Proceedings of Financial Cryptography ’2001
(19-22 february 2001, Grand Cayman Island, British West Indies)
P. Syverson Ed., Springer-Verlag, LNCS 2339, pages 319-338.

The Power of RSA Inversion Oracles
and the Security of Chaum’s RSA-Based Blind Signature
Scheme

M. Bellare!, C. Namprempre!, D. Pointcheval?, and M. Semanko'

! Dept. of Computer Science & Engineering, University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093, USA
Email: {mihir, cnamprem,msemanko}@cs.ucsd.edu
URL: http://www-cse.ucsd.edu/users/{mihir, cnamprem,msemanko}

2 Dépt. d’Informatique-CNRS, Ecole Normale Supérieure
45 rue d’Ulm, 75230 Paris, Cedex 05, France.
Email: David.Pointcheval@ens.fr
URL: http://wuw.dmi.ens.fr/users/pointche/

Abstract. Blind signatures are the central cryptographic component of digital cash
schemes. In this paper, we investigate the security of the first such scheme proposed,
namely Chaum’s RSA-based blind signature scheme, in the random-oracle model. This
leads us to formulate and investigate a new class of RSA-related computational prob-
lems which we call the “one-more-RSA-inversion” problems. Our main result is that
two problems in this class which we call the chosen-target and known-target inver-
sion problems, have polynomially-equivalent computational complexity. This leads to a
proof of security for Chaum’s scheme in the random oracle model based on the assumed
hardness of either of these problems.

1 Introduction

Blind signatures are the central cryptographic component of digital cash schemes.
Withdrawer and Bank run the blind signature protocol to enable the former to obtain
the latter’s signature on some token without revealing this token to the bank, thereby
creating a valid but anonymous ecoin. In this paper, we investigate the security of the
first such scheme proposed, namely Chaum’s RSA-based blind signature scheme [7].
This leads us to formulate and investigate a new class of RSA-related computational
problems which we call the “one-more-RSA-inversion” problems. We begin with a
high-level description of our approach and its motivation.

THE CGAP BETWEEN PROOFS AND PRACTICE. Chaum’s RSA-based blind signature
scheme [7] is simple and practical, and (assuming the underlying hash function is
properly chosen) has so far resisted attacks. Yet there seems little hope of proving its
security (even in a random oracle model [3]) based on the “standard” one-wayness
assumption about the RSA function: it seems that the security of the scheme relies
on different, and perhaps stronger, properties of RSA.

This is a common situation. It exhibits a gap created by what assumptions we
prefer to make and what schemes we want to validate. The reliance on unproven
computational properties of RSA for security naturally inclines us to be conservative
and to stick to standard assumptions, of which the favorite is that RSA is one-way.
Designers who have worked with RSA know, however, that it seems to have many ad-
ditional strengths. These are typically exploited, implicitly rather than explicitly, in
their designs. The resulting schemes might well resist attack but are dubbed “heuris-
tic” because no proof of security based on the standard assumption seems likely. This
leads designers to seek alternative schemes that can be proven under the standard
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assumptions. If the alternatives have cost comparable to that of the original scheme
then they are indeed attractive replacements for the latter. But often they are more
expensive. Meanwhile, the use of the original practical scheme is being discouraged
even though it might very well be secure.

We take a different approach. Rather than going “forward” from assumptions
to schemes —meaning, trying to find a scheme provable under some given standard
assumption— we try to go “backwards” from schemes to assumptions — meaning
to distill properties of RSA that are sufficient to guarantee the security of the given
scheme.

We suggest that practical RSA-based schemes that have resisted attack (in this
case, Chaum’s RSA-based blind signature scheme) are manifestations of strengths of
the RSA function that have not so far been properly abstracted or formalized. We
suggest that one should build on the intuition of designers and formulate explicit
computational problems that capture the above-mentioned strengths and suffice to
prove the security of the scheme. These problems can then be studied to see how they
relate to other problems and to what extent we can believe in them as assumptions.
Doing so will lead to a better understanding of the security of the schemes. It will also
highlight computational problems that might then be recognized as being at the core
of other schemes, and enlarge the set of assumptions we might be willing to make,
leading to benefits in the design or analysis of other schemes.

In this paper, we formalize a class of computational problems which we call one-
more-RSA-inversion problems. They are natural extensions of the RSA-inversion
problem underlying the notion of one-wayness to a setting where the adversary has
access to a decryption oracle, and we show that the assumed hardness of one problem
in this class —mnamely the chosen-target inversion problem— suffices to prove the se-
curity of Chaum’s RSA-based blind signature scheme in the random oracle model. We
then study this assumption, taking the standard approach in a domain of conjectures:
we try to gain confidence in the assumption by relating it to other assumptions. Below,
we first discuss the new computational problems and their properties and then tie this
in with the blind signature scheme.

THE RSA sYSTEM. Associated with a modulus N and an encryption exponent e are
the RSA function and its RSA-inverse defined by

RSAN.c(z) = 2° mod N and RSALY (y) = y* mod N

where z,y € Z and d is the decryption exponent. To invert RSA at a point y € Z7;
means to compute z = RS/—\X,le(y). The commonly made and believed assumption is
that the RSA function is one-way. In other words, the following problem is hard:

RSA single-target inversion problem: RSA-STI

Input: N, e and a random target point y € Z%
Find: y? mod N

Hardness (i.e. computational intractability) is measured via the usual convention: the
success probability of an adversary, whose time-complexity is polynomial in the length
k of the modulus, is negligible, the probability being over the choice of keys NV, e, d as
well as over any random choices explicitly indicated in the problem, in this case y. A
problem is easy if it is not hard.

THE ONE-MORE-RSA-INVERSION PROBLEMS. We are interested in settings where the
protocol is such that the legitimate user —and hence the adversary— has access to
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an oracle RSAR,}G(-) for the inverse RSA function. (The adversary can provide a value
y € Z to its oracle and get back z = RSA;\,}e(y) = y% mod N, but it is not directly
given d. We will see later how the RSA-blind signature scheme fits this setting.) A
security property apparently possessed by RSA is that an adversary can only make
“trivial” use of this oracle. We capture this in the following way. The adversary is given
some random target points yi,...,yn € L}, and we say it wins if the number of these
points whose RSA-inverse it manages to compute exceeds the number of calls it makes
to its oracle. That is, it computes “one more RSA-inverse.” Within this framework
we consider two specific problems. They are parameterized by polynomially-bounded
functions n,m: N — N of the security parameter k satisfying n(-) > m(-)—-

RSA known-target inversion problem: RSA-KTI[m)]

Input: NV, e and random target points y1,...,Ynx)+1 € Ly

Oracle: RSA-inversion oracle computing RSA]_V}e(-) = (-) mod N
but only m(k) calls allowed

Find:  ¢,... ,yfﬂ(k)ﬂ mod N

RSA chosen-target inversion problem: RSA-CTI[n, m]

Input: N, e and random points y1, ..., Ypk)+1 € Ly
Oracle: RSA-inversion oracle computing RSA;V,le(-) = () mod N
but only m(k) calls allowed

Find:  Indices 1 < i1 < -+ < ip)11 < n(k) and y, ... mod N

’yldm(km
In the first problem, the number of oracle calls allowed to the adversary is just one
fewer than the number of target points, so that to win it must compute the RSA-
inverse of all target points. In the second version of the problem, the adversary does
not have to compute the RSA-inverses of all target points but instead can choose some
m(k) + 1 points out of n(k) given points and wins if it can find their RSA-inverses
using only m(k) oracle calls.

The RSA-KTI[0] problem is identical to the standard RSA-STI problem. (When
m(-) = 0 the adversary’s task is to find the RSA-inverse of one given random point
y1 without making any oracle queries.) In this sense, we consider security against
known-target inversion to be a natural extension of one-wayness to a setting where
the adversary has access to an RSA-inversion oracle.

We note in Remark 5 that if factoring reduces in polynomial time to RSA inversion
then both the above problems are easy. Accordingly, these problems can be hard only
if factoring does not reduce to RSA inversion. Some evidence that the latter is true is
provided by Boneh and Venkatesan [6].

RELATIONS AMONG ONE-MORE-RSA-INVERSION PROBLEMS. We note in Remark 4
that if problem RSA-CTI[n,m] is hard then so is problem RSA-KTI[m]. (If you can
solve the latter then you can solve the former by RSA-inverting the first m(k) + 1
target points.) However, it is conceivable that the ability to choose the target points
might help the adversary considerably. Our main result is that this is not so. We show
in Theorem 6 that if problem RSA-KTI[m] is hard then so is problem RSA-CTI[n,m],
for any polynomially-bounded n(-) and m(-). (This result assumes that the encryption
exponent e is prime.) We prove the theorem by showing how given any polynomial-
time adversary B that solves RSA-KTI[m] we can design a polynomial-time adversary
A that solves RSA-CTI[n,m] with about the same probability. The reduction exploits
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linear algebraic techniques which in this setting are complicated by the fact that the
order ¢(N) of the group over which we must work is not known to the adversary.

THE RSA-BASED BLIND SIGNATURE SCHEME. The signer’s public key is N, e, and
its secret key is N, d where these quantities are as in the RSA system. The signature
of a message M is

z = RSALL(H(M)) = H(M)? mod N (1)

where H: {0,1}* — Z} is a public hash function. A message-tag pair (M, z) is said
to be walid if x is as in Equation (1). The blind signature protocol enables a user to
obtain the signature of a message M without revealing M to the signer, as follows.
The user picks 7 at random in Z%;, computes M = r¢- H(M) mod N, and sends M
to the signer. The latter computes T = RSA;V’IG(M) = " mod N and returns 7 to
the user, who extracts the signature = Z -7~ mod N of M from it. Two properties
are desired, blindness and unforgeability. Blindness means the signer does not learn
anything about M from the protocol that it did not know before, and it is easy to
show that this is unconditionally true [7]. Unforgeability in this context is captured
via the notion of one-more-forgery of Pointcheval and Stern [18,19]. (The standard
notion of [13] does not apply to blind signatures.) The forger can engage in interactions
with the signer in which it might not follow the prescribed protocol for the user. (As
discussed further in Section 3 there are, in general, a variety of attack models for these
interactions [18, 19, 14, 16], but in the case of the RSA blind signature protocol, all are
equivalent.) Nothing prevents it from coming up with one valid message-tag pair per
protocol execution (to do this, it just has to follow the user protocol) but we want it to
be hard to come up with more. We ask that the number of valid message-tag pairs that
a forger can produce cannot exceed the number of executions of the blind-signature
protocol in which it engages with the signer.

It is the unforgeability property that has been the open question about the RSA-
based blind signature scheme. Michels, Stadler and Sun [15] show that one can suc-
cessfully obtain one-more forgery if the hash function is poorly implemented. Here,
we will assume that the hash function is a random oracle. (The forger and signer both
get an oracle for H.) In that case, the signature scheme is the FDH scheme of [4]. This
scheme is proven to meet the standard security notion for digital signatures of [13] in
the random oracle model assuming that RSA is one-way [4, 8], but this result won’t
help us here. To date, no attacks against the one-more-forgery goal are known on the
blind FDH-RSA signature scheme. We would like to support this evidence of security
with proofs.

When the forger interacts with a signer in Chaum’s blind signature protocol de-
tailed above, the former effectively has access to an RSA-inversion oracle: it can pro-
vide the signer any M € Z’ and get back M* mod N. Tt is the presence of this oracle
that makes it unlikely that the one-wayness of RSA alone suffices to guarantee un-
forgeability. However, the one-more-RSA-decryption problems were defined precisely
to capture settings where the adversary has an RSA-inversion oracle, and we will be
able to base the security of the signature scheme on hardness assumptions about them.

UNFORGEABILITY OF THE FDH-RSA BLIND SIGNATURE SCHEME. In Lemma 13, we
provide a reduction of the security against one-more-forgery of the FDH-RSA blind
signature scheme, in the random oracle model, to the security of the RSA chosen-target
inversion problem. Appealing to Theorem 6 we then get a proof of unforgeability for
the blind FDH-RSA scheme, in the random oracle model, under the assumption that



the RSA known-target inversion problem is hard. (Again, this is for prime encryption
exponents.) These results simplify the security considerations of the blind FDH-RSA
scheme by eliminating the hash function and signature issues from the picture, leaving
us natural problems about RSA to study.

PERSPECTIVE. An obvious criticism of the above result is that the proof of security
of the blind FDH-RSA signature scheme is under a novel and extremely strong RSA
assumption which is not only hard to validate but crafted to have the properties
necessary to prove the security of the signature scheme. This is true, and we warn that
the assumptions should be treated with caution. But we suggest that our approach
and results have pragmatic value. Certainly, one could leave the blind RSA signature
scheme unanalyzed until someone proves security based on the one-wayness of RSA,
but this is likely to be a long wait. Meanwhile, we would like to use the scheme and
the practical thing to do is to understand the basis of its security as best we can. Our
results isolate clear and simply stated properties of the RSA function that underlie
the security of the blind signature scheme and make the task of the security analyst
easier by freeing him or her from consideration of properties of signatures and hash
functions. It is better to know exactly what we are assuming, even if this is very
strong, than to know nothing at all.

EXTENSIONS. The analogues of the one-more-RSA-inversion problems can be formu-
lated for any family of one-way functions. We can prove that the known-target in-
version and chosen-target inversion problems have polynomially-equivalent computa-
tional complexity also for the discrete logarithm function in groups of prime order.
(That proof is actually a little easier than the one for RSA in this paper because in
the discrete log case the order of the group is public information.)

RELATED WORK. Other non-standard RSA related computational problems whose
study has been fruitful include strong-RSA [11,2,12,9] and dependent-RSA [17]. For
more information about RSA properties and attacks see [5].

2 Complexity of the one-more-RSA-inversion problems

Throughout this paper, kK € N denotes the security parameter. We let KeyGen be the
RSA key generation algorithm which takes k as input and returns the values IV, e and
d where N is a k-bit RSA modulus (product of two k/2 bit random primes p1,p2) and
e,d € Zj vy with ed = 1 mod ¢(N) where ¢(N) = (p1 —1)(p2 — 1). (The public key is
N, e and the secret key is N,d.) The results in this paper will assume that e is prime.

Below, we provide the formal definitions corresponding to the computational prob-
lems discussed in Section 1. In each case, we associate to any given adversary an
advantage function which on input the security parameter k£ returns the probability
that an associated experiment returns 1. The problem is hard if the advantage of any
adversary of time-complexity poly(k) is negligible, and we say that a problem is easy
if it is not hard. Furthermore, we adopt the convention that the time-complexity of
the adversary refers to the function which on input k£ returns the execution time of
the full associated experiment including the time taken to compute answers to oracle
calls, plus the size of the code of the adversary, in some fixed model of computation.
This convention will simplify concrete security considerations.

ONE-WAYNESS OF RSA. We recall the standard notion, couching it in a way more
suitable for comparison with the new notions.



Definition 1. (Single-Target Inversion Problem: RSA-STI) Let £ € N be the
security parameter. Let A be an adversary. Consider the following experiment:

Experiment Exp’3¥ st (k)

(N,e,d) & KeyGen(k)

y & Zy; v — A(N, e k,y)

If 2=y (mod N) then return 1 else return 0
We define the advantage of A via

Adv* (k) = Pr[Expst(k) = 1] .
The RSA-STI problem is said to be hard —in more standard terminology, RSA is said

to be one-way— if the function Advffi;%kti(-) is negligible for any adversary A whose

time-complexity is polynomial in the security parameter k. I

TuE KNOWN-TARGET INVERSION PROBLEM. We denote by (-)% mod N the oracle
that takes input y € Z% and returns its RSA-inverse y?. An adversary solving the
known-target inversion problem is given oracle access to (-)? mod N and is given
m(k)+ 1 targets where m : N — N. Its task is to compute the RSA-inverses of all the
targets while submitting at most m(k) queries to the oracle.

Definition 2. (Known-Target Inversion Problem: RSA-KTI[m]) Let £ € N be
the security parameter, and let m : N — N be a function of k. Let A be an adversary
with access to an RSA-inversion oracle (-)? mod N. Consider the following experiment:

Experiment Expffi;%kti(k)
(N, e,d) & KeyGen(k)
For i =1 to m(k) + 1 do y; & Z%
\d
(x1,... 7mm(k)+1) — A()* mod N(N,e, k,yi, ... ,ym(k)H)
If the following are both true then return 1 else return 0
- Vie{l,..., mk)+1}:2f=y; (mod N)
— A made at most m(k) oracle queries

We define the advantage of A via
AdvEy (k) = Pr[Expy, M (k) = 1] .

The RSA-KTI[m] problem is said to be hard if the function Advf%kti(-) is negligible
for any adversary A whose time-complexity is polynomial in the security parameter
k. The known-target inversion problem is said to be hard if RSA-KTI[m] is hard for
all polynomially-bounded m(-). |

Notice that RSA-KTI[0] is the same as RSA-STI. That is, the standard assumption
that RSA is one-way is exactly the same as saying that RSA-KTI[0] is hard.

THE CHOSEN-TARGET INVERSION PROBLEM. An adversary solving the chosen-target
inversion problem is given access to an RSA-inversion oracle as above, and n(k) targets
where n : N — N. Its task is to compute m (k) + 1 RSA-inversions of the given targets,
where m : N — N and m(k) < n(k), while submitting at most m(k) queries to
the oracle. The choice of which targets to compute the RSA-inversion is up to the
adversary. This choice is indicated by the range of the injective map 7. (Notationally,
this is different from the definition provided in Section 1. There, indices for elements
chosen by the adversary are explicitly indicated. These indices constitute the range of
the map 7 used here.)



Definition 3. (Chosen-Target Inversion Problem: RSA-CTI[n,m]) Let k € N
be the security parameter, and let m,n : N — N be functions of k such that m(-) <
n(-). Let B be an adversary with access to an RSA-inversion oracle (-)¢ mod N. Con-
sider the following experiment:
Experiment Exp%%%(k)
(N,e,d) & KeyGen(k)
For i = 1 to n(k) do g; < Z%
— _ 3 m _ _
(T, %15 Tn(h)41) BOTmod N(N o k77, ... s Un(k))
If the following are all true then return 1 else return 0
- m{l,...,m(k) +1} — {1,...,n(k)} is injective
- Vie{l,...,m(k) +1}:7{ =Y, (mod N)
— A made at most m(k) oracle queries

We define the advantage of A via

A Vrsa—cti(k) _ PI‘[EXprsa_Cti(k?) _ 1] .

B,n,m B,n,m

The RSA-CTI[n, m| problem is said to be hard if the function Advrﬁarz%() is negligible
for any adversary A whose time complexity is polynomial in the security parameter
k. The chosen-target inversion problem is said to be hard if RSA-CTI[n,m] is hard

for all polynomially-bounded n(-) and m(-). 1

RELATIONS AMONGST THE PROBLEMS. We note a few simple relations before going
to the main result.

Remark 4. Let n,m: N — N be polynomially-bounded functions of the security pa-
rameter k. If the RSA-CTI[n, m] problem is hard then so is the RSA-KTI[m| problem.
This is justified as follows: given an adversary A for RSA-KTI[m], we let B be the
adversary for RSA-CTI[n,m] that runs A on input the first m(k) + 1 of B’s target
points and returns the values returned by A. Then B’s advantage is the same as A’s.

Remark 5. If factoring reduces to RSA inversion then there exists a polynomially-
bounded function m: N — N such that RSA-KTI[m] is easy. (So the assumption
that either the known-target or chosen-target inversion problems is hard is at least
as strong as the assumption that factoring does not reduce to RSA inversion.) Let
us briefly justify this. Assume that factoring reduces to RSA inversion. This means
there is a polynomial-time algorithm R such that the probability that the following
experiment returns 1 is non-negligible:

(N,e,d) & KeyGen(k)
(plap2) — R()d mod N(N7 €, k)
If p1,po are prime and py1ps = N then return 1 else return 0.

Let m be the number of oracle queries made by R. We define adversary A as follows:

Adversary A()? mod N(N, e k,yi,... ,ym(k)H)
(p17p2) <_ R(.)d mod N(Nv €, k)
Compute d from p1, po
Compute and return yf, . ,yfn(k)ﬂ mod N



The adversary A runs the algorithm R, answering to its inversion queries with the
answers from its own oracle. It uses the fact that possession of the prime factors of N
enables computation of the decryption exponent d, and having computed d, it can of
course compute the RSA-inversions of as many points as it pleases.

Our main result is a converse to the claim of Remark 4.

Theorem 6. Let n,m: N — N be polynomially-bounded functions of the security pa-
rameter k. If the RSA-KTI[m] problem is hard then so is the RSA-CTI[n,m] problem.
Concretely, for any adversary B, there exists an adversary A so that
. 9 .
AdviEi (k) < 2 Advii (k) (2)
and A has time-complexity

Ta(k) = Tp(k) + O (K*n(k)m(k) + k*m(k) + k*m(k)® + km(k)®) (3)
where Tg(+) is the time-complexity of B.

We will now present some technical lemmas, and then proceed to the proof of Theorem 6.
The reader might prefer to begin with Section 2.2 and refer to Section 2.1 as needed.

2.1 Technical lemmas

Before proving our main result we state and prove some relevant technical lemmas.

Lemma 7. Let s > 1 be an integer, let I be the s by s identity matriz, and let

C1,1 " Cls dig - dis
C=1: : and D =

Cs,1 " Cs,s ds,l to ds,s
be integer matrices such that C - D = det(C) - Is. Suppose N, e is an RSA public key
and N,d is the corresponding secret key. Suppose y;,y;,v; € Ly fori =1,...,5 are
related via

S
v = v [y (mod N) . (4)
j=1

Let T; zﬂg mod N fori=1,...,s. Then, for j =1,...,s, we have
S
() = JJ(wi 7)™ (mod N). (5)
i=1

Proof (Lemma 7). Let §;; = 1if | = j and 0 otherwise. Since C' - D = det(C) - Iy we
know that

s

chvidiyj = det(C) - 01 (6)

i=1
foralll,j =1,...,s. We now verify Equation (5). Suppose 1 < j < s. In the following,
computations are all mod N. From Equation (4), we have

S S

s d| dii s s d;,;
H(Ui . Ei)di’j — H v; - (vi_e . Hylcl,z> — H [vi . ,Ui—l . H(yld)cm] )
=1

i=1 i=1 i=1 =1



Simplifying the last expression, we obtain
S S

S S S S
TTTTe0 % = TITTene = [TanSm b = Tt
i=11=1 1=11=1 =1 =1
where the last equality is by Equation (6). Finally, we use the fact that 6;; = 1 if
[ = j and 0 otherwise. This tells us that the above is (y?)det(c) as desired. I

Lemma 8. Let N,e be an RSA public key and N, d the corresponding secret key. Let
a € N and y,z € Z%. If ged(a,e) = 1 and (y))® = z  (mod N) then (2%4°)¢ =y
(mod N) where a,b are the unique integers such that ac + be = 1.

Proof (Lemma 8). This is a standard calculation:

(Zayb)e _ (yda)aeybe — yanrbe — yl =y

where the computations are all mod N. |

Next, we consider a question in probabilistic linear algebra.

Definition 9. Let ¢ > 2 be a prime, and let s > 1 be an integer. We define SProb(g, s)
to be the probability that det(M) =0 (mod ¢q) when M is an s by s matrix formed
by choosing all entries uniformly and independently from Z,. I

It is tempting to think that the determinant of a random matrix is a random value
and hence that SProb(q,s) = 1/q. This, however, is not true. For example, a simple
computation shows that SProb(q,2) = 1/q+1/q? —1/¢3. There is actually a standard
formula (whose proof we will recall later) for this quantity—

s i—1

q

SProb(g,s) = 1— H (1 T ) . (7)
i=1

This formula, however, does not lend itself well to estimates. We would like a simple

upper bound on SProb(g, s). We prove the following. (We don’t use the lower bound

in this paper but include it for completeness.)

Lemma 10. Let ¢ > 2 be a prime, and let s > 1 be an integer. Then

1 1 1

— < SProb(g,s) < —+ — . 8

. (q,5) P (8)
Proof (Lemma 10). View the matrix M as formed by successively choosing random
row vectors from Zj. Let M; denote the vector which is the i-th row of M, and let
LI; denote the event that the vectors Mj,...,M; are linearly independent over Z,
for i = 1,...,s. It is convenient to let LI be the event having probability one. Let
SProb(g, s,i) = Pr[—LI;] for i = 0,...,s and note that SProb(q, s) = SProb(g, s, s).

We briefly recall the justification for Equation (7) and use it to derive the lower

bound. (The upper bound is derived by a separate inductive argument.) We have

s

i g — qi—l d qi—l
1-SProb(q,s) = J[Pr[LL | LL_,] = HT = (1— e >
i=1 i=1 i=1
which is Equation (7). We derive the lower bound by upper bounding the product
term of Equation (7) by the biggest term of the product:

SProb(g,s) > 1 — (1 - 1> _1 .
q q
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For the upper bound, we first claim that the following recurrence is true fori = 0, ..., s:
0 ifi=0
Prob N — i—1 i—1
SProb(g,s,1) 7 +<1—qs >-SProb(q,s,i—1)if@'21 ©)
q q

The initial condition is simply by the convention we adopted that Pr[LIy] = 1. The
recurrence is justified as follows for ¢ > 1:

SProb(q, s, 1)

— Pr[-LI;]

—Pr[-LL | LL_,]-Pr[LI;_;] + Pr[=LI; | =LL_; ] Pr[-LI,_;]
=Pr[-LI; | LI;_1]- (1 —SProb(q,s,i —1)) + 1 - SProb(q,s,i — 1)
=Pr[-LI; | LIy ]+ (1 —Pr[-LI; | LI;_1]) - SProb(g,s,i — 1)

g1 g1
= = + (1— = > - SProb(q, s,i—1) .

We claim that

i
1
L~ fori=0,...,s. (10)
S q _ 1
This will be justified below. It already gives us an upper bound on SProb(g,s) =
SProb(q, s, s), namely 1/(¢ — 1), but this is a little worse than our claimed upper
bound. To get the latter, we use the recurrence for i = s and use Equation (10) with

1 = s — 1. This give us

SProb(q, s,1) <

qs—l qs—l
SProb(g,s) = SProb(g,s,s) = —— + (1 T > - SProb(g, s,s — 1)
s—1 s—1 s—1 1
<f_4 <1 -4 ) .
q° q° q® q—1
Simplifying this further, we get
1 1 1 1 1 1 1 1 1 1
VAR WU (R 1 R SO ST N W
(@) q q) qq—1 ¢ ¢-1 \qg ¢ qa ¢

This is the claimed upper bound. It remains to justify Equation (10) which we do by in-
duction on i. When ¢ = 0, Equation (10) puts a positive upper bound on SProb(q, s,0),
and hence, is certainly true. So assume ¢ > 1. Substituting into the recurrence of
Equation (9), we get

qi—l qi—l
SProb(q, s,i) = —— + (1 - — > - SProb(q, s,i — 1)
q

i—1

— + SProb(g,s,i— 1) .
q

Using the inductive hypothesis and simplifying, we have
i—1 i—1 i—1 i

1 1 1
q q q (1 N > q

qg—1

SProb ) < =
robg, i) < I+ e

q° ¢ q—1 q°

as desired. |
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Algorithm AQ ™A N(N e ko oyy . Ym(k)+1)
q<—¢€; s<—m(k)+1
For i =1 to n(k) do
oli] & Z%
For j =1 to s do ¢[j, 1] £ Z,
g — oli)~ TTj—, y;”" mod N
(1, T1, ... Ts) = BO ™IV (N e kG F00)
Forj=1,...,sdo
v; — v[r(j)]
Forl=1,...,sdo cj; < c[j,7(])]

N Ot s W N

C1,1 ... Cl;s
8 C —

Cs,1 ...Css
9 a «— det(C)
10 If o = 0 then abort
11  Compute a matrix
d1,1 . dl,s
D=
ds1 ... dss
with integer entries such that C' - D = det(C) - I
12 For j=1to s do
13 zj — [I5_; (vi - Ti)% mod N
14 If ged(a, e) # 1 then abort
15  Compute a,b € Z such that aa + be = 1 via extended Euclid algorithm
16 For j=1to s do
17 zj « 2§ - yy mod N
18 Return xi,...,xs

Fig. 1. Adversary A of the proof of Theorem 6.

2.2 Proof of Theorem 6

OVERVIEW. The adversary A is depicted in Figure 1. Its input is (N,e, k and) s =
m(k) + 1 target points y1,...,ys. Its goal is to compute y¢,...,y¢ mod N.

Adversary A will begin by computing n(k) points ¥y, ..., ¥, as a (randomized)
function of the given points y1,...,ys. The property we want these to have is that,
given the RSA-inverses of any s of the points 7y,... s Yn(k)» 1t 18 possible to extract
in polynomial time the RSA-inverses of the original target points, at least with high
probability. If such a “reversible embedding” can be implemented then A’s work is
complete since invoking B on the points ¥y, ..., Y4 will cause the RSA-inverses of
some s of these points to be returned. The question is, thus, how to compute and later
reverse this “reversible embedding.”

Lines 2-5 of Figure 1 show how to compute it. For each j, the point y; is created
by first raising each of y1, ..., ys to a random power and then multiplying the obtained
quantities. (This product is then multiplied by a random group element of which A
knows the RSA-inverse in order to make sure that ¥y,...,7,) are uniformly and
independently distributed and thus are appropriate to feed to B.) A detail worth
remarking here is the choice of the range from which the exponents c[j, ] are chosen.
This is Z; where we have set ¢ equal to the encryption exponent e. We will see the
reasons for this choice later.
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Once the points ¥y,...,Y,x) have been defined, B is invoked. In executing B,
adversary A will invoke its own oracle to answer RSA-inversion oracle queries of B.
Notice that this means that the number of oracle queries made by A is exactly equal
to the number made by B which is s — 1 = m(k). Assuming that B succeeds, A is
in possession of T; = yi(j) (mod N) for j = 1,...,s where 7(j) are indices of B’s
choice that A could not have predicted beforehand. The final step is to recover the
RSA-inverses of the original target points.

To this end, A creates the matrix C' shown in line 8 of the code. If this matrix
has zero determinant then A will not be able to reverse its embedding and aborts.
Assuming a non-zero determinant, A would like to invert matrix C. Since the entries
are exponents, A would like to work modulo ¢(N) but A does not know this value.
Instead, it works over the integers. A can compute a “partial” RSA-inverse, namely
an integer matrix D such that C'- D is a known integer multiple of the s by s identity
matrix I;. The integer multiple in question is the determinant of C', and thus the
matrix D is the adjoint of C. (We will discuss the computation of D more later.)
Lines 12-18 show how A then computes x1,...,xs which we claim equal yf, . ,yg.
We now proceed to the detailed analysis.

ANALYSIS. Let NS be the event that det(C') # 0 (mod ¢). (If this is true then not
only is det(C) # 0, meaning C' is non-singular, but also ged(det(C),e) = 1 because
q = e is prime.) Let “A succeeds” denote the event that x; = yfl foralli=1,...,s.
Let “B succeeds” denote the event that 7; = yi(j) forall j =1,...,s. Then,

Pr[ A succeeds ]
> Pr[ A succeeds A B succeeds A NS |

= Pr[ A succeeds | B succeeds A NS |- Pr[B succeeds A NS] . (11)

We claim that
Pr[ A succeeds | B succeeds ANS| =1 (12)
Pr[ B succeeds A NS| > g : Advg‘};i:i(k?) . (13)

Equations (11), (12), and (13) imply Equation (2). So it remains to verify Equa-
tions (12), (13) and the time-complexity claimed in Equation (3). We begin with
Equation (12). Lemma 7 tells us that, assuming B succeeds and det(C) # 0, after
line 13 of Figure 1, we have

)™ = 2 (mod N) (14)
for j =1,...,s. Assume gcd(a, e) = 1. Then Equation (14) and Lemma 8 imply that
at line 17 we have a:j =y; for all j =1,...,s, in other words, A succeeds. Now note

that event NS implies that det(C) # 0 and that ged(det(C),e) = 1 because ¢ = e and
e is prime. This completes the proof of Equation (12).

We now move on to the proof of Equation (13). Due to the random choice of
v[1],...,v[n(k)], the points ¥y, ..., Yy computed at line 5 and then fed to B are
uniformly and independently distributed over Z7%; regardless of the choices of c[j,1].
This means that the events “B succeeds” and NS are independent and also that the
probability of the former is the advantage of B. Thus, we have

Pr[ B succeeds ANS| = Pr[NS]-Pr[B succeeds| = Pr[NS]- Advg?,;%(k) .
So to complete the proof of Equation (13), it suffices to show that

Pr[NS] > g : (15)
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Code ‘Cost

“For” loop at line 2 |O(k®) - n(k) - s

det(C) O(s*k + s%k?)

Matrix D 52 O(s*k + s%k?)

“For” loop at line 12|0(k?s) - O(sk)

Lines 14, 15 O(sk) - O(k)

Line 17 O(k?) - O(k*s)

Total O(K*n(k)s + k*s + k*s° + ks")

Fig. 2. Costs of computations of the algorithm of Figure 1. Recall that s = m(k) + 1

Recall that our adversary A sets ¢ = e (line 1 in Figure 1) and that e > 3 for RSA.
We now apply Lemma 10 to get

1 1 1 1 1 1 5
Pr[NS] = 1 —SProb(g,s) > 1— <§—|—?> = 1‘2‘? > 1—§—§ =g
This proves Equation (15) and, hence, completes the proof of Equation (13). To com-
plete the proof of Theorem 6, it remains to justify the claim of Equation (3) about
the time complexity. The costs of various steps of the algorithm of the adversary A
are summarized in Figure 2. We now briefly explain them.

As in the code, we let s = m(k) 4+ 1. The “For” loop beginning at line 2 involves
n(k) - s exponentiations of k-bit exponents which has the cost shown. Computation of
determinants is done using the algorithm of [1]. This takes O(r*(log(r) + k) + r3k?)
time to compute the determinant of an r by 7 integer matrix each of whose entries
is at most k-bits long. (Although somewhat faster algorithms are known [10], they
are randomized, and for simplicity, we use a deterministic algorithm.) We use this
algorithm in Step 9. In the worst case, e (and hence q) is k-bits long. So the entries of
C are at most k-bits long, and the cost of computing det(C) is O(s*(log(s)+k)+s3k?),
which is O(s*k + s?k?) since log(s) = O(k). The matrix D is the adjoint matrix of C,
namely the transpose of the co-factor matrix of C'. We compute it by computing the co-
factors using determinants. This involves computing s? determinants of submatrices
of C so the cost is at most s times the cost of computing the determinant of C.
Line 13 involves computing exponentiations modulo N with exponents of the size
of entries in D. The Hadamard bound tells us that the entries of D are bounded
in size by O(s(log(s) + k), which simplifies to O(sk), so the cost is this many k-bit
multiplications. Euclid’s algorithm used for lines 14, 15 runs in time the product of
the lengths of  and e. Finally, the lengths of a,b cannot exceed this time, and they
are the exponents in line 17.

3 The RSA Blind Signature Scheme

The RSA blind signature scheme [7] consists of three components: the key generation
algorithm KeyGen described in Section 2; the signing protocol depicted in Figure 3;
and the verification algorithm. The signer has public key N,e and secret key N,d.
Here H: {0,1}* — Z% is a public hash function which in our security analysis will
be modeled as a random oracle [3]. In that case, the signature schemes is the FDH-
RSA scheme of [4]. A message-tag pair (M, z) is said to be valid if ¢ mod N is equal
to H(M). The verification algorithm is the same as that of FDH-RSA: to verify the
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User Signer
Input: N,e, M Input: N, d

R *
T — ZN
M «— - H(M) mod N

M

Z — (M)% mod N
T

—1 —
z<— 71 ~-Tmod N

Fig. 3. Blind signing protocol for FDH-RSA

message-tag pair (M, z) using a public key (NN, e), one simply checks if the message-tag
pair is valid.

UNFORGEABILITY. In the standard formalization of security of a digital signature
scheme —namely unforgeability under adaptive chosen-message attack [13]— the
adversary gets to submit messages of its choice to the signer and obtain their signature,
and is then considered successful if it can forge the signature of a new message. This
formalization does not apply for blind signatures because here nobody submits any
messages to the signer to sign, and in fact the user is supposed to use the signer to
compute a signature on a message which the signer does not know. Instead, we use
the notion of security against one-more-forgery introduced in [18,19]. The adversary
(referred to as a forger in this context) is allowed to play the role of the user in the
blind signature protocol. After some number of such interactions, it outputs a sequence
of message-tag pairs. It wins if the number of these that are valid exceeds the number
of protocol instances in which it engaged.

There are numerous possiblities with regard to the manner in which the adversary
is allowed to interact with the signer, giving rise to different attack models. Some that
have been considered are the sequential [18,19] (where the adversary must complete
one interaction before beginning another), the parallel [18, 19] or adaptive-interleaved
[14] (where the adversary can engage the signer in several concurrent interactions),
and a restricted version of the latter called synchronized-parallel [16]. However, in the
blind signature protocol for FDH-RSA, the signer has only one move, and in this case
the power of all these different types of attacks is the same.

Notice that in its single move the signer simply inverts the RSA function on the
value supplied to it by the user in the previous move. Thus, the signer is simply an
RSA inversion oracle. With this simplification we can make the following definition
for security against one-more forgery which will cover all types of attacks.

Below, we let [{0,1}* — Z}/] denote the set of all maps from {0,1}* to Z}. It
is convenient to let the notation H < [{0,1}* — Z%] mean that we select a hash
function H at random from this set. The discussion following the definition clarifies
how we implement this selection of an object at random from an infinite space.

Definition 11. [Unforgeability of the blind FDH-RSA signature scheme] Let
k € N be the security parameter, and let m,h : N — N be functions of k. Let I’ be a
forger with access to an RSA-inversion oracle and a hash oracle, denoted (-)¢ mod N
and H(-), respectively. Consider the following experiment:

Experiment EXP?%,%nf(k )
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H & {01} — 23]
(N, e,d) & KeyGen(k)
((Mla m1)’ R (Mm(k)-i—l’ xm(k)-‘rl)) - F(.)d mod N7H(.)(N’ €, k)
If the following are all true, then return 1 else return 0:
1. Vie{l,...,m(k)+1}: H(M;) = «f mod N
2. Messages M, ..., My, x)+1 are all distinct
3. F made at most m(k) queries to its RSA-inversion oracle
4. The number of hash-oracle queries made in this experiment is
at most h(k)

We define the advantage of the forger F' via
AdvETON (k) = PrlExpiEhont (k) = 1] .

The FDH-RSA blind signature scheme is said to be polynomially-secure against one-
more forgery if the function Advlﬁf};’%nf(-) is negligible for any forger F' whose time-

complexity is polynomial in the security parameter k. |

Several conventions used here need to be detailed. The count of hash-oracle queries
refers to the entire experiment, not just those made directly by the adversary, meaning
those made in verifying the signatures in Step 3 are included in the count. We also
need a convention regarding choosing the function H since it is an infinite object. The
convention is that we do not actually view it as being chosen all at once, but rather
view it as being built dynamically and stored in a table. Each time a query of M to the
hash oracle is made, we charge the cost of the following: check whether a table entry
H (M) exists and if so return it; otherwise, pick an element y of Z, at random, make
a table entry H(M) = y, and return y. Recall that the time-complexity refers to the
entire experiment as per conventions already stated in Section 2. In this regard, the
cost of maintaining this table-based implementation of the hash function is included.

SECURITY. We show that the FDH-RSA blind signature scheme is secure as long as
the RSA known-target inversion problem is hard.

Theorem 12 (Unforgeability of the FDH-RSA blind signature scheme). If
the RSA known-target inversion problem is hard, then the FDH-RSA blind signature
scheme is polynomially-secure against one-more forgery. Concretely, for any functions
m,h : N — N and forger I, there exists an adversary A so that

AAVEIIIR) < 3 AdVERI()
and the time-complexity of A is
Ta(k) = Tr(k) + O(K*n(k)ym(k) + E*m(k) + k*m(k)® + km(k)°)
where Tg(k) is the time-complezity of the forger F.

Theorem 12 follows directly from Theorem 6 and the following lemma saying that
the FDH-RSA blind signature scheme is secure if the RSA chosen-target inversion
problem is hard.

Lemma 13. If the RSA chosen-target inversion problem is hard, then the FDH-RSA

blind signature scheme is polynomially-secure against one-more forgery. Concretely,

for any functions m,h : N — N and any forger F', there exists an adversary B so that
AV (k) < AdVE; S (k)

,m
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Algorithm B0 mod N(N,e, k,y1,. .., Yn(k))
count — 0; s —m(k)+1
Initialize associative arrays Hash and Ind to empty
Initialize arrays Msg, X to empty
Run F on input N, e, k replying to its oracle queries as follows:
When F' submits a hash query M do
If Hash[M] is undefined then
count «— count + 1; Hash[M] < ycount ; Msg[count] — M
Return Hash[M]
When F' submits an RSA-inversion query y do
Submit y to the RSA-inversion oracle (-)? mod N and
return its response.
11 (M1, 1), ..., (Ms,zs5)) «— F
12 For j =1 to s, do

© 00 31O Ui W N+

—_
o

13 If Hash[M;] is undefined then

14 count «— count + 1; Hash[M;] < Ycount ; Msg[count] «— M;
15 Ind[j] « Find(Msg, M;) ; X[Ind[j]] — x;

16 Return (Ind, X[Ind[1]], ..., X[Ind[s]])

Fig. 4. Adversary B for the proof of Lemma 13.

and the time-complexity of B is
Tg(k) = Tr(k)
where Tr(k) is the time-complexity of the forger F.

Proof (Lemma 13). Adversary B uses the forger F' to achieve its goal by running F
and providing answers to F’s oracle queries. In response to hash-oracle queries, B
simply returns its own targets to F'. RSA-Inversion oracle queries of F' are forwarded
by B to its own RSA-inversion oracle and the results returned to F'.

A detailed description of B is in Figure 4. It uses a subroutine Find that looks
for a given value in a given array. Specifically, it takes as its inputs an array of values
A and a target value a assumed to be in the array, and returns the least index ¢ such
that a = A[i].

The simulation is a largely straightforward use of random oracle techniques [3,
4] so we confine the analysis to a few remarks. Note that B simulates hash-oracle
queries corresponding to the messages in the message-tag pairs output by F' in case
these are not already made. This ensures that the advantages of the two algorithms
are identical. The time spent by B to maintain the hash-oracle table is the same as
that spent in Exp}sf",;%lf(k:) as per the conventions discussed following Definition 11.
We omit the details. I
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