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The Random-Oracle Model

ACM CCS ’93



Hash Functions

Many schemes or protocols use public 
hash functions: not easy to prove strong 
security properties.

Usual hash functions: {0,1}*→{0,1}n

Hash 
function

MD5 SHA-1 SHA-2 and SHA-3

n 128 160 224, 256, 384, 512



What is the ROM?

Goes back to at least [FiatShamir86].

[BeRo93] popularized the ROM: prove 
security properties when modeling the 
hash function as a random oracle.

Popular... but also controversial.



What is a Random Oracle?

H: {0,1}*→{0,1}n

When H(m) is requested:

Answer uniformly at random in {0,1}n, 
unless m has been queried before:       
keep the answers consistent.

ROM security proofs are able to “simulate” a 
random oracle, where outputs are independent 
and uniformly distributed. Ex: RSA-FDH.



RSA-FDH (Full-Domain-Hash)
[BeRo93,BeRo96]

N=pq and ed≡1 mod (p-1)(q-1)

H:{0,1}*→Z/NZ full-domain-hash

sign(m) = H(m)d mod N



The ROM Controversy

Many standardized schemes are at best proven 
secure in the ROM, e.g. RSA-OAEP encryption and 
RSA-PSS signature.

But [CaGoHa98] found ROM-secure signature 
schemes which are insecure for any (efficient) 
implementation of the random oracle. According to 
[KoMe07], all such ROM counterexamples are 
“artificial”. 



How is [CaGoHa98] Possible?

Any efficient implementation can be simulated 
by a universal Turing machine. This allows a 
scheme to decide whether or not the hash 
function is a random oracle.

Then disclose the secret key if the hash is not 
a random oracle.



Contradicting the ROM

If you have an attack against a ROM-secure 
scheme:

Either you can break the computational 
assumptions of the security proof.

Either you exploit a property of the hash 
function, which is not shared by the random-
oracle simulation, like in [CaGoHa98].



Difference between ROM and SM

In the standard model (SM), a security proof 
gives you a list of sufficient assumptions to 
guarantee security properties.

In the ROM, no precise sufficient assumption on 
the hash function is provided, except one which 
cannot be satisfied by efficient functions. The 
ROM is a security model, not an assumption.



This Talk

New Issues on the ROM

Instantiating a random-oracle with large 
outputs: problems in existing proposals.

Comparing ROM schemes is tricky: hash 
function requirements and impact of 
hash defects can vary a lot. 



How Risky is the ROM?

[Coron*08] showed that the ROM is equivalent 
to the Ideal Cipher Model (ICM).

The ICM is risky:

MD5 was collision-resistant in the ICM.

Yesterday, AES-256 was shown to “differ” 
substantially from an ideal cipher.

How about the ROM? More and more hash 
functions are shown to “differ” from a random 
oracle...



Instantiating a   
Random Oracle



The ROM Heuristic

When implementing a ROM-secure scheme, 
you instantiate the random oracle, and hope 
that the scheme will remain secure.

If the output length is standard (between 
128 and 512), a natural candidate is a 
standard hash function, even if it is known to 
have weaknesses.



The Large-Output Case

But many ROM-secure schemes require a hash 
function with large output > 512 bits. Ex: RSA-FDH.

How are we supposed to implement such functions 
in practice? Not with MD5 or SHA: problem not 
covered in textbooks, and often ignored in papers.



Proposals for Large-Output

Bellare and Rogaway: one in [BeRo93], and 
another in [BeRo96] (on RSA-FDH and PSS).

Implicit instantiations in PKCS and IEEE P1363 
standards, based on SHA-1.

“Semi-proposals” by [Coron*05] based on 
indifferentiability theory [Maurer*04].



Our Results

All these instantiations fall short of the security 
of a random oracle.

For 1024 bits:
A practical preimage attack on [BeRo93] costing 230.

A collision attack on [BeRo96] costing 2106.

When applied to MD5/SHA-1, finding collisions on 
PKCS/IEEE and [Coron*05] is not more expensive than 
for MD5/SHA-1, independently of the output length: 
216 compression calls for MD5 and 261 for SHA-1.



The Case of [BeRo93]

Complex construction, based on the MD5 
compression function.

Previously, we had a 267 preimage attack for 
1024-bit digests, based on Wagner’s generalized 
birthday [Wa02].

Thanks to [Bellare09], we have a 230 preimage 
attack for 1024-bit digests, using [BeMi97] on 
XHASH. The attack is polynomial in the output size.



Overview of [BeRo93]

For h: {0,1}*→{0,1}n, build h’: {0,1} 192→{0,1}n using 
the MD5 compression function.

128 bits

m0 mk

...
m1 m2

m0 m1 m2 mk0 1 2 k

128 bits 128 bits 128 bits

64 bits 64 bits 64 bits 64 bits

h’ h’ h’ h’

⊕
h(m)



A Practical Attack on [BeRo93]

Goal: given t∈{0,1}n, find a “random” m s.t. h(m) = t. 

Finding random preimages only costs n3.

the preimages have bit-length O(n). 

If n=1024, the cost is 230.

The attack works by linear algebra over GF(2).



A Practical Attack on [BeRo93]

Goal: given t∈{0,1}n, find a “random” m s.t. h(m) = t. 

Select two random 128-bit c[0] and c[1].

Now, for any x=(x0,x1,..,xn-1)∈{0,1}n,                 
let m[x] = 

Then h(m[x]) = t can be rewritten as a linear 
system with GF(2) unknowns xi’s, where the matrix 
coeffs are the bits of h’(c[0] || i) ⊕ h’(c[1] || i) for 
each i.

c[x0] c[x1] c[x2] c[xn-1]...



More on [BeRo93]

In fact, the preimage attack can be 
generalized to a chosen-prefix (resp. 
chosen-suffix) preimage attack, with 
the same cost.
Goal: given t∈{0,1}n and s∈{0,1}*, find m s.t. 
h(m || s) = t. 



Overview of [BeRo96]

Let H=MD5 or SHA-1.

Since H is a MD-hash, this is also the 
concatenation of distinct MD-hashes.

const 0

H
m const 1 m const k m

H H
...



Attacking [BeRo96]

[Joux04] can attack concatenations of 
MD-hashes: roughly the same security 
as a single MD-hash.

With a tighter analysis of [Joux04], for 
H=MD5 and 1024-bit output:

Collisions in 2106.

Preimages in 2166.



MGF1 in PKCS Standard

Let H=SHA-1 or SHA-2.

Since H is a MD-hash, any (appropriate-size) 
collision in H is a collision for the big hash.

m 0

H
m 1 m k

H H
...

counter counter counter



A Few Words on Indifferentiability

Following the indifferentiability framework 
[Maurer*04], many papers [Coron*05, etc.] give 
RO-preserving constructions: from a “small” RO, 
you can obtain a “bigger” RO.

But no clear proposal for the “small” RO.



A Few Words on Indifferentiability

In fact, if you plug MD5/SHA-1 components as 
the “small” RO in [Coron*05], the big RO is as 
bad as MD5/SHA-1: independently of the output 
size, you can find collisions for essentially the 
same cost. 

Everything depends on the “small” RO.



Recap

For large output (> 512 bits), there is 
currently no candidate with the collision-
resistance and the preimage-resistance of a 
random-oracle.

For instance, [BeRo93] is completely insecure: 
random preimages and collisions for “free”.



Robustness of ROM 
Signatures



Signature Schemes

One of the first applications of the ROM: “Prove” 
the security of efficient signature schemes.

Two main families of ROM signatures:

Based on trapdoor OWF: RSA, Rabin, ESIGN, etc.

Based on ID-schemes, using the Fiat-Shamir 
heuristic: Schnorr, etc.



In this paper/talk

In the paper, we analyze the hash function 
requirements and impact of hash function 
defects for the main ROM signatures based on 
trapdoor OWF.

In this talk, we only focus on  
derandomization: for certain schemes, any 
collision suffices to disclose the secret key!



Derandomization
Many signature schemes are probabilistic: random 
nonce required for each signature generation.

Derandomization makes them deterministic:

Proposed by [Granboulan02] to fix the security 
proof of ESIGN for the NESSIE project.

Discussed by [KaWa03] to make schemes stateless.

Used by [Bernstein08] and [Boneh*07] to obtain 
deterministic ROM-signatures based on factoring, 
with a tight security proof: variants of Rabin and 
Rabin/Williams.



How to Derandomize

Generate the random nonce 
deterministically from the message, the 
secret key, and possibly additional secrets.

But it has to be done carefully: several 
methods proposed in 
[Granboulan02,KaWa03,Boneh*07].



Pitfalls in Derandomization

Soundness: the ROM security proof must be 
preserved. 

This is not the case with [Granboulan02]: we 
give counter-examples where one can find two 
messages generating the same nonce, in which 
case you can recover the secret key with a 
chosen-message attack on ESIGN or DSA.



How to Derandomize

[Bernstein08] does not say exactly how it 
should be performed.

[KaWa03] discuss several (sound) 
possibilities, one of which being used in 
[Boneh*07]:

select the nonce as r=FK(m) where F is a 
PRF and K is an additional secret key.



Our Results

We notice that if ever one obtains a hash 
collision, then one can recover:

the master key with a chosen-ID attack 
on the ID-based cryptosystem of 
[Boneh*07].

the secret key with a chosen-message on 
[Bernstein08] using only two messages.



Explanation

Here, a hash collision does not imply a 
nonce collision.

Hence, a hash collision gives rise to two 
random square roots of the same public 
number, thus disclosing the factorization!



Surprisingly

The attack can be prevented by slightly modifying 
the derandomization process, while still 
preserving the ROM security proof.

We thus obtain two very close ROM-secure 
schemes:

One of them becomes totally insecure if there 
is a hash collision.

The other does not. 



Resistance to Preimages

But independently of the 
derandomization, both [Be08] and [BGH07] 
do not tolerate preimages or malleability.

So if one plugs [BeRo93] as the random 
oracle, there are key-recovery attacks on 
[Be08, BGH07]. Similarly for IEEE P1363’s 
deterministic Rabin-Williams.



Comparing ROM-secure schemes

Cryptanalysis provides a useful criterion for 
assessing ROM schemes: evaluating the 
robustness with respect to RO defects.

For instance, among all RSA signatures with 
tight ROM security proofs, RSA-PSS seems 
the most robust one. 



Random-Oracle Lessons

Proofs in the RO are difficult to compare, even 
if the hardness assumptions are the same.

Tightness in the RO can be misleading.

More work is needed on how to instantiate a RO.

The ROM is not an assumption: it is not 
formalized, and ROM proofs may require totally 
different properties on the hash function.



CONCLUSION



Conclusion

The Random-Oracle Model is useful to 
detect design flaws: if you cannot prove 
security in the ROM, not a good sign.

However, it does not provide much 
“granularity”, which makes comparisons 
tricky and perhaps, risky.



Conclusion

Different ROM schemes can have totally 
different requirements on the hash function, 
with different impacts: in one case, a collision 
can be deadly; in another case, even 
preimages do not seem to threat.

And this is independent of usual ROM 
criterions: tightness, efficiency.



Conclusion

Based on MD5/SHA-1, it might be better to 
select ROM schemes which are the least risky 
with respect to potential hash function 
defects (such as for large outputs).

But is it possible to formalize this? For many 
ROM schemes, a security proof in the standard 
model is known to be unlikely.



Open Problems

Here, we focused on signature schemes 
based on trapdoor one-way functions, but 
can other similar examples be found?

For instance, public-key encryption: there 
are many ways to make RSA encryption 
secure in the ROM, but what happens if 
the hash functions have defects?



Thank you for your attention...

Any question(s)?


