More precisely, if the server asks the
first query, it is impossible to answer it, because we don’t know what is going to happen to the client
afterwards: If the session was fresh for both players and the server was the only one to have received
his key, the client’s session could possibly become compromised or interrupted after the server had
received his key, whereas the functionality should have been able to determine whether or not the
server should receive a key or an error message. We solved this issue by making it mandatory for the
adversary to ask the query for the server after the corresponding query for the client. This is not a
strong restriction, since this situation frequently happens in real protocols, and in particular in the
one that we are studying: the server has to accept the client before generating the session key.

Thus, if the adversary asks for the key of a client, everything is as before, except that we also
provide a flag ready for the session. The aim of this flag is to help determine, when the adversary asks
for the key of the server, that the corresponding client has already got her key.

On the other hand, if the adversary asks for the key of a server, the server is given an error message
in the easy failure cases (interrupted or compromised sessions, corrupted players — if the passwords are
different in the two latter cases). If the session is fresh and the corresponding client hasn’t yet received
her key, we simply postpone the query of the adversary until the client has received her key. In the
latter case, when the client has received her key, the server is given the same key if they have the same
password and an error message otherwise. We finally obtain the following definition, which remains
trivially secure and correct.

3 Our Scheme

3.1 Description of the Protocol

The protocol presented in Figure 2 is based on that of [2], with two slight differences: In the standard
model using the security definition of Bellare et al. [5], the session identifier is obtained at the end of
the program execution as the concatenation of the random values sent by the players; in particular,
it is unique. In contrast, in the model of universal composability [9], these identifiers are uniquely
determined in advance, before the beginning of the protocol. Thus, this difference must be taken care
of in the definition of the protocol. Another difference has been made, in order to match the definition
of the functionality: in case of a failure, the server receives an error message, this feature guaranteeing
the client authentication.

3.2 Security Theorem

We consider here the Theorem of Universal Composability in its joint-state version. Let .7?1%}(
the multi-session extension of fgﬁ{ g and let Fro and Frc be the ideal functionalities that provide
a random oracle and an ideal cipher to all parties. Note that only these two functionalities belong to

the joint state.

g be

— fng g owns a list L initially empty of values of the form (FP;, P;, pw).
— Upon receiving a query (NewSession, ssid, P;, P;, pw, role) from P;:
e Send (NewSession, ssid, P;, P;, role) to S.
o If this is the first NewSession query, or if it is the second NewSession query and there is a
record (Pj, P;,pw’,role) € L, then record (P;, P;, pw,role) in L and mark this record fresh.

— Upon receiving a query (TestPwd, ssid, P;,pw’) from the adversary S:
If there exists a record of the form (P;, Pj, pw, role) € L which is fresh, then do:

e If pw = pw’, mark the record compromised and reply to S with “correct guess”.
e If pw # pw’, mark the record interrupted and reply to S with “wrong guess”.
— Upon receiving a query (NewKey, ssid, P;, sk) from S, where |sk| = k:
If there is a record of the form (P;, P;, pw,role) € L, and this is the first NewKey query for P;, then:
If role=client:

e If the session is compromised, or if one of the two players P; or P; is corrupted, then send (ssid, sk) to P,
record (P;, P;, pw, client, completed) in L, as well as (ssid, P;, pw, sk, client, status, ready) (with status being
the status of the session at that moment).

e Else, if the session is fresh or interrupted, choose a random key sk’ whose length is k and send (ssid, sk’)
to P;. Record (P;, P;,pw,client,completed) in L, as well as (ssid, P;, pw, sk’, client, status, ready) where
status stands for fresh or interrupted;

If role=server:

o If the session is compromised, if one of the two players P; or P; is corrupted, and if there are two records
of the form (P;, P;, pw,server) and (P;, P;, pw, client), set s = sk. Otherwise, if the session is fresh and
there exists any recorded element of the form (ssid, P;, pw’, sk’, client, fresh, ready), set s = sk'.

x If pp = pw', send (ssid,s) to P; record (P, Pj,pw,server,completed) in L, as well
as (ssid, P;, pw, s, server, status).

* If pw # pw', send (ssid,error) to P;, record (P;,Pj,pw,server,completed) in L, as well
as (ssid, P;, pw, server, error, status).

e If the session is fresh and there doesn’t exist any recorded element of the form
(ssid, Pj,pw’, sk’, client, fresh, ready), then do not do anything;

e If the session is interrupted, then send (ssid,error) to player FP;, and record in L
(P;, P;, pw, server, completed) and (sid, P;, pw, server, error, interrupted).

Fig. 1. Functionality ffwAK gt it is parametrized by a security parameter k. It interacts with an adversary S and a set of
parties Pi,...,P,.

6

Theorem 1 The above protocol securely realizes]:"gﬁ{E in the (Fro, Fic)-hybrid model, in the pres-
ence of adaptive adversaries.

Client U Server S
z 1 g-1] y & 1q-1]
U1) X «—g* —

(S2) Y «— ¢¥
Y* gssidl\pw (Y)

—— Kg <« XY

(U3) Y = DssidHPw (Y*)

Ky «Y*

Auth — Hi(ssid|U||S||X||Y || Kv)
sku — Ho(ssid|US|X Y| Kv)

Auth
completed —

(54)

if (Auth = Ha1(ssid||U||S||X||Y || Ks))

then sks «— Ho(ssid||U||S|| XY Ks)
completed

else error

Fig. 2. Client-authenticated two-party password-based key exchange

4 Proof of Theorem 1

4.1 Description of the Proof

In order to show that the protocol UC-realizes the functionality fgﬂAKE, we need to show that for
all environments and all adversaries, we can construct a simulator such that the interactions, from
the one hand between the environment, the players (say, Alice and Bob) and the adversary (the real
world), and from the other hand between the environment, the ideal functionality and the simulator
(the ideal world), are indistinguishable for the environment.

In this proof, we incrementally define a sequence of games starting with the real execution of
the protocol and ending up with game (g, which we prove to be indistinguishable from the ideal
experiment.

Since we have to deal with adaptive corruptions, we consider different cases according to the number
of corruptions that have occurred up to now. Gy is the real world. In G, we start by explaining how
S simulates the ideal cipher and the random oracle. Then, in Gg, we get rid of such a situation in
which the adversary wins by chance. The passive case, in which no corruption occurs before the end
of the protocol, is dealt with in Gs. Next, we completely explain the simulation of the client in Gy,
whatever corruption may occur. As for the server, we divide it into two steps: We first show in Gy how
to simulate the last step of the protocol, and then we simulate it from the beginning in Gg. G7 sums
up the situation, and is shown to be indistinguishable from the ideal world.

Note that these games are sequential and built on each other. When we say that a game consider
a specific case, one has to understand that in all other cases, the simulation is dealt with as described
in the former game.

We first describe two hybrid queries that are going to be used in the games. The GoodPwd query
checks whether the password of a certain player is the one we have in mind or not. The SamePwd query

checks if the players share the same password, without disclosing it. In some games the simulator has
actually full access to the players. In such a case, a GoodPwd (or a SamePwd) can easily be implemented
by simply letting the simulator look at the passwords. When the players are entirely simulated, S will
replace the queries above with a TestPwd and with a NewKey, respectively.

We say that a flow is oracle-generated if it was sent by an honest player and arrives without any
alteration to the player it was meant to. We say it is non-oracle-generated otherwise, that is either if
it was sent by an honest player and modified by the adversary, or if it was sent by a corrupted player
or a player impersonated by the adversary.

4.2 Proof of Indistinguishability

Game Gg: Real Game. Gy is the real game in the random-oracle and ideal-cipher models.

Game Gi: Simulation of the oracles. Here we modify the previous game by simulating the hash
and the encryption/decryption oracles, in a quite natural and usual way.

For the ideal cipher, we allow the simulator to maintain a list A, of entries (queries, responses) of
length g. + ¢p. Such a list is used by S to be able to provide answers which are consistent with the
following requirements. First, if the simulator receives twice the same question for the same password,
it has to give twice the same answer. Second, the simulator should make sure that the simulated scheme
(for each password) is actually a permutation. Third, in order to help the simulator to later extract
the password used in the encryption of Y* in the first flow, there should not be two entries (question,
answer) with identical ciphertext, but different passwords. More precisely, A. is actually composed of
two sublists: Ac = {(ssid,pw,Y,a,E,Y*)} U{(ssid,pw,Y,a,D,Y*)}. The first (resp. second) sublist
is used to indicate that the element Y (resp. Y*) has been encrypted (“£”) (resp. decrypted (“D”)) to
produce the ciphertext Y* (resp. Y) via a symmetric encryption algorithm that uses the key ssid||pw.
The role of o will be explained below. The simulator manages the list through the following rules:

— For an encryption query Eggiq)pw(Y) such that (ssid,pw,Y,x,*,Y*) appears in A., the answer
is Y*. Otherwise, choose a random element Y* € G* = G \ {1}. If a record (x,*,*,*,%,Y™)
already belongs to the list A., then abort, else add (ssid, pw,Y, L,E,Y™) to the list.

— For a decryption query Dggq|pw (Y ™) such that (x, pw,Y,*,,Y™*) appears in A, the answer is Y.
Otherwise, choose a random element ¢ € Z," and evaluate the answer Y = g¥. If (x, %, Y, *, %,)
already belongs to the list A., abort, else add (ssid, pw,Y, ¢, D,Y™) to the list.

The two abort-cases will be useful later in the proof: when one sees a ciphertext Y*, it cannot have
been obtained as the encryption with two different passwords, but a unique one.

In addition, the simulator maintains a list A4 of length ¢,. This list is used to properly manage the
queries for the random oracles Hy and H;. In particular, the simulator updates Ay using the following
general rule (n stands for 0 or 1).

— For a hash query H,(¢) such that (n,q,r) appears in Ay, the answer is 7. Otherwise, choose a
random r € {0, 1} If (n,*,r) already belongs to the list Ay, abort, else add (n,q,r) to the
list.

Due to the birthday paradox, Gy is indistinguishable from the real game Gy.

Game Gy: Case where the adversary wins by chance. This game is almost the same as the
previous one. The only difference is that we allow the simulator to abort if the adversary manages to
guess Auth without having asked a corresponding query to the oracle. This happens with negligible
probability so that Go and G are indistinguishable.

Game Gj3: Passive Case: No Corruption Before Step 4. In this game, we deal with the passive
case in which no corruption occurs before step 4. We give the simulator some partial control on the
players involved in the protocol. In particular, we assume that the simulator is given oracle access to

each player, for the first three rounds of the protocol. Then in 54, if no corruption occurred, we require
S to completely simulate their behavior. More precisely, during this game, we consider two cases. If
no corruption occurred before S4, we require S to simulate the execution of the protocol on behalf
of the two players. If, on the other hand, some party has already been corrupted before starting S4,
the simulator does nothing. Notice that, in any case, we still allow S to know the passwords of both
players.

If at the beginning of 5S4, the two players are still honest and all the flows were oracle-generated,
the simulator asks a SamePwd query. Notice that, since we are assuming that S knows both passwords,
this boils down to verify that both passwords are actually the same.

Now we distinguish two cases. If the two passwords are the same, S chooses a random key K (in
the key space) and “gives” K to all players. Otherwise, S chooses a random key and gives it to the
client whereas the server just receives an error message.

Notice that, if the two players have the same password, such a strategy makes this game indistin-
guishable with respect to previous one. If, conversely, the players do not have the same passwords, an
execution of the protocol in this game is indistinguishable from a real execution except for the risk of
collision, which is negligible. This is because, if the two players do not share the same passwords, the
server will end-up computing a different Auth, thus getting an error message, with all but negligible
probability. Hence G and Gg are indistinguishable.

Game G4: Simulation of the Client From the Beginning of the Protocol. In this game, we
let S simulate the non-corrupted client from the beginning of the protocol, but we don’t allow him to
have access to her password anymore. The simulation is done as follows. In S1, the client chooses a
random z and sends the corresponding X to the server. In S3, if she is still honest, then she doesn’t
ask a decryption query for Y*.

If all flows were oracle-generated, then she computes Auth with the oracle H) private to the simu-
lator: Auth = H) (ssid|U||S|| X]|Y*) instead of H;. A problem can occur if the server gets corrupted,
as we describe it more formally later on.

Otherwise, if the flow received by the client is not oracle-generated, we face two different cases:

— If the server was corrupted sooner in the protocol, the simulator knows his password, or if the
Y™ sent by the adversary in S2 has been obtained via an encryption query, then the simulator
recovers his password too (with the help of the encryption list). Then, when receiving Y™*, the
client asks a GoodPwd query for the functionality. If it is a correct guess, then S uses H; for the
client, otherwise it uses its private oracle H}: Auth = H) (ssid||U|| S| X||Y™*).

— If the adversary has not obtained Y™* via an encryption query, there is a negligible chance that
it knows the corresponding y and the client also uses H} in this case. The event AskH can then
make the game to abort (we will bound its probability later on; simply note that it is negligible
and related to the CDH):

AskH: A queries one of the oracles Hy or H; on
ssid||U||SI| XY ||Ky or ssid||U||S||X||Y]|Ks, ie the common
value of ssid||U||S|| X||Y||CDH(X,Y)

We now show how to simulate the second part of U3 (the computation of sk7). We need to separate
the cases in which the client remains honest, and those in which she gets corrupted.

— If the client remains honest, she is given skyy by a query to Hj if Auth was obtained by a query
to H) and no corruption occurred, and by a query to Hy if Auth was obtained by a query to Hj
or if Auth was obtained by a query to H} and there was a corruption afterwards.

— If she is corrupted during U3, A is given her internal state: the simulator already knows x and
learns her password; it is thus able to compute a correct Y. S then recomputes Auth by a query
to Hy (there is no need that this query gives the same value as the value previously computed by
the query to H) since Auth has not been published) and the client is given sk by a query to Ho.

If the two players are honest at the beginning of S4 and all the flows were oracle-generated, there
will be no problem as in the former game we prevented the server from computing Auth. If the server
gets corrupted after Auth has been sent, and if the passwords are the same, the simulator reprograms
the oracles such that on the one hand Hi(ssid||U||S|| X||Y || Ky) = H)(ssid|U[|S||X||Y*) and on the
other hand Hy(ssid||U|| S| X ||Y || Kv) = Hi(ssid|U||S]| X||Y™*). This programming will only fail if this
query to Hp or Hy has already been asked before the corruption, in which case the event AskH has
happened.

Finally, if the client is being corrupted, S does the same reprogramming.

Thus, omitting the events AskH, which probability will be computed later on, the games G4 and
G3 are indistinguishable.

Game Gj;: Simulation of the Server in the Last Step of the Protocol. In this game, we
let S simulate the non-corrupted server in step S4. More precisely, during this game, we consider two
cases. If no corruption occurred before S4 and all the flows were oracle-generated, the behavior of S
was described in Ggs. If, on the other hand, the client has already been corrupted before starting 5S4,
or if a flow was non-oracle-generated, the simulation is done as follows.

If the client is either corrupted or impersonated by the adversary who has decrypted Y* to obtain
the Y sent in Auth, then the server recovers the password used (by the corruption or by the decryption
list) and he verifies the Diffie-Hellman sent by the client. If it is correct, then the simulator asks a
GoodPwd query for the server (otherwise, the latter is given an error message). If the password is
correct, then the server is given the same key as the client; otherwise, he is given an error message.

If the client is impersonated by the adversary who has sent anything else, we abort the game. This
happens only if it has guessed Y by chance, which happens with negligible probability.

Finally, if the server is corrupted during S4, the adversary is given y and Y. More precisely, the
simulator recovers the password of the server and gives something consistent with the lists to A. Thus,
G5 and G4 are indistinguishable.

Game Gg: Simulation of the Server from the Beginning of the Protocol. In this game, we
let S simulate the non-corrupted players from the beginning of the protocol. We have already seen
how S simulates the client. The simulation, for a non-corrupted server, is done as follows.

In S2, the server sends a random Y™ (chosen without asking the encryption oracle). If he gets
corrupted, the simulator recovers his password, and can then provide the adversary with adequate y
and Y with the help of the encryption and decryption lists. The simulation of S4 has already been
described.

Gg is indistinguishable from Gs, since if the two players remain honest until the end of the game,
they have the same key depending on their passwords and nothing else in Gs. And the case in which
one of the two gets corrupted has been dealt with in the two former games, and the execution doesn’t
depend on the value of Y*, recalling that the encryption is G — G such that there is always a plaintext
corresponding to a ciphertext.

Game G7: Summary of the Simulation and Replacement of the Hybrid Queries. Here
we modify the previous game by replacing the hybrid queries GoodPwd and SamePwd with their ideal
versions. If a session aborts or terminates, then S reports it to A.

Figure 3 sums up the simulation until this point and describes completely the behavior of the
simulator. At the beginning of a step of the protocol, the player is assumed to be honest (otherwise we
don’t have to simulate him or her), and he or she can get corrupted at the end of this step. We assume
that U3 (1) has to be executed before both U3 (2) and U3 (3). But the two last can be executed in
either order. For simplicity, we assume later on that the order is respected.

We show that G7 is indistinguishable from the ideal game by first recalling the only difference
between Gg and Gr: the GoodPwd queries are replaced by TestPwd queries to the functionality and
the SamePwd by NewKey ones. Say that the players have matching sessions if they share the same ssid,
have two opposite roles (client and server) and agree on the values of X and Y*.

10

Client Server Simulation
honest
honest random z, X = g
adversary
U1
honest
gets corrupted reveal z to A
adversary
honest .
honest random Y
adversary
S2 T
honest earn pw
gets corrupted |compute y and Y via decryption query
adversary reveal X, y,Y to A
honest . *
honest no decryption query on Y
adversary
U3 (1) I
honest carn pw
gets corrupted compute y and Y via decryption query
adversary reveal z, X,Y to A
honest use Hj for Auth
GoodPwd(pw) false, use H}
honest 4
adversary GoodPwd(pw) correct, use H
U3 (2) (pw) 1
if pw unknown, abort
honest learn pw
gets corrupted compute y and Y via decryption query
adversary reveal z, X, Y to A
honest use H{, for Auth
U3 (3)|honest GoodPwd(pw) false, use Hg
adversary
GoodPwd(pw) correct, use Ho
if SamePwd correct, then same key sk
honest
if SamePwd incorrect, then error message
if pw unknown, then abort
honest if pw known, DH false, then error
<4 adversary if pw known, DH correct, GoodPwd(pw)

correct, then same key

if pw known, DH correct, GoodPwd (pw)
false, then error

Fig. 3. Simulation and adaptive corruptions

11

First, if the two players remain honest until the end of the game, they will obtain a random key,
both in G7 and IW E (the ideal game), as there are no TestPwd queries and the sessions remain fresh.

We need to show that a honest client will receive the same key as a honest server in Gy if and only
if it happens in IW E. We first deal with the case of client and server with matching sessions. If they
have the same password in Gy, they will receive the same key: if they are honest, their key is given
to them from Gg; if the client is honest with a corrupted server, they will receive their key from Gy;
and if the client is corrupted, they will receive it from Gs.

In IWE, the functionality will receive two NewSession queries with the same password. If both
players are honest, it will not receive any TestPwd query, so that the key will be the same for both
of them. And if one is corrupted and a TestPwd query is done (and correct, since they have the same
password), then they will also have the same key, chosen by the adversary.

If they don’t have the same password in Gy, the server will always be given an error. In IWE,
this is simply the definition of the functionality.

We now deal with the case of client and server with no matching sessions. It is clear that in Gy the
session keys of a client and a server in such a case will be independent because they are not set in any of
the games. In IW E, the only way that they receive matching keys is that the functionality receives two
NewSession queries with the same passwords, and S sends NewKey queries for these sessions without
having sent any TestPwd queries. But if the two sessions do not have a matching conversation, they
must differ in either X, Y* or Auth. The probability that they share the same pair (X, Y™) is bounded
by qg /q and thus negligible, ¢. being the number of encryption queries to the oracle.

If the client is corrupted until the end of the game, then in Gy, the server recovers the password
and uses it in a TestPwd query to the functionality. If it is incorrect, he is given an error message,
and if it is correct, he is given the same key as the client (which was chosen by the simulator). This
is exactly the behavior of the functionality in IWE.

If the server gets corrupted, we still have a TestPwd query concerning the client in Gr. If the
password is correct, the simulator chooses the key, otherwise it is the adversary. The same thing
happens in IW E.

4.3 Simulating Executions via the CDH Problem

As in [2], we compute the probability of event AskH with the help of a reduction to the CDH problem,
given one CDH instance (A, B). More precisely, AskH means that there exists one session in which we
replaced the random oracles Hy or H; by Hj, or H} respectively and A asks the corresponding hash
query. We thus choose at random one session, denoted by ssid, and we inject the CDH instance in
this specific session. With probability 1/qs we have chosen the right session. In this specific session
ssid, we maintain a list Ag, and

— the client sets X = A;

— the server still chooses Y* at random, but the behavior of the decryption is modified on this specific
input Y*, whatever the key is, but only for this session ssid: choose a random element 3 € Z,*
and compute Y = Bg”, and store (8,Y) in the list Ap, as well as the usual tuple in A,. If Y
already belongs in this list, one aborts as before.

Note that this only affects the critical session ssid and doesn’t change anything else. Contrary to the
earlier simulation, we do not know the values of x and ¢, but they are not needed since the values
of Ky and Kg are no longer required to compute the authenticator and the session key: the event
AskH raised for this session (X, Y) means that the adversary has queried the random oracles Hy or H;
on U||S||X||Y||Z, where Z = CDH(X,Y). By choosing randomly in the list A3/, we obtain this Diffie-
Hellman triple with probability 1/gp, where g, is the number of hash queries. We can then simply look
into the list Ap for the values 3 such that Y = Bg®: CDH(X,Y) = CDH(A, Bg®) = CDH(A, B)A”.

Note however that in case of corruption, we may need to reveal internal states, with x and ¢: If
the corruption happens before the end of U3, with the publication of Auth, there is no problem since

12

the random oracles will not be replaced by the private oracles, and then the guess for the session was
not correct, which contradicts the assumption of good choice. If the corruption happens after the end
of U3, with the publication of Auth, there is no problem either:

— the corruption of the client does not reveal any internal state, since she has completed her execu-
tion;

— the corruption of the server leads to a “reprogramming” of the public oracles that immediately
raises the event AskH if the query had already been asked. We can thus stop our simulation, and
extract the Diffie-Hellman value from the list A, without having to wait the end of the whole
attack game.

Acknowledgments

This work was supported in part by the European Commission through the IST Program under
Contract IST-2002-507932 ECRYPT, and by the French ANR-07-SESU-008-01 PAMPA Project.

References

[1] Michel Abdalla and David Pointcheval. Simple password-based encrypted key exchange protocols. In CT-RSA 2005,
LNCS 3376, pages 191-208. Springer-Verlag, Berlin, Germany, February 2005.

[2] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Security proofs for an efficient password-based key
exchange. In ACM CCS 03, pages 241-250. ACM Press, October 2003.

[3] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols secure against dictionary
attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72-84. IEEE Computer Society Press, May 1992.

[4] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-authenticated key exchange using
Diffie-Hellman. In EUROCRYPT 2000, LNCS 1807, pages 156—171. Springer-Verlag, Berlin, Germany, May 2000.

[5] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure against dictionary
attacks. In EUROCRYPT 2000, LNCS 1807, pages 139-155. Springer-Verlag, Berlin, Germany, May 2000.

[6] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
ACM CCS 93, pages 62-73. ACM Press, November 1993.

[7] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In CRYPTO0’93, LNCS 773, pages
232-249. Springer-Verlag, Berlin, Germany, August 1994.

[8] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution — the three party case. In 28th ACM
STOC, pages 57-66. ACM Press, May 1996.

[9] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS, pages
136-145. IEEE Computer Society Press, October 2001.

[10] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Universally composable
password-based key exchange. In EUROCRYPT 2005, LNCS 3494, pages 404-421. Springer-Verlag, Berlin, Germany,
May 2005.

[11] Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO 2003, LNCS 2729, pages 265-281.
Springer-Verlag, Berlin, Germany, August 2003.

[12] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key exchange. In FURO-
CRYPT 2003, LNCS 2656, pages 524-543. Springer-Verlag, Berlin, Germany, May 2003.

[13] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for making password-based key exchange resilient
to server compromise. In CRYPTO 2006, LNCS 4117, pages 142-159. Springer-Verlag, Berlin, Germany, August
2006.

[14] Dennis Hofheinz and J6rn Miiller-Quade. Universally composable commitments using random oracles. In TCC 2004,
LNCS 2951, pages 58—76. Springer-Verlag, Berlin, Germany, February 2004.

[15] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-authenticated key exchange using human-
memorable passwords. In EUROCRYPT 2001, LNCS 2045, pages 475—494. Springer-Verlag, Berlin, Germany, May
2001.

[16] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In CRYPTO 2002, LNCS 2442,
pages 31-46. Springer-Verlag, Berlin, Germany, August 2002.

[17] Philip D. MacKenzie. The PAK suite: Protocols for password-authenticated key exchange. Contributions to IEEE
P1363.2, 2002.

[18] Victor Shoup. On formal models for secure key exchange. Technical Report RZ 3120, IBM, 1999.

13

A The Random Oracle and the Ideal Cipher

In [10], Canetti et al. show that there doesn’t exist any protocol that UC-emulates F, k£ in the plain
model (i.e. without additional setup assumptions). Here we show how to securely realize a similar
functionality without setup assumption but working in the random oracle and ideal cipher models
instead.

RAaNDOM ORACLES. The random oracle functionality was already defined by Hofheinz and Miiller-
Quade in [14]. We present it again in Figure 4 for completeness. It is clear that the random oracle
model UC-emulates this functionality.

The functionality Fro proceeds as follows, running on security parameter k, with parties Pi,...,P, and an adversary S:

— Fro keeps a list L (which is initially empty) of pairs of bitstrings.
— Upon receiving a value (sid, m) (with m € {0,1}") from some party P; or from &, do:
e If there is a pair (m, k) for some h € {0,1}* in the list L, set h := h.
e If there is no such pair, choose uniformly h € {0,1}* and store the pair (m,h) € L.
Once h is set, reply to the activating machine (i.e., either P; or S) with (sid, h).

Fig. 4. Functionality Fro

IDEAL CIPHER [16]. An ideal cipher is a block cipher that takes a plaintext or a ciphertext as input.
We describe the ideal cipher functionality Frc in Figure 5. Notice that the ideal cipher model UC-
emulates this functionality. Note that this functionality characterizes a perfectly random permutation,
by ensuring injectivity for each query simulation.

The functionality Fic takes as input the security parameter k, and interacts with an adversary S and with a set of
(dummy) parties Pi,...,P, by means of these queries:

— Fic keeps a (initially empty) list L containing 3—tuples of bitstrings and a number of (initially empty) sets
Ck:ey,sid, Mkey,sid~
— Upon receiving a query (sid, ENC, key, m) (with m € {0,1}*) from some party P; or S, do:
e If there is a 3—tuple (key,m, &) for some & € {0,1}" in the list L, set ¢ := ¢é.
e If there is no such record, choose uniformly ¢ in {0, 1}1C — Cley,sia Which is the set consisting of ciphertexts not
already used with key and sid. Next, it stores the 3—tuple (key, m,c) € L and sets Ciey,sid < Chrey,sia U{c}.

Once c is set, reply to the activating machine with (sid, c).
— Upon receiving a query (sid, DEC, key, c) (with ¢ € {0,1}*) from some party P; or S, do:
e If there is a 3—tuple (key, ™, c) for some 7 € {0,1}* in L, set m := .
e If there is no such record, choose uniformly m in {0, 1}’c — Mpey,sia which is the set consisting of plaintexts not
already used with key and sid. Next, it stores the 3—tuple (key, m,c) € L and sets Myey,sid «— Mgey,siaU{m}.

Once m is set, reply to the activating machine with (sid, m).

Fig. 5. Functionality Frc

