Practical Security in Public-Key Cryptography

4th International Conference on Information Security and Cryptography Seoul - Korea December 6th 2001

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Overview

- Provable Security
- Computational Assumptions
- Exact/Practical Security
- Signature
- Encryption
- Conclusion

Asymmetric Encryption

Provable Security

For a provably secure protocol,
one formally defines the security notions to achieve
one makes precise the computational assumptions
one designs a protocol
one exhibits a "reduction"

David Pointcheval ENS-CNRS

Practical Security in Public-Key Cryptography ICISC '01 - Seoul - Korea - December 6th 2001 - 5

Security Notions

Depending on the security concerns, one defines

 the goals that an adversary may would like to reach

 the means/information available to the adversary

Computational Assumptions

To build such an asymmetric primitive, one needs (trapdoor) one-way functions: $x \rightarrow y = f(x)$ is easy (Encryption, Verification) $y = f(x) \rightarrow x$ is difficult (Decryption, Signature) The assumptions are thus • a specific function is one-way • a specific problem is intractable

David Pointcheval ENS-CNRS

Practical Security in Public-Key Cryptography ICISC '01 - Seoul - Korea - December 6th 2001 - 7

Integer Factoring - RSA

The DL Problems

"Reductionist" Security

One provides a reduction from a "difficult" problem **P** to an attack *Atk*:

the adversary A reaches the "prohibited" goals \Rightarrow A can be used to break **P**

P intractable \Rightarrow scheme secure

Cost of the reduction:

- complexity theory: polynomial reduction
 ⇒ asymptotic security (for huge parameters)
- exact security: exact/efficient reduction
 ⇒ helps to find the good parameters

Ideal Assumptions

David Pointcheval ENS-CNRS

Practical Security in Public-Key Cryptography ICISC '01 - Seoul - Korea - December 6th 2001 - 11

Practical Security

- if the adversary can break the security notion with probability ε within time *t* (expected time *T*)
- the underlying problem can be solved with probability ε' within time t' (expected time T')

Exact Security:

 ε ' and t' are explicitly given from ε and t

the relations are BOTH very tight \Rightarrow *T*' \approx *T*

Signature Schemes

David Pointcheval ENS-CNRS

Practical Security in Public-Key Cryptography ICISC '01 - Seoul - Korea - December 6th 2001 - 13

Secure Signature

A Signature Scheme is said SECURE if it prevents existential forgeries under adaptive chosen-message attacks

$$\Pr\left[\mathsf{V}_{k_{v}}(m,\sigma)=1\middle|(m,\sigma)\leftarrow\mathsf{A}^{\mathsf{\Sigma}}(k_{v})\right]$$

succ negligible

Then, the signature guarantees:

the identity of the sender

the non-repudiation:

the sender won't be able to deny it later

DL-based Signatures

G = $\langle g \rangle$, *q* and *g* : **common data** *x* : **private** key $y=g^x$: **public** key

Schnorr's signature of the message m: $k \in \mathbb{Z}_q$, $r = g^k$, e = h(m, r), $s = k \cdot xe \mod q$ Verification of (m, σ) : $u = g^s y^e (= g^{k \cdot xe} g^{xe})$ test whether e = h(m, u)? Existential Forgery under chosen-message attacks = computation of $x = \log_p y$

David Pointcheval ENS-CNRS

Practical Security in Public-Key Cryptography ICISC '01 - Seoul - Korea - December 6th 2001 - 15

 $\sigma = (e,s)$

Exact Security

Idea: Forking Lemma

(Pointcheval-Stern EC '96) A succeeds in expected time $T \Rightarrow$ one solves the DL problem in expected time $T' = 207 q_h T$ For a security level in T, $q_h = 2^k$: $T' \ge 2^{2k+7}$ (=2¹⁶⁷) Nothing better for any DL-based signature

$$A \xrightarrow{h(m,r)} e (e,s)$$

$$e' (e',s')$$

David Pointcheval ENS-CNRS $g^s y^e = r = g^{s'} y^{e'}$

 $\Rightarrow g^{s-s'} = y^{e'-e}$

RSA-based Signatures

n=pq, e: public k	ey $d = e^{-1} \mod \varphi(n)$: private key
Signature of the	e message $m \in \mathbb{Z}_n$: $\sigma = m^d \mod n$
Verification of (<i>m</i> , σ): test whether $\sigma^e = m \mod n$
Weak security, unless one signs $h(m)$	
	FDH-RSA (Bellare-Rogaway EC '96)
Attack in time T	\Rightarrow RSA in time $T' = q_s T$
	better, but still bad.
PSS-RSA: attack in time $T \Rightarrow$ RSA in time $T' \approx T$	
practical security!	
David Pointcheval ENS-CNRS	Practical Security in Public-Key Cryptography ICISC '01 - Seoul - Korea - December 6th 2001 - 17

Encryption Schemes

 Security (impossibility to):

 One-wayness: recover the whole plaintext
 Semantic Security: learn any information

 Attacks:

 Chosen-Plaintext: with the public-key only
 Chosen-Ciphertext (adaptively): access to a decryption oracle

Example I: RSA Encryption

• n = pq, product of large primes

• *e*, relatively prime to
$$\varphi(n) = (p-1)(q-1)$$

•
$$d = e^{-1} \mod \varphi(n)$$
 : private key

 $\mathbf{E}(m) = m^e \mod n$ $\mathbf{D}(c) = c^d \mod n$

OW-CPA = RSA problemSucc^{ow-cpa}(t)= Succ^{rsa}(t)

Chosen-Ciphertext Attacks

We have efficient encryption schemes with practical security (*T*' ≈ *c T*) but for OW-CPA, or best IND-CPA, only.
Cramer-Shoup, in 1998, proposed the first efficient example
not as efficient as El Gamal (twice as slow)
IND-CCA = DDH: weak problem
But many practical schemes in the ROM

what about their practical security?

OAEP: Security

It provides an optimal conversion of any trapdoor partial one-way **permutation**

(Fujisaki-Okamoto-Pointcheval-Stern C '01) into an IND-CCA cryptosystem Optimal:

Efficiency: just 2 more hashing Ciphertext: the shortest as possible

OAEP: Reduction

1 bit of M \Leftrightarrow guess $r \Leftrightarrow$ guess $a \Leftrightarrow$ guess (a,b)Adv^{ind-cpa} $(t) \approx$ Succ f(t)

 $D(c) = f^{-1}(c) \rightarrow (a,b)$ $r = H(a) \oplus b \text{ and } M = a \oplus G(r)$ if M = m || 0...0 then m = x else "reject"

Valid ciphertext \Leftrightarrow (*r*,*a*) asked to G and H \Leftrightarrow known plaintext: **Plaintext Awareness** Simulation of the decryption: try any (*r*,*a*) pair

David Pointcheval ENS-CNRS

Practical Security in Public-Key Cryptography ICISC '01 - Seoul - Korea - December 6th 2001 - 25

OAEP: Practical Security

 $T' \ge T + q_{\rm G} \times q_{\rm H} T_f$

Integer factoring:

- 512-bit modulus: time $\approx 2^{56}$
- 1024-bit modulus: time $\approx 2^{72}$

Security-level of RSA-OAEP:

• 512-bit modulus: time $\approx 2^{28}$

• 1024-bit modulus: time $\approx 2^{36}$

For a provably secure level in 2⁶⁴: more than 4000 bits!

Other Conversions

David Pointcheval ENS-CNRS

Practical Security in Public-Key Cryptography ICISC '01 - Seoul - Korea - December 6th 2001 - 27

New Conversion: REACT

Okamoto-Pointcheval RSA '01

Rapid Enhanced-security Asymmetric Cryptosystem Transform

Practical Security

$\mathbf{G}: \mathbf{X} \to \{0,1\}^{\ell_G} \quad \mathbf{H}: \{0,1\}^* \to \{0,1\}^{\ell_H}$

If an adversary A against IND-CCA reaches an advantage Adv^A after q_G , q_H and q_D queries to G, H and D resp. in time t one can invert f after q_G+q_H tests $x=f^{-1}(y)$ within time $t' \le t + (q_G+q_H) T_{test}$ with probability greater than $\frac{\text{Adv}^A}{2} - \frac{q_D}{2^{\ell_H}}$ Therefore $T' \approx 2 T$

David Pointcheval ENS-CNRS

Practical Security in Public-Key Cryptography ICISC '01 - Seoul - Korea - December 6th 2001 - 29

Applications

 Security relies on the Gap-Problems Okamoto-Pointcheval PKC '2001
 ◆ RSA-REACT: IND-CCA = RSA 1024-bit modulus: security-level ≈ 2⁷² (To be compared with 2³⁶ for RSA-OAEP!)
 ◆ EG-REACT: IND-CCA = Gap DH ≈ CDH
 Efficiency: with any symmetric encryption which is just semantically secure

Example: EG-REACT

G is any group, and g of order qG and H: two hash functions E, D: symmetric encryption scheme x : private key $\mathbf{E}(m)$: $a \leftarrow_R \mathbf{Z}_q, R \leftarrow_R \mathbf{G}$ $y=g^x$: public key $A \leftarrow g^a$, $A' \leftarrow R y^a$ $k \leftarrow G(R), B \leftarrow E_k(m),$ \bullet (A, A', B, C) $C \leftarrow H(R, m, A, A', B)$ $D(A, A', B, C): R \leftarrow A'/A^x$, $k \leftarrow G(R), m \leftarrow \mathbf{D}_k(B),$ check whether C = H(R, m, A, A', B)David Pointcheval Practical Security in Public-Key Cryptography **ENS-CNRS** ICISC '01 - Seoul - Korea - December 6th 2001 - 31

Conclusion

Provable security requires

- 1. formal security notions
- 2. well-defined computational assumptions
- 3. reductions between the assumptions break and the security notions break

For practical impact

- 1. reduction : VERY efficient
- 2. computational problem: VERY strong