Public-Key Cryptanalysis (II): Square-Root Attacks

Phong Nguyên

http://www.di.ens.fr/~pnguyen

INRIA and École normale supérieure, Paris, France

MPRI, 2009
Lessons for Encryption

- Encryption must be made **probabilistic**.
- But it must be done **carefully**.
- Defining security for encryption is **tricky**: it took more or less twenty years to find the right notion! We’ll come back to it.
Lessons for Signature

- Messages must be preprocessed before being signed, to avoid trivial existential forgeries.
- But even with preprocessing, forgeries may be easier than the general problem.
- This highlights the importance of "provable security".
- Defining security for signature is much easier than for encryption.
- "Provably secure" deterministic signatures are possible, while "provably secure" deterministic encryption was not! One could argue that deterministic signatures are even preferable to probabilistic signatures.
Philosophy of Square Root Attacks

- There are many examples of brute force search attacks.
- These have exponential complexity but require little memory.
- In practice it is often the case that problems can be split up in a manner which allows a time/memory tradeoff.
- Hence, one can reduce the running time by increasing the memory requirement.
- Algorithms of this type are often called time/memory tradeoff or birthday attacks.
- They are also often called square-root attacks. The key idea is to split the secret in two equal parts. Let’s see a few examples.
Let \((N, e)\) be an RSA key.

Suppose the RSA private exponent \(d\) satisfies \(1 < d < B\).

Choose a random \(1 < m < N\) and compute
\[c = m^e \pmod{N}. \]

Then \(m \equiv c^d \pmod{N}\).

In other words, finding \(d\) may be viewed as a discrete logarithm problem.

We describe the baby-step-giant-step algorithm due to Dan Shanks.
Define $M = \lfloor \sqrt{B} \rfloor$.

Then d can be written as $d = d_1 + Md_2$ where $0 \leq d_1 < M$ and $0 \leq d_2 \leq M + 1$. Hence, $m \equiv c^d \pmod{N}$ is rewritten as $m/c^{Md_2} \equiv c^{d_1} \pmod{N}$. We are now looking for collisions!

For $i = 0, 1, \ldots, M - 1$ compute the baby steps $c^i \pmod{N}$.

These values (together with the corresponding values of i) must be stored in a structure such as a binary tree or hash table.
Baby-step-giant-step algorithm

- Compute $C = c^M \pmod{N}$.
- For $j = 0, 1, \ldots$ compute the giant steps $m/C^j \pmod{N}$.
- For each value, check to see if it appears in the tree/table of baby steps. This is easy to do when the baby steps are stored in a binary tree or hash table.
- Once a match is found we have $c^i \equiv m/c^{Mj} \pmod{N}$ and so $d = i + Mj$.

Phong Nguyên
Clearly the baby-step-giant-step algorithm is guaranteed to terminate with the correct answer if \(1 \leq d < B \).

The time and space complexity are both \(\tilde{O}(\sqrt{B}) \).

Exercise: Show that if the available memory is only enough to store \(M < \sqrt{B} \) integers modulo \(N \) then one can obtain an algorithm with time complexity \(\tilde{O}(B/M) \).

There is a completely different (and much more efficient) way to find the RSA private exponent \(d \) if it is small. This is the Wiener attack and it will be presented as a lattice attack.
We started with showing brute force search attacks on RSA over either the message m or the private key d.

We have improved the latter attack using the time/memory tradeoff.

The key idea was an additive splitting of d, essentially into low-order and high-order halves.

A time/memory tradeoff for the former case was proposed by Boneh, Joux and Nguyen [AC 2000].

The idea in this case is to use a multiplicative splitting of the problem via $m = m_1 m_2$.

A Square-Root Attack on the Message
Suppose we know that $1 \leq m < B$ and we have

$$c \equiv m^e \pmod{N}.$$

It might happen that m can be split as $m = m_1 m_2$ where $m_1, m_2 \approx \sqrt{m} \approx \sqrt{B}$.

Splitting probabilities are listed in the paper of Boneh, Joux and N.

For example, if $1 \leq m < 2^{64}$ then m can be split as a product $m_1 m_2$ where $1 \leq m_i < 2^{32}$ with probability 0.18.

Extending to $1 \leq m_i < 2^{33}$ gives probability 0.29, and to 2^{34} gives probability 0.35.
Boneh-Joux-Nguyen attack

- Compute all the values $m_1^e \pmod{N}$ where $1 \leq m_1 \leq A\sqrt{B}$ (for some constant A).
- These values (together with the corresponding m_1) should be stored in a structure which is easily searched.
- For $1 \leq m_2 \leq A'\sqrt{B}$ (for some constant A') compute $c/m_2^e \pmod{N}$ and, for each value, see if this number appears in the earlier structure.
- If a match is found then we have $c/m_2^e \equiv m_1^e \pmod{N}$ in which case $c \equiv (m_1 m_2)^e \pmod{N}$ and so $m = m_1 m_2$.
Boneh-Joux-Nguyen attack

- The time complexity of this attack is $\tilde{O}(\sqrt{B})$.
- The storage requirement is also $\tilde{O}(\sqrt{B})$.
- Unlike the baby-step-giant-step method, this approach does not succeed for all inputs.
Low memory versions

- It is a surprising fact that many problems which can be solved by square-root methods actually can be solved by randomised algorithms of similar time complexity but with constant space requirements.

- For example, the Pollard ρ and λ methods solve the discrete logarithm problem with time complexity close to that of the baby-step-giant-step method, but with very small space requirements.

- Open problem: Give a low memory version of the BJN attack.
Low-Hamming Weight

- To speed up RSA it is tempting to choose d of a specific form.
- One way is to choose the private exponent to have low Hamming weight. This is especially true for El Gamal.
- The key idea (due to Coppersmith) is that if d is a random n-bit integer with low Hamming weight w then d can usually be split as $d = d_1 + 2^{\lfloor n/2 \rfloor} d_2$ where the d_i are $n/2$-bit integers with Hamming weight roughly $w/2$.
- Hence we can expect time/memory tradeoff attacks with complexity roughly

$$\binom{n/2}{w/2} \approx \sqrt{\binom{n}{w}}.$$

- See Stinson’s paper for details.
The small CRT private exponent

- To speed up RSA, one could alternatively select d small.
- Due to the Wiener attack and the extension due to Boneh and Durfee one must take $d > N^{0.292}$.
- A better way to speed up RSA is to choose $N = pq$ and e so that the integers d_p and d_q satisfying

$$ed_p \equiv 1 \pmod{p - 1} \quad \text{and} \quad ed_q \equiv 1 \pmod{q - 1}$$

are small.
- Exercise: Design an RSA key generation algorithm which produces keys of this form.
- It seems that the Wiener attack and its generalisations using lattices can no longer be applied in this case.
- Exercice (hard): Find a square-root attack.
Any restriction of parameters to small ranges or to having special properties is a potential vulnerability.

When attacking a cryptosystem, first seek a brute-force attack.

Then try to refine this using the time/memory tradeoff by splitting the problem into parts.

If this is successful then try to find a low memory version.
Selected references

- D. Boneh and G. Durfee, ‘Cryptanalysis of RSA with private key d less than $N^{0.292}$’, EUROCRYPT ’99, 1–11.
Selected references

Selected references