Proceedings of the 8 h ACM Conference on Computer and Communications Security. Pages 20-27.
(november 5 — 8, 2001, Philadelphia, Pennsylvania, USA)

Twin Signatures: an Alternative
to the Hash-and-Sign Paradigm

David Naccache!, David Pointcheval?, and Jacques Stern?

! Gemplus Card International — 34, rue Guynemer — F-92447 Issy-les-Moulineaux, France
http://www.gemplus.com/smart — david.naccache@gemplus.com
2 Ecole Normale Supérieure — 45, rue d’Ulm — F-75230 Paris cedex 05, France
http://www.di.ens.fr/"{pointche,stern} — {david.pointcheval, jacques.stern}@ens.fr

Abstract. This paper introduces a simple alternative to the hash-and-sign paradigm,
from the security point of view but for signing short messages, called twinning. A twin
signature is obtained by signing twice a short message by a signature scheme. Analysis
of the concept in different settings yields the following results:

— We prove that no generic algorithm can efficiently forge a twin DSA signature.
Although generic algorithms offer a less stringent form of security than compu-
tational reductions in the standard model, such successful proofs still produce
positive evidence in favor of the correctness of the new paradigm.

— We prove in standard model an equivalence between the hardness of producing ex-
istential forgeries (even under adaptively chosen message attacks) of a twin version
of a signature scheme proposed by Gennaro, Halevi and Rabin and the Flexible
RSA Problem.

We consequently regard twinning as an interesting alternative to hash functions for
eradicating existential forgery in signature schemes.

Keywords: Digital Signatures, Provable Security, Discrete Logarithm, Generic Model,
Flexible RSA Problem, Standard Model.

1 Introduction

The well-known hash and sign paradigm has two distinct goals: increasing performance
by reducing the size of the signed message and improving security by preventing exis-
tential forgeries. As a corollary, hashing remains mandatory even for short messages.

From the conceptual standpoint, the use of hash functions comes at the cost of
extra assumptions such as the conjecture that for all practical purposes, concrete func-
tions can be identified with ideal black boxes [3] or that under certain circumstances
(black box groups [15,21]) a new group element must necessarily come from the addi-
tion of two already known elements. In some settings [11] both models are even used
simultaneously.

This paper investigates a simple substitute to hashing that we call twinning. A twin
signature is obtained by signing twice the same (short) raw message by a probabilistic
signature scheme, or two probabilistically related messages.

We believe that this simple paradigm is powerful enough to eradicate existential
forgery in a variety of contexts. To support this claim, we show that no generic al-
gorithm can efficiently forge a twin DSA signature and prove that for a twin variant
of a signature scheme proposed by Gennaro, Halevi and Rabin [8] (hereafter GHR)
existential forgery, even under an adaptively chosen-message attack, is equivalent to
the Flexible RSA Problem [5] in the standard model.

© ACM Press, 2001.

2 Digital Signature Schemes

Let us begin with a quick review of definitions and security notions for digital signa-
tures. Digital signature schemes are the electronic version of handwritten signatures
for digital documents: a user’s signature on a message m is a string which depends
on m, on public and secret data specific to the user and—possibly—on randomly chosen
data, in such a way that anyone can check the validity of the signature by using public
data only. The user’s public data are called the public key, whereas his secret data are
called the secret key. The intuitive security notion would be the impossibility to forge
user’s signatures without the knowledge of his secret key. In this section, we give a
more precise definition of signature schemes and of the possible attacks against them
(most of those definitions are based on [9]).

2.1 Definitions
A signature scheme is defined by the three following algorithms:

— The key generation algorithm G. On input 1¥, where k is the security parame-
ter, the algorithm G produces a pair (kp, ks) of matching public and secret keys.
Algorithm G is probabilistic.

— The signing algorithm Y. Given a message m and a pair of matching public and
secret keys (kp,ks), X' produces a signature o. The signing algorithm might be
probabilistic.

— The wverification algorithm V. Given a signature o, a message m and a public
key kp, V' tests whether o is a valid signature of m with respect to kp. In general,
the verification algorithm need not be probabilistic.

2.2 Forgeries and Attacks

In this subsection, we formalize some security notions which capture the main practical
situations. On the one hand, the goals of the adversary may be various:

— Disclosing the secret key of the signer. It is the most serious attack. This attack
is termed total break.

— Constructing an efficient algorithm which is able to sign messages with good
probability of success. This is called universal forgery.

— Providing a new message-signature pair. This is called ezistential forgery.

In many cases this latter forgery, the existential forgery, is not dangerous, because the
output message is likely to be meaningless. Nevertheless, a signature scheme which
is not existentially unforgeable (and thus that admits existential forgeries) does not
guarantee by itself the identity of the signer. For example, it cannot be used to certify
randomly looking elements, such as keys. Furthermore, it cannot formally guarantee
the non-repudiation property, since anyone may be able to produce a message with a
valid signature.

On the other hand, various means can be made available to the adversary, help-
ing her into her forgery. We focus on two specific kinds of attacks against signature
schemes: the no-message attacks and the known-message attacks. In the first scenario,
the attacker only knows the public key of the signer. In the second one, the attacker
has access to a list of valid message-signature pairs. According to the way this list was
created, we usually distinguish many subclasses, but the strongest is the adaptively

chosen-message attack, where the attacker can ask the signer to sign any message of
her choice. She can therefore adapt her queries according to previous answers.

When one designs a signature scheme, one wants to computationally rule out exis-
tential forgeries even under adaptively chosen-message attacks, which is the strongest
security level for a signature scheme.

3 Generic Algorithms

Before we proceed, let us stress that although the generic model in which we analyze
DSA offers a somehow weaker form of security than the reductions that we apply to
GHR in the standard model, it still provides evidence that twinning may indeed have
a beneficial effect on security.

Generic algorithms [15, 21], as introduced by Nechaev and Shoup, encompass group
algorithms that do not exploit any special property of the encodings of group elements
other than the property that each group element is encoded by a unique string. Typ-
ically, algorithms like Pollard’s p algorithm [18] fall under the scope of this formalism
while index-calculus methods do not.

3.1 The Framework

Recall that any Abelian finite group I is isomorphic to a product of cyclic groups of
the form (Zpk, +), where p is a prime. Such groups will be called standard Abelian
groups. An encoding of a standard group I” is an injective map from I into a set of
bit-strings S.

We give some examples: consider the multiplicative group of invertible elements
modulo some prime ¢. This group is cyclic and isomorphic to the standard additive
group I' = Z4_1. Given a generator g, an encoding o is obtained by computing the
binary representation o(z) of g* mod ¢. The same construction applies when one con-
siders a multiplicative subgroup of prime order r. Similarly, let £ be the group of
points of some non-singular elliptic curve over a finite field F, then E is either isomor-
phic to a (standard) cyclic group I or else is isomorphic to a product of two cyclic
groups Zg, X Zg,. In the first case, given a generator G of E, an encoding is obtained
by computing o(z) = z.G, where .G denotes the scalar multiplication of G by the
integer x and providing coordinates for o(z). The same construction applies when E is
replaced by one of its subgroups of prime order r. Note that the encoding set appears
much larger than the group size, but compact encodings using only one coordinate
and a sign bit +1 exist and for such encodings, the image of ¢ is included in the
binary expansions of integers < tr for some small integer ¢, provided that r is close
enough to the size of the underlying field F. This is exactly what is recommended for
cryptographic applications [10].

A generic algorithm A over a standard Abelian group I is a probabilistic algorithm
that takes as input an encoding list {o(x1),---,0(xy)}, where each z; is in I". While
it executes, the algorithm may consult an oracle for further encodings. Oracle calls
consist of triples {, j, €}, where i and j are indices of the encoding list and € is . The
oracle returns the string o(z; + z;), according to the value of € and this bit-string is
appended to the list, unless it was already present. In other words, A cannot access an
element of I" directly but only through its name o(x) and the oracle provides names
for the sum or difference of two elements addressed by their respective names. Note
however that A may access the list at any time. In many cases, A takes as input a

4

pair {o(1),0(z)}. Probabilities related to such algorithms are computed with respect
to the internal coin tosses of A as well as the random choices of o and =x.
The following theorem appears in [21]:

Theorem 1. Let I' be a standard cyclic group of order N and let p be the largest
prime divisor of N. Let A be a generic algorithm over I that makes at most n queries
to the oracle. If x € I' and an encoding o are chosen at random, then the probability
that A returns x on input {o(1),0(x)} is O(n?/p).

Proof. We refer to [21] for a proof. However, we will need, as an ingredient for our own
proofs, the probabilistic model used by Shoup. We develop the model in the special
case where N is a prime number r, which is of interest to us. Alternatively, we could
work in a subgroup of prime order r.

Basically, we would like to identify the probabilistic space consisting of o and z
with the space ™12 x I', where S is the set of bit-string encodings. Given a tuple
{1, Zn+2,y} in this space, z; and z9 are used as o(1) and o(x), the successive z;
are used in sequence to answer the oracle queries and the unique value y from I serves
as . However, this interpretation may yield inconsistencies as it does not take care of
possible collisions between oracle queries. To overcome the difficulty, Shoup defines,
along with the execution of A, a sequence of linear polynomials F;(X), with coefficients
modulo r. Polynomials F} and F5 are respectively set to F; =1 and F> = X and the
definition of polynomial Fy is related to the ¢-th query {3,j,€e}: F;, = F; &+ Fj, where
the sign =+ is chosen according to e. If Fy is already listed as a previous polynomial
Fy, then Fy is marked and A is fed with the answer of the oracle at the h-th query.
Otherwise, zy is returned by the oracle. Once A has come to a stop, the value of z is
set to y.

It is easy to check that the behavior of the algorithm which plays with the poly-
nomials F; is exactly similar to the behavior of the regular algorithm, if we require
that y is not a root of any polynomial F; — F}, where 7, j range over indices of un-
marked polynomials. A sequence {z1, -, zp42,y} for which this requirement is met is
called a safe sequence. Shoup shows that, for any {z1,-- -, z,4+2}, the set of y such that
{21, -+, Zna2,y} is not safe has probability O(n?/r). From a safe sequence, one can
define = as y and o as any encoding which satisfies o(F;(y)) = z;, for all unmarked
F;. This correspondence preserves probabilities. However, it does not completely cover
the sample space {o,z} since executions such that Fj(x) = Fj(x), for some indices
i, j, such that F; and F}; are not identical are omitted. To conclude the proof of the
above theorem in the special case where N is a prime number r, we simply note that
the output of a computation corresponding to a safe sequence {z1,-- -, zp42,y} does
not depend on y. Hence it is equal to y with only minute probability.

3.2 Digital Signatures over Generic Groups

We now explain how generic algorithms can deal with attacks against DSA-like sig-
nature schemes [6, 20, 16,10]. We do this by defining a generic version of DSA that
we call GDSA. Parameters for the signature include a standard cyclic group of prime
order r together with an encoding o. The signer also uses as a secret key/public key
pair {z,0(z)}. Note that we have chosen to describe signature generation as a regular
rather than generic algorithm, using a full description of o. To sign a message m,
1 < m < r the algorithm executes the following steps:

1. Generate a random number u, 1 < u < r.

\V)

. Compute ¢ « o(u) mod r. If ¢ =0 go to step 1.
. Compute d «— u~1(m + z¢) mod r. If d = 0 go to step 1.
. Output the pair {c,d} as the signature of m.

=~ W

The verifier, on the other hand, is generic:

dfeég[1,r—1] or d & [1,r — 1], output invalid and stop.

. Compute h «— d~' mod r, h; < hm mod r and hy < hc mod 7.

. Obtain o(hy + hox) from the oracle and compute ¢ < o(hy + hoz) mod r.
. If ¢ # ¢ output invalid and stop otherwise output valid and stop.

-~ W N

The reader may wonder how the verifier obtains the value of o requested at step 3.
This is simply achieved by mimicking the usual double-and-add algorithm and asking
the appropriate queries to the oracle. This yields o(h1) and o(hoz). A final call to the
oracle completes the task.

A generic algorithm A can also perform forgery attacks against a signature scheme.
This is defined by the ability of A to return on input {o(1), o (x)} atriple {m,c,d} € I'3
for which the verifier outputs valid. Here we assume that both algorithms are performed
at a stretch, keeping the same encoding list.

To deal with adaptive attacks one endows A with another oracle, called the signing
oracle. To query this oracle, the algorithm provides an element m € I'. The signing
oracle returns a valid signature {c,d} of m. Success of A is defined by its ability to
produce a valid triple {m, ¢, ci}, such that m has not been queried during the attack.

Such a forgery can be easily performed against this GDSA scheme, even with just
a passive attack: the adversary chooses random numbers Ay and ho, 1 < hy, hy < 7 and
computes ¢ < o(hy + hox) mod r. Then it defines d = chy! mod r, h = d~! mod r,
and eventually m = dh; mod r. The triple {m,c,d} € I'? is therefore a valid one,
unless ¢ = 0, which is very unlikely.

4 The Security of Twin GDSA

4.1 A Theoretical Result

The above definitions extend to the case of twin signatures, by requesting the attacker
A to output an m and two distinct pairs {c,d} € I'%, {c/,d'} € I'%. Success is granted as
soon as the verifying algorithm outputs valid for both triples'. We prove the following:

Theorem 2. Let I' be a standard cyclic group of prime order r. Let S be a set of bit-
string encodings of cardinality at least r, included in the set of binary representations
of integers < tr, for some t. Let A be a generic algorithm over I' that makes at most
n queries to the oracle. If x € I' and an encoding o are chosen at random, then the
probability that A returns a message m together with two distinct GDSA signatures of
m on input {o(1),0(z)} is O(tn?/r).

Proof. We cover the non adaptive case and tackle the more general case after the
proof. We use the probabilistic model developed in section 3.1. Let A be a generic
attacker able to forge some m and two distinct signatures {c, d} and {¢’, d'}. We assume
that, once these outputs have been produced, A goes on checking both signatures; we
estimate the probability that both are valid.

! using [14] the simultaneous square-and-multiply generation or verification of two DSA signatures

is only 17% slower than the generation or verification of a single signature.

We restrict our attention to behaviors of the full algorithm corresponding to safe
sequences {z1, -, 2zp+2,y}. By this, we discard a set of executions of probability
O(n?%/r). We let P be the polynomial (md~!) + (cd~*)X and @ be the polynomial
(md ™) + (ddHX.

— We first consider the case where either P or () does not appear in the F; list
before the signatures are produced. If this happens for P, then P is included in
the F; list at signature verification and the corresponding answer of the oracle is
a random number z;. Unless z; = ¢ mod r, which is true with probability at most
t/r, the signature is invalid. A similar bound holds for Q.

— We now assume that both P and @ appear in the F; list before A outputs its
signatures. We let ¢ denote the first index such that F; = P and j the first
index such that F; = Q. Note that both F; and F; are unmarked (as defined in
section 3.1). If i = j, then we obtain that md—* = md’~" and cd~* = ¢/d’~*. From
this, it follows that ¢ = ¢/, d = d’ and the signatures are not distinct.

— We are left with the case where i # j. We let §2;;, i < j, be the set of safe
sequences producing two signatures such that the polynomials P, (), defined as
above appear for the first time before the algorithm outputs the signatures, as F;
and Fj. We consider a fixed value w for {21,---, z;—1} and let @ be the set of safe
sequences extending w. We note that F; and F} are defined from w and we write
F; =a+bX, Fj = d +VX. We claim that {2; N has probability < t/r. To show
this, observe that one of the signatures that the algorithm outputs is necessarily
of the form {¢,d}, with ¢ = z; mod r, ¢ = db mod r and m = da mod r. Now, the
other signature is {¢’,d’} and since m is already defined we get d’ = ma’~" mod r
and ¢’ = V/d’ mod r. This in turn defines z; mod r within a subset of at most ¢
elements. From this, the required bound follows and, from the bound, we infer
that the probability of (2; ; is at most ¢/r.

Summing up, we have bounded the probability that a safe sequence produces an
execution of A outputting two valid signatures by O(tn?/r). This finishes the proof.

In the proof, we considered the case of an attacker forging a message-signature pair
from scratch. A more elaborate scenario corresponds to an attacker who can adaptively
request twin signatures corresponding to messages of his choice. In other words, the
attacker interacts with the legitimate signer by submitting messages selected by its
program.

We show how to modify the security proof that was just given to cover the adaptive
case. We assume that each time it requests a signature the attacker A immediately
verifies the received signature. We also assume that the verification algorithm is nor-
malized in such a way that, when verifying a signature {c,d} of a message m, it asks
for o((md=') + (cd~!)x) after a fixed number of queries, say q. We now explain how
to simulate signature generation: as before, we restrict our attention to behaviors of
the algorithm corresponding to safe sequences {z1,- -, z+2,y}. When the (twin) sig-
nature of m is requested at a time of the computation when the encoding list contains
i elements, one picks z;44 and z;42, and manufactures the two signatures as follows:

1. Let ¢ « zj44 mod r, pick d at random.
2. Let ¢ « ziy9, mod r, pick d’ at random.
3. Output {¢,d} and {¢/,d’} as the first and second signatures.

While verifying both signatures, A will receive the elements z;, and z;194, as
o((md™) + (cd Yz) and o((md' ™) + (dd ™M)

respectively, unless Fj 1, or F; o, appears earlier in the Fj list. Due to the randomness
of d and d', this happens with very small probability bounded by n/r. Altogether, the
simulation is spotted with probability O(n?/r) which does not affect the O(tn?/r)
bound for the probability of successful forgery.

4.2 Practical Meaning of the Result

We have shown that, in the setting of generic algorithms, existential forgery against
twin GDSA has a minute success probability. Of course this does not tell anything on
the security of actual twin DSA. Still, we believe that our proof has some practical
meaning. The analogy with hash functions and the random oracle model [3] is inspir-
ing: researchers and practitioners are aware that proofs in the random oracle model
are not proofs but a mean to spot design flaws and validate schemes that are sup-
ported by such proofs. Still, all standard signature schemes that have been proposed
use specific functions which are not random by definition; our proofs seem to indi-
cate that if existential forgery against twin DSA is possible, it will require to dig into
structural properties of the encoding function. This is of some help for the design of
actual schemes: for example, the twin DSA described in Appendix A allows signature
with message recovery without hashing and without any form of redundancy, while
keeping some form of provable security. This might be considered a more attractive
approach than [17] or [1], the former being based on redundancy and the latter on
random oracles. We believe that twin DSA is even more convincing in the setting of
elliptic curves, where there are no known ways of taking any advantage of the encoding
function.

5 An RSA-based Twinning in the Standard Model

The twin signature scheme described in this section belongs to the (very) short list
of efficient schemes provably secure in the standard model: in the sequel, we show
that producing existential forgeries even under an adaptively chosen-message attack
is equivalent to solving the Flexible RSA Problem [5].

Security in the standard model implies no ideal assumptions; in other words we
directly reduce the Flexible RSA Problem to a forgery. As a corollary, we present an
efficient and provably secure signature scheme that does not require any hash function.

Furthermore, the symmetry provided by twinning is much simpler to analyze than
Cramer-Shoup’s proposal [5] which achieves a similar security level, and similar effi-
ciency, with a rather intricate proof.

5.1 Gennaro-Halevi-Rabin Signatures

In [8] Gennaro, Halevi and Rabin present the following signature scheme: Let n be an
¢-bit RSA modulus [19], H a hash-function and y € Z}. The pair {n,y} is the signer’s
public key, whose secret key is the factorization of n.

— To sign m, the signer hashes e « H(m) (which is very likely to be co-prime with
©(n)) and computes the e-th root of y modulo n using the factorization of n:

s — y¢ mod n

— To verify a given {m, s}, the verifier checks that

Hm) mod n = Y.

S

Security relies on the Strong RSA Assumption. Indeed, if H outputs elements that
contain at least a new prime factor, existential forgery is impossible. Accordingly, Gen-
naro et al. define a new property that H must satisfy to yield secure signatures: division
intractability. Division intractability means that it is computationally impossible to
find ay, ..., ax and b such that H(b) divides the product of all the H(a;). In [8], it is
conjectured that such functions exist and heuristic conversions from collision-resistant
into division-intractable functions are shown (see also [4]).

Still, security against adaptively chosen-message attacks requires the hash function
H to either behave like a random oracle model or achieve the chameleon property [12].
This latter property, for a hash function, provides a trapdoor which helps to find second
preimages, even with some fixed part. Indeed, some signatures can be pre-computed,
but with specific exponents before outputting y: y = xIli ¢ mod n for random primes
€; = H(mi, ri).

Using the chameleon property, for the i-th query m to the signing oracle, the
simulator who knows the trapdoor can get an r such that H(m;,r;) = H(m,r) = e;.
In the random oracle model, one simply defines H(m,r) < e;.

Then s = ollizi® = y'/¢ mod n and the signature therefore consists of the triple
{m,r, s} satisfying

H(m,r)

S = y mod n.

Cramer and Shoup [5] also proposed a scheme based on the Strong RSA Assump-
tion, the first practical signature scheme to be secure in the standard model, but with
universal one-way hash functions; our twin scheme will be similar but with a nice sym-
metry in the description (which helps for the security analysis) and no hash-functions,
unless one wants to sign a long message.

5.2 Preliminaries

We build our scheme in two steps. The first scheme resists existential forgeries when
subjected to no-message attacks. Twinning will immune it against adaptively chosen-
message attacks.

Injective function into the prime integers. Before any description, we will as-
sume the existence of a function p with the following properties: given a security
parameter k (which will be the size of the signed messages), p maps any string from
{0,1}* into the set of the prime integers, p is also designed to be easy to compute and
injective. A candidate is proposed and analyzed in Appendix B.

The Flexible RSA Problem and the Strong RSA Assumption. Let us also
recall the Flexible RSA Problem [5]. Given an RSA modulus n and an element y € Z7,
find any exponent e > 1, together with an element x such that ¢ = y mod n.

The Strong RSA Assumption is the conjecture that this problem is intractable
for large moduli. This was independently introduced by [2, 7], and then used in many
further security analyses (e.g. [5, 8]).

5.3 A First GHR Variant

The first scheme is very similar to GHR without random oracles but with function p
instead:

— To sign m € {0, 1}’“, the signer computes e < p(m) and the e-th root of y modulo
n using the factorization of n

s — y'¢ mod n
— To verify a given {m, s}, the verifier checks that
sP(M mod n = y.

Since p provides a new prime for each new message (injectivity), existential forgery
contradicts the Strong RSA Assumption. However, how can we deal with adaptively
chosen-message attacks without any control over the output of the function p, which
is a publicly defined non-random oracle and not a trapdoor function either?

5.4 The Twin Version

The final scheme is quite simple since it consists in duplicating the previous one: the
signer uses two /-bit RSA moduli n1, ne and two elements y1, y2 in Z;, and Zj,
respectively. Secret keys are the prime factors of the n;.

— To sign a message m, the signer probabilistically derives two messages pi1, o €
{0,1}*, (from m and a random tape w), computes e; « p(p;) and then the e;-th
root of y; modulo n;, for ¢ = 1,2, using the factorization of the moduli:

/e /e

{s1 « yi "' mod nyp, s9 «— y; > mod ns}
— To verify a given {m,w, s1, s2}, the verifier computes 11 and pg, then checks that
sf(’”) mod n; L v, for i =1, 2.

To prevent forgeries, a new message must involve a new exponent, either e; or es,
which never occurred in the signatures provided by the signing oracle. Therefore, a
first requirement is that p; and po define at most one message m, but only if they
have been correctly constructed. Thus, some redundancy is furthermore required.

We thus suggest the following derivation, to get p; and ug from m € {0, 1}’“/ 2
(we assume k to be even): one chooses two random elements a,b € {0,1}%/2, then
p = (m @ a)l|(m @ b) and pz = allb.

Clearly, given p; and uo, one gets back M = pu; @ po, which provides a valid
message if and only if the redundancy holds: M = M, where S and S denote the two
k/2-bit halves of a k-bit string .S, the most significant and the least significant parts
respectively.

5.5 [Existential Forgeries

Let us show that existential forgery of the twin scheme, with above derivation process,
leads to a new solution of the Flexible RSA Problem:

10

Lemma 3. After q queries to the signing oracle, the probability that there exist a new
message m and values a,b, which lead to p1 = (m @ a)||(m @ b) and pe = al|b, such
that both ey = p(p1) and ea = p(u2) already occurred in the signatures provided by the
signing oracle is less than q2/2k/2.

Proof. Let {mj,a;,b;, 51,52} denote the answers of the signing oracle. Using the
injectivity of p, the existence of such m, a and b means that there exist indices ¢ and
j for which

(m@a)||(m®b) = p1 = p1; = (M © ag)||(m; © b;)
allb= po = paj = ajl|b;.

Then
a®b=(m®@a)®(m®b)=(m; ®a;) D (m; ®b;) = a; D by,

and
a®b=a;Db;.

Therefore, for a j > i (the case ¢ > j is similar), the new random elements a;, b; must
satisfy a; ®b; = a; ©b;. Since it is randomly chosen by the signer, the probability that
this occurs for some 4 < j is less than (j — 1)/2F/2.

Altogether, the probability that for some j there exists some ¢ < j which satisfies
the above equality is less that ¢2/2 x 27k/2_ By symmetry, we obtain the same result
if we exchange ¢ and j.

The probability that both exponents already appeared is consequently smaller
than ¢2/2%/2.

To prevent adaptively chosen-message attacks, we need no trapdoor property for
p, nor random oracle assumption either. We simply give the factorization of one mod-
ulus to the simulator, which can use any pre-computed exponentiation with any new
message, as when chameleon functions are used [8].

5.6 Adaptively Chosen-Message Attacks

Indeed, to prevent adaptively chosen-message attacks, one just needs to describe a
simulator; our simulator works as follows:

— The simulator is first given the moduli n1,n2 and the elements y1 € Z;, y2 €
Zy,,, as well as the factorization of n., where v is randomly chosen in {1,2}. To
simplify notations we assume that v = 1. And the following works without loss
of generality since the derivation of u; and uo is perfectly symmetric: they are
randomly distributed, but satisfy p1 @ ps = m||m (it is a perfect secret sharing).

— The simulator randomly generates g values es j < p(p2,;), with randomly chosen

poj €r {0,1}* for j =1,...,¢q and computes

Z yglj:l’“"q %3 mod na.
The new public key for the signature scheme is the following: the moduli n1,n9
with the elements y1, 2z in Zy and Zj, respectively.

— For the j-th signed message m, the simulator first gets (al|b) < (m|/m) & po ;. It
therefore computes 11 < al|b, and thus po «— p2j = (m @ a)||(m & b).

Then, it knows so = ygli# 62’

ni.

" mod ns, and computes s1 using the factorization of

11

Such a simulator can simulate up to ¢ signatures, which leads to the following
theorem.

Theorem 4. Let us consider an adversary against the twin-GHR scheme who suc-
ceeds in producing an existential forgery, with probability greater than e, after q adap-
tive queries to the signing oracle in time t, then the Flexible RSA Problem can be
solved with probability greater than &' within a time bound t', where

2
5':%<5—#> and t' =t+ O(q x % x k).

Proof. Note that the above bounds are almost optimal since ¢’ = £/2 and ¢ = 2t.

Indeed, the time needed to produce an existential forgery after ¢ signature queries is

already in O(q x (|n1]? + |na|?)k). To evaluate the success probability, ¢ is less than

say 2%0, but k may be taken greater than 160 bits (and even much more).

To conclude the proof, one just needs to address the random choice of v. As we
have seen in Lemma 3, with probability greater than & —¢?/ 2K/2 one of the exponents
in the forgery never appeared before. Since v is randomly chosen and the view of the
simulation is perfectly independent of this choice, with probability of one half, e = ey
is new. Let us follow our assumption that v = 1, then

s¢ = 85 = z = yj mod no,
where m = szl g €25 Since e is new, it is relatively prime with 7, and therefore,
there exist v and v such that ue 4+ vm = 1: let us define = y§s” mod na,

—UT LEV

2¢ = (y8s)¢ = ya "% = ya(y3) "V (s%)" = y2 mod na.

We thus obtain an e-th root of the given yo modulo no, for a new prime e.

5.7 More Signatures

One may remark that the length of the messages we can sign with above construction
is limited to k/2 bits, because of the required redundancy. But one can increase the
size, by signing three derived messages: in order to sign m € {0,1}*, one chooses
two random elements a,b € {0,1}%/2 (we still assume k to be even), and signs with
different moduli

p1 =m @ (al[b)
p2 = al[b
pz =m @ (bl|a).

6 Conclusion and Further Research

We proposed an alternative to the well-known hash-and-sign paradigm, based on the
simple idea of signing twice (or more) identical or related short messages. We believe
that our first investigations show that this is a promising strategy, deserving further
study.

A number of interesting questions remain open. First, from the efficiency point of
view, which is a frequent concern, we are aware that the current proposals do not deal
with either the computational cost, or the communication load, in an efficient way.

12

Thus, for example, can the number of fields in a twin DSA be reduced from four ({c, d}
and {c/,d'}) to three or less? Can we also suppress some fields in the twin-GHR, or
sign k-bit long messages with only two signatures?

Finally, can an increase in the number of signatures (e.g. three instead of two)
yield better security bounds?

References

1. M. Abe and T. Okamoto. A Signature Scheme with Message Recovery as Secure as Discrete
Logarithm. In Asiacrypt ‘99, LNCS 1716. Springer-Verlag, Berlin, 1999.
2. N. Bari¢ and B. Pfitzmann. Collision-Free Accumulators and Fail-Stop Signature Schemes without
Trees. In Eurocrypt ’97, LNCS 1233, pages 480—484. Springer-Verlag, Berlin, 1997.
3. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient
Protocols. In Proc. of the 1st CCS, pages 62-73. ACM Press, New York, 1993.
4. J.-S. Coron and D. Naccache. Security Analysis of the Gennaro-Halevi-Rabin Signature Scheme.
In Eurocrypt ’99, LNCS 1592, pages 91-101. Springer-Verlag, Berlin, 1999.
5. R. Cramer and V. Shoup. Signature Scheme based on the Strong RSA Assumption. In Proc. of
the 6th CCS, pages 46-51. ACM Press, New York, 1999.
6. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.
IEEE Transactions on Information Theory, IT-31(4):469-472, July 1985.
7. E. Fujisaki and T. Okamoto. Statistical Zero Knowledge Protocols to Prove Modular Polynomial
Relations. In Crypto 97, LNCS 1294, pages 16-30. Springer-Verlag, Berlin, 1997.
8. R. Gennaro, S. Halevi, and T. Rabin. Secure Hash-and-Sign Signature Without the Random
Oracle. In FEurocrypt '99, LNCS 1592, pages 123-139. Springer-Verlag, Berlin, 1999.
9. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against Adaptative
Chosen-Message Attacks. SIAM Journal of Computing, 17(2):281-308, April 1988.
10. TEEE P1363. Standard Specifications for Public Key Cryptography.
Available from http://grouper.ieee.org/groups/1363, August 1998.
11. M. Jakobsson and C. P. Schnorr. Security of Discrete Logarithm Cryptosystems in the Random
Oracle Model and Generic Model. Available from http://www.bell-labs.com/ markusj, 1998.
12. H. Krawczyk and T. Rabin. Chameleon Hashing and Signatures. In Proc. of NDSS ’2000. Internet
Society, 2000.
13. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,
1996. Available from http://www.cacr.math.uwaterloo.ca/hac/.
14. D. M’Raihi and D. Naccache. Batch Exponentiation — A Fast DLP-based Signature Generation
Strategy. In Proc. of the 3rd CCS, pages 58-61. ACM Press, New York, 1996.
15. V. I. Nechaev. Complexity of a Determinate Algorithm for the Discrete Logarithm. Mathematical
Notes, 55(2):165-172, 1994.
16. NIST. Digital Signature Standard (DSS). Federal Information Processing Standards PUBlication
186, November 1994.
17. K. Nyberg and R. A. Rueppel. Message Recovery for Signature Schemes Based on the Discrete
Logarithm Problem. In Eurocrypt ’94, LNCS 950, pages 182-193. Springer-Verlag, Berlin, 1995.
18. J. M. Pollard. Monte Carlo Methods for Index Computation (mod p). Mathematics of Compu-
tation, 32(143):918-924, July 1978.
19. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public
Key Cryptosystems. Communications of the ACM, 21(2):120-126, February 1978.
20. C. P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology, 4(3):161—
174, 1991.
21. V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In Eurocrypt ‘97, LNCS
1233, pages 256-266. Springer-Verlag, Berlin, 1997.

A Twin Signatures with Message Recovery

In this appendix, we describe a twin version of the Nyberg-Rueppel scheme [17] which
provides message recovery. Keeping the notations of section 4.1:

1. Generate a random number u, 1 < u < r.

13

2. Compute ¢ « o(u) +m mod r. If ¢ =0 go to step 1.
3. Compute an integer d < u — cx mod r.

4. Output the pair {c,d} as the signature.

In the above, f is what is called in [10] a message with appendix. It simply means
that it has an adequate redundancy. The corresponding verification is performed by
the following (generic) steps:

1. If e ¢ [1,r — 1] or d & [0, — 1], output invalid and stop.
2. Obtain o(d + cx) from the oracle and compute v < o(d + cz) mod r .

3. Check the redundancy of m < ¢ — v mod r. If incorrect output invalid and stop;
otherwise output the reconstructed message m, output valid and stop.

In the twin setting, signature generation is alike but is performed twice, so as
to output two distinct signatures. However, no redundancy is needed. The verifier
simply checks that the signatures are distinct and outputs two successive versions of

the message, say m and m'. It returns valid if m ~ ' and invalid otherwise. The
security proof is sketched here, we leave the discussion of adaptive attacks to the
reader.

We keep the notations and assumptions of section 4 and let A be a generic attacker
over I which outputs, on input {o(1),o(x)}, two signature pairs {c,d}, {¢,d'} and
runs the verifying algorithm that produces from these signatures two messages m, m’
and checks whether they are equal. We wish to show that, if x € I" and an encoding
o are chosen at random, then the probability that m = m’ is O(tn?/r).

As before, we restrict our attention to behaviors of the full algorithm corresponding
to safe sequences {21, -, zn,y}. We let P, Q be the polynomials d+ ¢X and d'+ ' X.
We first consider the case where either P or () does not appear in the Fj list before
the signatures are produced. If this happens for P, then, P is included in the F; list at
signature verification and the corresponding answer of the oracle is a random number
z;. Since m is computed as ¢ — z; mod r, the probability that m = m/ is bounded by
t/r. A similar bound holds for Q.

We now assume that both P and () appear in the Fj list before A outputs its
signatures. We let ¢ denote the first index such that F; = P and j the first index such
that F; = Q. Note that both F; and Fj are unmarked (as defined in section 3.1). If
1 = j, then we obtain that ¢ = ¢’ and d = d’. From this, it follows that the signatures
are not distinct.

As in section 4, we are left with the case where 7 # j and we define £2; ;, i < j, to
be the set of safe sequences producing two signatures such that the polynomials P, @),
defined as above appear for the first time before the algorithm outputs the signatures,
as F; and Fj. We show that, for any fixed value w = {z1,---,2;-1}, £2,; N has
probability < ¢/r, where w is defined as above. Since we have m = ¢ — z; mod r and
m' = ¢ — z; mod r, we obtain z; = ¢ — ¢ + z; mod r, from which the upper bound
follows. From this bound, we obtain that the probability of (2; ; is at most ¢/r and,
taking the union of the various (2; ;s, we conclude that the probability to obtain a
valid twin signature is at most O(tn?/r).

14

B The Choice of Function p

B.1 A Candidate

The following is a natural candidate:

p:{0,1}F - P

m — nextprime(m x 27)

where 7 is suitably chosen to guarantee the existence of a prime in any set [m x
27, (m 4 1) x 27|, for m < 2%.

Note that the deterministic property of nextprime is not mandatory, one just
needs it to be injective. But then, the preimage must be easily recoverable from the
prime: the exponent is sent as the signature, from which one checks the primality and
extracts the message (message-recovery).

B.2 Analysis

It is clear that any generator of random primes, using m as a seed, can be considered
as a candidate for p. The function proposed above is derived from a technique for
accelerating prime generation called incremental search (e.g. [13], page 148).

1. Input: an odd k-bit number ng (derived from m)
2. Test the s numbers ng, ng+2, ..., ng + 2(s — 1) for primality

Under reasonable number-theoretic assumptions, if s = ¢-1In 2%, the probability of
failure of this technique is smaller than 2e~2¢, for large k.

Using our notations, in such a way that there exists at least a prime in any set
[m x 27, (m 4+ 1) x 27[, but with probability smaller than 278, we obtain from above
formulae that ¢ = 40, and 27 > 401n 2¥t7+1. Therefore, a suitable candidate is 7 =
5logs k, and less than 20k primality tests have to be performed.

B.3 Extensions

Collision-resistance: To sign large messages (at the cost of extra assumptions),
one can of course use any collision-resistant hash-function h before signing (using the
classical hash-and-sign technique). Clearly, the new function m — p(h(m)) is not
mathematically injective, but just computationally injective (which is equivalent to
collision-resistance), which is enough for the proof.

Division intractability: If one wants to improve efficiency, using the division-
intractability conjecture proposed in [8], any function that outputs k-bit strings can
be used instead of p. More precisely:

Definition 5 (Division Intractability). A function H is said (n,v, 7)-division in-
tractable if any adversary which runs in time 7 cannot find, with probability greater
than v, a set of elements ay, ..., a, and b such that H(b) divides the product of all
the H(a;).

As above, that function p would not be injective, but just collision-resistant, which
is enough to prove the following:

15

Theorem 6. Let us consider the twin-GHR scheme where p is any (q,e,t)-division-
intractable hash function. Let us assume that an adversary A succeeds in producing an
existential forgery under an adaptively chosen-message attack within time t and with
probability greater than €, after q queries to the signing oracle. Then one can either
contradict the division-intractability assumption or solve the Flexible RSA Problem
with probability greater than &' within a time bound t', where

1 ¢
/I _ R ! __ 2
6—2<6 2k/2> and t'=t+0O(q x % x k).

