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Lessons for Encryption

Encryption must be made probabilistic.
But it must be done carefully.
Defining security for encryption is tricky: it took more or
less twenty years to find the right notion! We’ll come back
to it.
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Lessons for Signature

Messages must be preprocessed before being signed, to
avoid trivial existential forgeries.
But even with preprocessing, forgeries may be easier than
the general problem.
This highlights the importance of "provable security".
Defining security for signature is much easier than for
encryption.
"Provably secure" deterministic signatures are possible,
while "provably secure" deterministic encryption was not!
One could argue that deterministic signatures are even
preferable to probabilistic signatures.
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Philosophy of Square Root Attacks

There are many examples of brute force search attacks.
These have exponential complexity but require little
memory.
In practice it is often the case that problems can be split up
in a manner which allows a time/memory tradeoff.
Hence, one can reduce the running time by increasing the
memory requirement.
Algorithms of this type are often called time/memory
tradeoff or birthday attacks.
They are also often called square-root attacks. The key
idea is to split the secret in two equal parts. Let’s see a few
examples.
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A Square-Root Attack on the Discrete Logarithm

Let (N,e) be an RSA key.
Suppose the RSA private exponent d satisfies 1 < d < B.
Choose a random 1 < m < N and compute
c = me (mod N).
Then m ≡ cd (mod N).
In other words, finding d may be viewed as a discrete
logarithm problem.
We describe the baby-step-giant-step algorithm due to
Dan Shanks.
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Baby-step-giant-step algorithm

Define M = b
√

Bc.
Then d can be written as d = d1 + Md2 where 0 ≤ d1 < M
and 0 ≤ d2 ≤ M + 1. Hence, m ≡ cd (mod N) is rewritten
as m/cMd2 ≡ cd1 (mod N). We are now looking for
collisions!
For i = 0,1, . . . ,M − 1 compute the baby steps c i (mod N).
These values (together with the corresponding values of i)
must be stored in a structure such as a binary tree or hash
table.
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Baby-step-giant-step algorithm

Compute C = cM (mod N).
For j = 0,1, . . . compute the giant steps m/C j (mod N).
For each value, check to see if it appears in the tree/table
of baby steps.
This is easy to do when the baby steps are stored in a
binary tree or hash table.
Once a match is found we have c i ≡ m/cMj (mod N) and
so d = i + Mj .
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Baby-step-giant-step algorithm

Clearly the baby-step-giant-step algorithm is guaranteed to
terminate with the correct answer if 1 ≤ d < B.
The time and space complexity are both Õ(

√
B).

Exercise: Show that if the available memory is only enough
to store M <

√
B integers modulo N then one can obtain

an algorithm with time complexity Õ(B/M).
There is a completely different (and much more efficient)
way to find the RSA private exponent d if it is small. This is
the Wiener attack and it will be presented as a lattice
attack.
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A Square-Root Attack on the Message

We started with showing brute force search attacks on
RSA over either the message m or the private key d .
We have improved the latter attack using the time/memory
tradeoff.
The key idea was an additive splitting of d , essentially into
low-order and high-order halves.
A time/memory tradeoff for the former case was proposed
by Boneh, Joux and Nguyen [AC 2000].
The idea in this case is to use a multiplicative splitting of
the problem via m = m1m2.
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Boneh-Joux-N attack

Suppose we know that 1 ≤ m < B and we have

c ≡ me (mod N).

It might happen that m can be split as m = m1m2 where
m1,m2 ≈

√
m ≈

√
B.

Splitting probabilities are listed in the paper of Boneh, Joux
and N.
For example, if 1 ≤ m < 264 then m can be split as a
product m1m2 where 1 ≤ mi < 232 with probability 0.18.
Extending to 1 ≤ mi < 233 gives probability 0.29, and to
234 gives probability 0.35.
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Boneh-Joux-Nguyen attack

Compute all the values m1
e (mod N) where 1 ≤ m1 ≤ A

√
B

(for some constant A).
These values (together with the corresponding m1) should
be stored in a structure which is easily searched.
For 1 ≤ m2 ≤ A′

√
B (for some constant A′) compute

c/m2
e (mod N) and, for each value, see if this number

appears in the earlier structure.
If a match is found then we have c/m2

e ≡ m1
e (mod N) in

which case c ≡ (m1m2)
e (mod N) and so m = m1m2.
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Boneh-Joux-Nguyen attack

The time complexity of this attack is Õ(
√

B).
The storage requirement is also Õ(

√
B).

Unlike the baby-step-giant-step method, this approach
does not succeed for all inputs.
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Low memory versions

It is a surprising fact that many problems which can be
solved by square-root methods actually can be solved by
randomised algorithms of similar time complexity but with
constant space requirements.
For example, the Pollard ρ and λ methods solve the
discrete logarithm problem with time complexity close to
that of the baby-step-giant-step method, but with very
small space requirements.
Open problem: Give a low memory version of the BJN
attack.
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Low-Hamming Weight

To speed up RSA it is tempting to choose d of a specific
form.
One way is to choose the private exponent to have low
Hamming weight. This is especially true for El Gamal.
The key idea (due to Coppersmith) is that if d is a random
n-bit integer with low Hamming weight w then d can
usually be split as d = d1 + 2bn/2cd2 where the di are
n/2-bit integers with Hamming weight roughly w/2.
Hence we can expect time/memory tradeoff attacks with
complexity roughly (

n/2
w/2

)
≈

√(
n
w

)
.

See Stinson’s paper for details.
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The small CRT private exponent

To speed up RSA, one could alternatively select d small.
Due to the Wiener attack and the extension due to Boneh
and Durfee one must take d > N0.292.
A better way to speed up RSA is to choose N = pq and e
so that the integers dp and dq satisfying

edp ≡ 1 (mod p − 1) and edq ≡ 1 (mod q − 1)

are small.
Exercise: Design an RSA key generation algorithm which
produces keys of this form.
It seems that the Wiener attack and its generalisations
using lattices can no longer be applied in this case.
Exercice (hard): Find a square-root attack.
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Conclusions

Any restriction of parameters to small ranges or to having
special properties is a potential vulnerability.
When attacking a cryptosystem, first seek a brute-force
attack.
Then try to refine this using the time/memory tradeoff by
splitting the problem into parts.
If this is successful then try to find a low memory version.
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