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What is LLL or L ?

1982
L. Lovász

3

H. Lenstra

A. Lenstra



The LLL Algorithm

A popular 
algorithm 
presented 
in a 
legendary 
article 
published in 
1982:



How Popular?

The LLL article has been cited x1000 times.

The LLL algorithm and/or variants are 
implemented in:

Maple

Mathematica

GP/Pari

Magma

NTL/SAGE, etc.



How Popular?

A conference was organized in 2007 
to celebrate the 25th anniversary of 
the LLL article.

This gave rise to a book:



What is LLL about? 

It is an efficient algorithm.

But it’s not about:

It’s about finding short lattice vectors.



Intuitively

LLL is a vectorial analogue of Euclid’s 
algorithm to compute gcds.

Instead of dealing with integers, it 
deals with vectors of integer 
coordinates.

It performs similar operations, and is 
essentially as efficient.



More Precisely

We will present LLL as an algorithmic version 
of Hermite’s inequality on Hermite’s constant.

It is essentially a variant of an implicit 
algorithm published by Hermite in 1850.



Applications of LLL

Linear algebra with “small” integers

Cryptananalysis: breaking 
cryptosystems based on number 
theory

Algorithmic number theory

Complexity theory



Examples

This formula for π was found in 1995 
using a variant of LLL:

Elkies used LLL in the 2000s to find: 
58538865167812233 − 4478849284284020423079182  = 
1641843

Odlyzko and te Riele used LLL in 1985 to 
disprove the Mertens conjecture.



Examples

The two-square theorem: If p is a 
prime ≡ 1 mod 4, then p is a sum of 
two squares p=x2+y2.

To find such x and y, one may first 
compute a square root of -1 mod p, 
then use LLL.



Examples
Breaking the Merkle-Hellman cryptosystem 
(early competitor to RSA):

Published in 1978, like RSA.

Broken by Shamir in 1982: key-recovery attack.

Since 1982, dozens of public-key 
cryptosystems have been broken using LLL. 



Examples

The factorization record (Dec. 2009) 
for RSA numbers is a 768-bit number 
of the form N=pq: 232 digits.

In the last stage, LLL was used 
hundreds of thousands of times, to 
compute square roots of huge 
algebraic numbers, yielding after 1500 
core years...



RSA-768

123018668453011775513049495838496272077285356959
533479219732245215172640050726365751874520219978
64693899564749427740638459251925573263034537315
48268507917026122142913461670429214311602221240479
274737794080665351419597459856902143413 

=33478071698956898786044169848212690817704794983
7137685689124313889828837938780022876147165253174
3087737814467999489 x 
36746043666799590428244633799627952632279158164
343087642676032283815739666511279233373417143396
81027092798736308917



Summary

History

Background on Lattices

The LLL approximation algorithm

A few applications



Lattices in Cryptology

Cryptanalysis

Lattice reduction algorithms are arguably 
the most popular tools in public-key 
cryptanalysis (RSA, DSA, knapsacks, etc.) 

Crypto design

Lattice-based cryptography is arguably the 
main alternative to RSA/ECC.

A unique property: worst-case assumptions.



A Historical 
Problem



Sphere Packings



The Hexagonal Packing



Kepler’s “Conjecture” (1611)

What is the best 
packing in dim 3? 
[Hales2005]



Beyond Kepler’s Conjecture

What is the best sphere packing in 
higher dimension?

What if we restrict to regular 
packings, e.g. lattice packings? Those 
are optimal in dim 2 and 3.

This motivated the study of lattices: 
geometry of numbers.



Significance

Since the 18th century, 
mathematicians have been interested 
in proving the existence of short 
lattice vectors: bounds valid for any 
lattice in a given dimension.

This is related to the best lattice 
packings.



Another motivation...
Euclid’s Algorithm



Euclid’s Algorithm

Input: two integers a≥b≥0.

Output: gcd(a,b).

While (b≠0)

a := a mod b

Swap(a,b)

Output(a)



Classical Results
on Euclid’s Algorithm

What is the complexity of Euclid’s 
algorithm using standard arithmetic?

No more than multiplying large 
integers, using basic techniques.



A generalization

In 1773, Lagrange      notices that 
Euclid’s algorithm answers the 
following question: given (n,a,b), is n of 
the form ax+by ?

He invents algorithms for this 
generalization: given (n,a,b,c), is n of 
the form ax²+bxy+cy² ?  



A Vectorial Euclid’s Algorithm?

Since aZ+bZ=gcd(a,b)Z, Euclid computes 
the shortest non-zero linear combination 
of a and b. 

Given a finite set B of vectors in Zⁿ, can 
one compute the shortest non-zero vector 
in the set L(B) of all linear combinations?



Background 
on Lattices



Euclidean Lattices
Consider Rⁿ with the usual topology of a 
Euclidean space: let <u,v> be the dot 
product and ||w|| the norm.

A lattice is a discrete subgroup of Rⁿ.

Ex: Zⁿ and its subgroups.

O



Exercises

Show that for any lattice L of Rⁿ:
∃r>0 s.t. ∀x∈L, L∩B(x,r) = {x}.

L is closed.

For any bounded subset S of Rⁿ, its 
intersection with L is finite.

L is countable.



Examples

Let b1,b2,...bd in Qⁿ.
 Then L(b1,...,bd) is a lattice.

Let b1,b2,...bd be linearly independent 
vectors in Rⁿ.

Then L(b1,...,bd) is a lattice. 



Characterization of Lattices

Let L be a non-empty set of Rⁿ. There is 
equivalence between:

L is a lattice.

There exists a set B of linearly 
independent vectors such that L=L(B).

Such a B is a basis of a lattice L, and its 
cardinality is the dimension/rank of the 
lattice.

O



Volume of a Lattice

O

Each basis spans a parallelepiped, whose 
volume only depends on the lattice. This is 
the lattice volume.

By scaling, we can always ensure that the 
volume is 1 like Zn.



Lattices and Quadratic Forms

Every lattice basis defines a positive 
definite quadratic form:

Reciprocally: Cholesky factorization.

The squared volume is the discriminant of 
the form. 

q(x1, . . . ,xd) =

∥∥∥∥∥

d

∑
i=1
xi!bi

∥∥∥∥∥

2



The First Minimum

The intersection of a lattice with any 
bounded set is finite.

In a lattice L, there are non-zero 
vectors of minimal norm: this is the 
first minimum         or the minimum 
distance.

λ1(L)

second minimum
O

first minimum



Lattice Packings

Every lattice defines a sphere packing:

The diameter of spheres is the first 
minimum of the lattice: the shortest 
norm of a non-zero lattice vector.

O



Hermite’s 
Constant
(1850)



Hermite’s Constant

Let q be a positive definite quadratic form 
over Rⁿ:

Its discriminant is

It has a minimum ||q|| over Zⁿ\{0}
Hermite (1850) proved the existence of:

q(x1, . . . ,xn) = ∑
1≤i, j≤n

qi, jxix j

Δ(q) = det(qi, j)1≤i, j≤n

γn = max
q over Rn

||q||
Δ(q)1/n



Hermite’s Constant Again

We have:

The optimal lattice packings correspond 
to the critical lattices, those reaching 
Hermite’s constant.

γn =max
q

||q||
Δ(q)1/n

=max
L

||L||2

vol(L)2/n



Facts on Hermite’s Constant

Hermite’s constant is asymptotically linear:

The exact value of the constant is only 
known up to dim 8, and in dim 24 [2004].

γn 2/
√
321/3

√
2 81/5 (64/3)1/6641/7

dim n 2 3 4 5 6 7 8 24

2 4

approx 1.16 1.26 1.41 1.52 1.67 1.81 2 4

Ω(n)≤ γn ≤ O(n)



Application: 
the two-square theorem

Let p be a prime ≡ 1 mod 4.

Then -1 is a square mod p: there exists 
r s.t. r2 ≡ 1 mod p.

Then x2+y2 ≡ (x+ry)(x-ry) mod p.

Let L={(x,y)∈Z2 s.t. x ≡ ry mod p}.  



Application: 
the two-square theorem

Let L={(x,y)∈Z2 s.t. x ≡ ry mod p}. This is 
a lattice of dimension 2, with volume p.

There must be a non-zero vector (x,y) in 
L of squared norm ≤ 2p/√3. Then:

 x2+y2 ≡ 0 mod p

 0 < x2+y2 ≤ 2p/√3

Therefore p=x2+y2. 



The existence of short lattice vectors

Hermite proved in 1850:

Minkowski’s theorem implies:

Thus, any lattice contains a non-zero vector 
of norm  

γd ≤
(
4
3

)(d−1)/2

γd ≤ d

≤
√
dvol(L)1/d

O



Linear Bounds 
on Hermite’s 

Constant



Minkowski’s Theorem (1896)

Let L be a full-rank lattice of Rⁿ. Let C be 
a measurable subset of Rⁿ, convex, 
symmetric, and of measure > 2ⁿvol(L).
Then C contains at least a non-zero point of 
L.

O



Remarks

The volume bound is optimal in the 
worst-case.

If C is furthermore compact, the > 
can be replaced by ≥.



Application to a ball

Let C be the n-dim ball of radius r. 
Then its volume is rⁿ multiplied by:

To apply Minkowski’s theorem, one can 
take:



Application to a ball

We obtain Minkowski’s linear bound on 
Hermite’s constant:



Proving Minkowski

Blichfeldt’s lemma: 

Let L be a full-rank lattice of Rⁿ.
Let F be a measurable subset of Rⁿ, 
of measure > vol(L).

Then F contains at least two distinct 
vectors whose difference is in L. 



Other Proofs of Minkowski’s 
Upper Bound

Minkowski’s original proof: using 
packings.

Mordell’s proof.



Lattice 
Algorithms



Algorithmic Problems

There are two parameters:

The size of basis coefficients

The lattice dimension

Two cases

Fixed dimension, the size of coeffs 
increases.

The dimension increases, and the size of 
coeffs is polynomial in the dimension.



Lattices and Complexity

Since 1996, lattices are very trendy in 
complexity: classical and quantum. 

Depending on the approximation factor 
with respect to the dimension:

NP-hardness

non NP-hardness (NP∩co-NP)

worst-case/average-case reduction

polynomial-time algorithms

O(1)
√n

O(n logn)

1

∞2O(n log log n/logn)



The Shortest Vector Problem (SVP)

Input: a basis of a d-dim lattice L

Output: nonzero v∈L minimizing ||v||. The 

minimal norm is ||L||.

O

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1



The Algorithm of [Lenstra-Lenstra-
Lovász1982]: LLL or L³ 

Given an integer lattice L of dim d, LLL 
finds in polynomial time a basis whose 
first vector satisfies:

The constant 2 can be replaced by 
4/3+ε.fand the running time becomes 
polynomial in 1/ε. This is reminiscent of 
Hermite’s inequality:

‖!b1‖ ≤ 2(d−1)/4vol(L)1/d

γd ≤ (4/3)(d−1)/2 = (γ2)d−1

‖!b1‖ ≤ 2(d−1)/2‖L‖



The Magic of LLL

One of the main reasons behind the 
popularity of LLL is that it performs 
“much better” than what the worst-
case bounds suggest, especially in low 
dimension.

This is another example of worst-case 
vs. “average-case”. 



LLL: Theory vs Practice

The approx factors (4/3+ε)(d-1)/4 and (4/3+ε)(d-1)/2 
are tight in the worst case: but this is only 
for worst-case bases of certain lattices.

Experimentally, 4/3+ε ≈ 1.33 can be replaced by 
a smaller constant ≈ 1.08, for any lattice, by 
randomizing the input basis.

But there is no good explanation for this 
phenomenon, and no known formula for the 
experimental constant ≈ 1.08.



To summarize

LLL performs better in practice than 
predicted by theory, but not that 
much better: the approximation 
factors remain exponential on the 
average and in the worst-case, except 
with smaller constants.

Still no good explanation.



Illustration
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Other unexplained phenomenon

In small dimension, LLL behaves as a 
randomized exact SVP algorithm!
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The Power of LLL

LLL not only finds a “short” lattice 
vector, it finds a “short” lattice basis.



One Notion of Reduction:
The Orthogonality Defect

If (b1,...,bn) is a basis of L, then 
Hadamard’s inequality says that:

Reciprocally, we may wish for a basis 
such that 

vol(L)≤
d

∏
i=1
‖!bi‖

d

∏
i=1
‖!bi‖ ≤ vol(L) · constant



Triangularization
from Gram-Schmidt



Gram-Schmidt

From d linearly independent vectors, 
GS constructs d orthogonal vectors: 
the i-th vector is projected over the  
orthogonal complement of the first i-1 
vectors.  

!b"
1 =!b1

!b"
i =!bi−

i−1

∑
j=1
µi, j!b"

j

where µi, j =
〈!bi,!b"

j〉
‖!b"

j‖2



Gram-Schmidt and Volume

For each k, ||b*k|| is the distance of bk 

to the subspace spanned by b1,...,b(k-1).

If b1,...,bd is a basis of L, then: 

vol(L) = ||b*1|| x ||b*2|| x ... x ||b*d||



Computing Gram-Schmidt

If b1,...,bd ∈Zn, then b*1, b*2,...,b*d ∈Qn.

They can be computed in polynomial time 
from the recursive formula.

Note:

The denominator of each b*i divides     
(||b*1|| x ||b*2|| x ... x ||b*i||)2=vol(b1,...,bi)2

The denominator of each μi,j divides     
(||b*1|| x ||b*2|| x ... x ||b*j||)2=vol(b1,...,bj)2



Gram-Schmidt = Triangularization

If we take an appropriate orthonormal basis,  
the matrix of the lattice basis becomes 
triangular.



‖!b∗1‖ 0 0 . . . 0
µ2,1‖!b∗1‖ ‖!b∗2‖ 0 . . . 0
µ3,1‖!b∗1‖µ3,2‖!b∗2‖‖!b∗3‖ . . . 0

... . . . . . . . . . ...
µd,1‖!b∗1‖µd,2‖!b∗2‖ . . . µd,d−1‖!b∗d−1‖‖!b∗d‖







Why Gram-Schmidt?

If the Gram-Schmidt do not decrease 
too fast, then          won’t be too far 
from the d-th root of the volume.  

Neither from the first minimum 
because:

vol(L) =
d

∏
i=1

‖!b"
i ‖

!b1 =!b"
1

λ1(L)≥mini‖!b"
i ‖



Two dimensions
(1773)



Low Dimension

If dim≤4, there exist bases reaching all 
the minima. Can we find them?

Yes and as fast as Euclid!

Dim 2: Lagrange-Gauss, analysis by 
[Lagarias1980].

Dim 3: [Vallée1986-Semaev2001].

Dim 4: [N-Stehlé2004] 



Reduction operations

To improve a basis, we may :

Swap two vectors.

Slide: subtract to a vector a linear 
combination of the others.

That’s exactly what Euclid’s algorithm 
does.



Lagrange’s Algorithm

Input: a basis [u,v] of L

Output: a basis of L whose first vector is 
a shortest vector.

Assume that ||u||≥||v||

Can we shorten u by subtracting a   
multiple of v?



The right slide
Finding the best multiple amounts to finding a 
closest vector in the lattice spanned by v!

The optimal choice is qv where q is the 
closest integer to <u,v>/||v||²

O

u

v



Lagrange’s Algorithm

Repeat

Compute r := qv where q is the 
closest integer to <u,v>/||v||².
u := u-r

Swap(u,v)

Until ||u||≤||v||

Output [u,v]



Lagrange’s reduction

A basis [u,v] is L-reduced iff 

||u|| ≤ ||v||

|<u,v>|/||v||² ≤ 1/2
Such bases exist since Lagrange’s 
algorithm clearly outputs L-reduced 
bases.



The 2-dimensional Case

O

|µ2,1| ≤ 1/2 ‖!b∗1‖2/‖!b∗2‖2 ≤ 4/3 γ2 = (4/3)1/2



Exercises

Show that if a basis [u,v] of L is 
Lagrange-reduced then:

||u|| = λ1(L)

Show that Lagrange’s algorithm is 
polynomial time, and even quadratic 
(in the maximal bit-length of the 
coefficients) like Euclid’s algorithm. 
Hint: consider <u,v>.



The n-dimensional case:
From L to LLL

1773

1850

1982



Bounding Hermite’s Constant and 
Approximate SVP Algorithms



Bounding Hermite’s Constant

Early method to find Hermite’s constant:

Find good upper bounds on Hermite’s 
constant.

Show that the upper bound is also a 
lower bound, by exhibiting an 
appropriate lattice.

This works up to dim 4.



Approximation Algorithms for SVP

All related to historical methods to upper 
bound Hermite’s constant.

[LLL82] corresponds to [Hermite1850]’s 
inequality.

[Schnorr87, GHKN06, GamaN08] correspond 
to [Mordell1944]’s inequality. 

γd ≤ (4/3)(d−1)/2 = γd−12

γd ≤ γ(d−1)/(k−1)
k



The Algorithm of [Lenstra-Lenstra-
Lovász1982]: LLL or L³ 

Given an integer lattice L of dim d, LLL 
finds in polynomial time a basis whose 
first vector satisfies:

It is often noted that the constant 2 can 
be replaced by 4/3+ε. This is  
reminiscent of Hermite’s inequality:

‖!b1‖ ≤ 2(d−1)/4vol(L)1/d

γd ≤ (4/3)(d−1)/2 = (γ2)d−1

‖!b1‖ ≤ 2(d−1)/2‖L‖



The 2-dimensional Case

By proving that                , we also 
described an algorithm to find the 
shortest vector in dimension 2. This 
algorithm is Lagrange’s algorithm, also 
known as Gauss’ algorithm. 

γ2 ≤ (4/3)1/2



Hermite’s Inequality

Hermite proved                    as a 
generalization of the 2-dim case by 
induction over d.

Easy proof by induction: consider a shortest 
lattice vector, and project the lattice 
orthogonally...

γd ≤ (4/3)(d−1)/2



Hermite’s Reduction

Hermite proved the existence of bases such 
that:

Such bases approximate SVP to an exp factor:

|µi, j| ≤
1
2

‖!b"
i ‖2

‖!b"
i+1‖2

≤ 4
3and

‖!b1‖ ≤
[
(4/3)1/4

]d−1
vol(L)1/d

‖!bi‖ ≤
[
(4/3)1/2

]d−1
λi(L)

γd ≤ (4/3)(d−1)/2



Computing Hermite reduction

Hermite proved the existence of :

By relaxing the 4/3, [LLL1982] obtained a 
provably polynomial-time algorithm.  

|µi, j| ≤
1
2

‖!b"
i ‖2

‖!b"
i+1‖2

≤ 4
3

and



The Algorithm of [Lenstra-Lenstra-
Lovász1982] : LLL ou L³ 

Given an integer lattice of dim d, LLL 
finds a basis almost H-reduced in 
polynomial time O(d6B3) where B is the 
maximal size of the norms of initial 
vectors.

The running time is really cubic in B, 
because GS is computed exactly, which 
already costs O(d5B2).



Note on the LLL bound

In the worst case, we are limited by 
Hermite’s constant in dimension 2, hence the  
4/3 constant in the approximation factor.

In practice however, the 4/3 seems to be 
replaced by a smaller constant, whose value 
can be observed empirically [N-St2006]. 
Roughly, (4/3)1/4 is replaced by 1.02



LLL

LLL tries to reduce all the 2x2 lattices.



a1,1 0 . . . 0
a2,1a2,2 0 . . . . . . 0
a3,1a3,2a3,3 0 . . . ...
a4,1a4,2a4,3a4,4 . . .
...
ad,1ad,2 . . . ad,d−1ad,d







Lenstra-Lenstra-Lovász 

A basis is LLL-reduced if and only if

it is size-reduced

Lovasz’ conditions are satisfied

!b"
i =!bi−

i−1

∑
j=1
µi, j!b"

j where µi, j =
〈!bi,!b"

j〉
‖!b"

j‖2

|µi, j| ≤
1
2

0.99‖!b"
i−1‖2 ≤ ‖!b"

i +µi,i−1!b"
i−1‖2

Hence, roughly: ‖!b"
i−1‖2 ≤

4
3
‖!b"

i ‖2



Description of the LLL Algorithm

While the basis is not LLL-reduced

Size-reduce the basis

If Lovasz’ condition does not hold 
for some pair (i-1,i): just swap bi-1 
and bi.



Size-reduction

For i = 2 to d

For j = i-1 downto 1

Size-reduce bi with respect to bj: 
make |μi,j| ≤ 1/2 by                    
bi := bi-round(μi,j)bj

Update all μi,j’ for j’≤j.

The translation does not affect the 
previous μi’,j’ where i’ < i, or i’=i and j’>j.



Why LLL is polynomial

Consider the quantity

If the bi’s have integral coordinates, then P is 
a positive integer.

Size-reduction does not modify P.

But each swap of LLL makes P decrease by 
a factor <= 1-ε

This implies that the number of swaps is 
polynomially bounded. 

P=
d

∏
i=1

‖!b∗i ‖2(d−i+1)



Recap of LLL

The LLL algorithm finds in polynomial time a 
basis such that:

Such bases approximate SVP to an exp factor:

|µi, j| ≤
1
2

‖!b"
i ‖2

‖!b"
i+1‖2

≤ 4
3and

γd ≤ (4/3)(d−1)/2

+ε

‖!b1‖ ≤
[
(4/3+ ε)1/4

]d−1
vol(L)1/d

‖!bi‖ ≤
[
(4/3+ ε)1/2

]d−1
λi(L)



Implementing LLL

We described a simple version of LLL, 
which is not optimized for 
implementation, for several reasons:

The use of rational arithmetic.

Size-reduction of a whole basis.



Simple Optimizations

It is better to keep a counter k, 
which varies during the execution, and 
such that b1,...,b(k-1) are always LLL-
reduced.

Initially, k=2.

At the end, k=d+1.

We only need to size-reduce bk and 
test Lovász’ condition.



Other Optimizations

We may rewrite LLL using only 
integer arithmetic, because we know 
good denominators for all the rational 
numbers.

More tricky, but more efficient: we 
may replace rational arithmetic by 
floating-point arithmetic of suitable 
precision.



Beyond LLL

1982



Improving LLL

Decreasing the running time: Faster LLLs.

Improving the output quality: stronger LLLs.

Solving SVP exactly

Approximate SVP in polynomial time to 
within better factors 



Faster LLL

LLL runs in poly time  O(d6 log3 B) without 
fast integer arithmetic.

Improving “d”: [Schönhage84,Schnorr88].

But LLL generalizes Euclid’s gcd algorithm, 
which is quadratic, not cubic. [N-Stehlé2005] 
found the first quadratic variant of LLL:  
O(d5 log2 B) without fast arithmetic. 

Is it possible to achieve quasi-linear time?



Applications of LLL:
Exact SVP Algorithms



Exact SVP Algorithms

Kannan (1983): deterministic super-
exponential time          (and 
negligible space). 

Ajtai-Kumar-Sivakumar (2001): 
randomized exponential time         
(but also exponential space). Not used 
in practice. Now also deterministic: 
[MV2010]. 

2O(d lnd)

2O(d)



From Hermite to Mordell:
Divide and Conquer

1850

1944

γd ≤ (4/3)(d−1)/2 = (γ2)d−1

γd ≤ γ(d−1)/(k−1)
k if 2≤ k ≤ d



Applications of Exact Algorithms:
Improving LLL in polynomial time



Divide and Conquer

Consider a lattice L of dimension d.

If we select a small k << d, we can find 
shortest vectors in lattices of dim k in time 
polynomial in d. For instance,                    
k = log(d)/log(log(d)) will do.

Can we exploit such an oracle to improve the 
quality of LLL, provided that the number of 
calls is polynomial?



A Mathematical Analogue

If we know Hermite’s constant exactly 
in dim k, can we use that knowledge 
to upper bound Hermite’s constant in 
dim d > k?



Mordell’s Inequality

Hermite’s inequality is a particular case of 
Mordell’s inequality:

The standard proof of Mordell’s inequality 
is based on primal/dual transfers.

Mordell’s inequality is tight for (k,d)=(3,4) 
and (7,8).

γd ≤ γ(d−1)/(k−1)
k if 2≤ k ≤ d



An Algorithmic Version
of Mordell’s Inequality

Using a k-dim oracle, one “should” be able to 
solve Hermite-SVP with factor               

This is achieved by the algorithm of 
[GamaN2008], which is to Mordell’s inequality 
what LLL is to Hermite’s inequality.
By choosing an appropriate k=f(d), the whole 
algorithm is poly-time with a subexponential approx 
factor.

√
γk

(d−1)/(k−1)



Schnorr’s Algorithm (1987)

Given an oracle which solves SVP up 
to dim 2k, Schnorr’s algorithm finds a 
non-zero lattice vector of norm:

See [Schnorr87,GHKN06]

≤ O
((

kln2/(2k)
)d)

vol(L)1/d



From LLL to Block Reduction 

LLL tries to reduce all the 2x2 lattices.



a1,1 0 . . . 0
a2,1a2,2 0 . . . . . . 0
a3,1a3,2a3,3 0 . . . ...
a4,1a4,2a4,3a4,4 . . .
...
ad,1ad,2 . . . ad,d−1ad,d







Schnorr’s Reduction (1987)

Try to reduce all the 2k-dim lattices.



a1,1 0 . . . 0
a2,1a2,2 0 . . . . . . 0
a3,1a3,2a3,3 0 . . . ...
a4,1a4,2a4,3a4,4 . . .
...
ad,1ad,2 . . . ad,d−1ad,d







Gama-N’s Algorithm
Try to reduce all the disjoint k-dim lattices + all the 
“slided” dual k-dim lattices



a1,1 0 . . . 0
a2,1a2,2 0 . . . . . . 0
a3,1a3,2a3,3 0 . . . ...
a4,1a4,2a4,3a4,4 . . .
...
ad,1ad,2 . . . ad,d−1ad,d







Recap

The best polynomial algorithms solve Hermite-
SVP and Approx-SVP within a factor (1+eps)d 
which can be made slightly subexponential.

Such algorithms might find the exact solution, 
depending on the properties of the lattice.

The best exact algorithms are at least 
exponential, and are totally impractical if dim 
>= 130.



Limits of Approximation Algorithms

Since Mordell’s inequality can be tight, 
it seems difficult to improve the block 
strategy.

If the algorithm also provides an 
absolute upper bound on the output, it 
implicitly gives an upper bound on 
Hermite’s constant. Ex: LLL and 
blockwise algorithms.



Speculation

If all poly-time algorithms correspond to classical 
inequalities on Hermite’s constant, do other 
methods for bounding Hermite’s constant have 
algorithmic analogues?

Minkowski’s Convex Body Theorem: it has a 
superexponential analogue based on Mordell’s 
proof of Blichfeldt’s lemma.

The method of [CohnElkies2003,CohnKumar2004].



CONCLUSION

1773 1850 19821933 1944 1945 19871983 ...



Open problems

Efficient algorithms to approximate SVP 
within a polynomial factor, possibly quantum.

Other problems

Find a 2O(d) SVP-algorithm not requiring 
exponential space.

Find an LLL with quasi-linear time.

Find a poly-time algorithm unrelated to 
Hermite’s constant.



Bridging Theory and Practice

The algorithms used in practice 
somewhat differ from the best 
theoretical algorithms.

Assessing/understanding the “average-
case” performances of lattice 
algorithms. What are the average-
case constants? 


