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Lessons for Encryption

@ Encryption must be made probabilistic.
@ But it must be done carefully.

@ Defining security for encryption is tricky: it took more or
less twenty years to find the right notion! We’ll come back
to it.
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Lessons for Signature

@ Messages must be preprocessed before being signed, to
avoid trivial existential forgeries.

@ But even with preprocessing, forgeries may be easier than
the general problem.

@ This highlights the importance of "provable security".

@ Defining security for signature is much easier than for
encryption.

@ "Provably secure" deterministic signatures are possible,
while "provably secure" deterministic encryption was not!
One could argue that deterministic signatures are even
preferable to probabilistic signatures.
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Introduction

Philosophy of Square Root Attacks

@ There are many examples of brute force search attacks.

@ These have exponential complexity but require little
memory.

@ In practice it is often the case that problems can be split up
in @ manner which allows a time/memory tradeoff.

@ Hence, one can reduce the running time by increasing the
memory requirement.

@ Algorithms of this type are often called time/memory
tradeoff or birthday attacks.
They are also often called square-root attacks. The key
idea is to split the secret in two equal parts. Let’s see a few
examples.
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Baby-Step-Giant-Step

A Square-Root Attack on the Discrete Logarithm

@ Let (N, e) be an RSA key.
@ Suppose the RSA private exponent d satisfies 1 < d < B.
@ Choose arandom 1 < m < N and compute
¢ = m® (mod N).
@ Then m = ¢ (mod N).

@ In other words, finding d may be viewed as a discrete
logarithm problem.

@ We describe the baby-step-giant-step algorithm due to
Dan Shanks.
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Baby-Step-Giant-Step

Baby-step-giant-step algorithm

@ Define M = |V/B].

@ Then d can be writtenas d = dy + Md,> where 0 < dy < M
and 0 < d» < M+ 1. Hence, m = ¢ (mod N) is rewritten
as m/cM% = ¢% (mod N). We are now looking for
collisions!

@ Fori=0,1,...,M— 1 compute the baby steps ¢’ (mod N).

@ These values (together with the corresponding values of i)
must be stored in a structure such as a binary tree or hash
table.
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Baby-Step-Giant-Step

Baby-step-giant-step algorithm

@ Compute C = c¥ (mod N).

@ Forj=0,1,... compute the giant steps m/C/ (mod N).

@ For each value, check to see if it appears in the tree/table
of baby steps.
This is easy to do when the baby steps are stored in a
binary tree or hash table.

@ Once a match is found we have ¢/ = m/cM (mod N) and
sod=i+M,.
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Baby-Step-Giant-Step

Baby-step-giant-step algorithm

@ Clearly the baby-step-giant-step algorithm is guaranteed to
terminate with the correct answer if 1 < d < B.

@ The time and space complexity are both O(v/B).

@ Exercise: Show that if the available memory is only enough
to store M < v/B integers modulo N then one can obtain
an algorithm with time complexity O(B/M).

@ There is a completely different (and much more efficient)
way to find the RSA private exponent d if it is small. This is
the Wiener attack and it will be presented as a lattice
attack.
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Baby-Step-Giant-Step

A Square-Root Attack on the Message

@ We started with showing brute force search attacks on
RSA over either the message m or the private key d.

@ We have improved the latter attack using the time/memory
tradeoff.

@ The key idea was an additive splitting of d, essentially into
low-order and high-order halves.

@ A time/memory tradeoff for the former case was proposed
by Boneh, Joux and Nguyen [AC 2000].

@ The idea in this case is to use a multiplicative splitting of
the problem via m = mymo.
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Baby-Step-Giant-Step

Boneh-Joux-N attack

@ Suppose we know that 1 < m < B and we have
¢ = m°® (mod N).

@ It might happen that m can be split as m = mym, where
my, Mo = \ﬁ =~ \/E

@ Splitting probabilities are listed in the paper of Boneh, Joux
and N.

@ For example, if 1 < m < 2% then m can be split as a
product mym, where 1 < m; < 232 with probability 0.18.

@ Extending to 1 < m; < 232 gives probability 0.29, and to
234 gives probability 0.35.
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Baby-Step-Giant-Step

Boneh-Joux-Nguyen attack

@ Compute all the values m;€ (mod N) where 1 < my < AVB
(for some constant A).

@ These values (together with the corresponding m;) should
be stored in a structure which is easily searched.

@ For1 < m, < A'V/B (for some constant A') compute
c¢/m.® (mod N) and, for each value, see if this number
appears in the earlier structure.

@ If a match is found then we have ¢/m,® = m{€ (mod N) in
which case ¢ = (mym5)€ (mod N) and so m = mym..
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Baby-Step-Giant-Step

Boneh-Joux-Nguyen attack

@ The time complexity of this attack is O(v/B).
@ The storage requirement is also O(v/B).

@ Unlike the baby-step-giant-step method, this approach
does not succeed for all inputs.
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Baby-Step-Giant-Step

Low memory versions

@ It is a surprising fact that many problems which can be
solved by square-root methods actually can be solved by
randomised algorithms of similar time complexity but with
constant space requirements.

@ For example, the Pollard p and A methods solve the
discrete logarithm problem with time complexity close to
that of the baby-step-giant-step method, but with very
small space requirements.

@ Open problem: Give a low memory version of the BJN
attack.
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Constrained Parameters

Low-Hamming Weight

@ To speed up RSA it is tempting to choose d of a specific
form.

@ One way is to choose the private exponent to have low
Hamming weight. This is especially true for El Gamal.

@ The key idea (due to Coppersmith) is that if d is a random
n-bit integer with low Hamming weight w then d can
usually be split as d = d; + 2l"/2ld, where the d; are
n/2-bit integers with Hamming weight roughly w/2.

@ Hence we can expect time/memory tradeoff attacks with

complexity roughly
n/2\ _ n
w2) "\ \w)

@ See Stinson’s paper for details.
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Constrained Parameters

The small CRT private exponent

@ To speed up RSA, one could alternatively select d small.

@ Due to the Wiener attack and the extension due to Boneh
and Durfee one must take d > N0-292,

@ A better way to speed up RSA is to choose N = pg and e
so that the integers d, and d, satisfying

edp=1(modp—1) and ed;=1(modqg—1)

are small.

@ Exercise: Design an RSA key generation algorithm which
produces keys of this form.

@ |t seems that the Wiener attack and its generalisations
using lattices can no longer be applied in this case.
@ Exercice (hard): Find a square-root attack.
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Conclusion

Conclusions

@ Any restriction of parameters to small ranges or to having
special properties is a potential vulnerability.

@ When attacking a cryptosystem, first seek a brute-force
attack.

@ Then try to refine this using the time/memory tradeoff by
splitting the problem into parts.

@ [f this is successful then try to find a low memory version.
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Conclusion
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