On Ideal Lattices and Learning With Errors Over Rings

> Vadim Lyubashevsky Chris Peikert Oded Regev

Domains in Crypto Protocols

- "Discrete Log": Hard problems in ring $(Z_{p},+,*)$ for large p
- "Factoring" : Hard problems in ring (Z_N,+,*) for N=pq
- Other domains?

Polynomial Ring $Z_q[x]/(x^n + 1)$

Elements are $z(x)=z_{n-1}x^{n-1}+...+z_1x+z_0$ where z_i are integers mod q

Addition is the usual coordinate-wise addition

Multiplication is the usual polynomial multiplication followed by reduction modulo x^{n+1}

The Ring $R=Z_{17}[x]/(x^4+1)$

Elements are $z(x)=z_3x^3+z_2x^2+z_1x+z_0$ where z_i are integers mod 17

Addition is the usual coordinate-wise addition

Multiplication is the usual polynomial multiplication followed by reduction modulo x^4+1

A Hard Problem (Ring-LWE)

- Given g,t in R such that t=gs+e where s and e have "small" coefficients, find s (and e).
- Example:
- $g = 4x^3 6x^2 + 7x + 2$
- $t = -5x^3 + x^2 5x 2$
- $t = g * (x^3 x + 1) + x^2 + x 1$

(Should remind you of the discrete log problem)

The Decisional Version

Given g,t in R, determine whether

(1) there exist s and e with "small"
coefficients such that t=gs+e
or

(2) g, t are uniformly random in R

(Should remind you of the DDH problem)

Encryption Scheme

- sk: s
- pk: g, t=gs+e₁
- write msg m in $\{0,1\}^4$ as a polynomial in R
- To Encrypt:
 - pick random r in R with small coefficients
 - output (v=rg+ e_2 , w=rt+ e_3 +8m)
- To Decrypt
 - compute w-vs
 - if coefficient is "small", msg bit is 0, otherwise it's 1

(Should remind you of the El-Gamal cryptosystem)

Encryption Scheme

- sk: s
- pk: g, t=gs+e₁
- write msg m in $\{0,1\}^4$ as a polynomial in R
- To Encrypt:
 - pick random r in R with small coefficients
 - output (v=rg+ e_2 , w=rt+ e_3 +8m)
- To Decrypt

- compute w-vs = $(rt+e_3+8m) - (rg+e_2)s$

= $(rgs+re_1+e_3+8*m)-(rgs+e_2s) = re_1+e_3+e_2s+8m$

Efficiency of Encryption Scheme

- sk: s
- pk: g, t=gs+e₁
- write msg m in $\{0,1\}^4$ as a polynomial in R
- To Encrypt:
 - pick random r in R with small coefficients
 - output (v=rg+ e_2 , w=rt+ e_3 +8m) takes O(n log n) time
- To Decrypt

- compute w-vs takes O(n log n time)

Security of Encryption Scheme

- sk: s
- pk: g, t=gs+e₁ (looks uniformly random)
- write msg m in {0,1}⁴ as a polynomial in R
- To Encrypt:
 - pick random r in R with small coefficients
 - output ($v=rg+e_2$, $w=rt+e_3+8m$) (looks uniformly random)
- To Decrypt
 - compute w-vs

Decision vs. Search

- Discrete Log = DDH ?????
- Ring-LWE = Decisional Ring-LWE (will show in this talk)
- SVP in Ideal Lattices < Ring-LWE see [LPR '10]

Ring-LWE

- Ring $R=Z_{q}[x]/(x^{n}+1)$
- Given:

g₁, g₁s+e₁
g₂, g₂s+e₂
...
g_k, g_ks+e_k

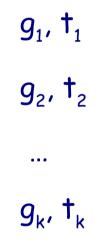
• Find: s

e, are "small" (distribution symmetric around 0)

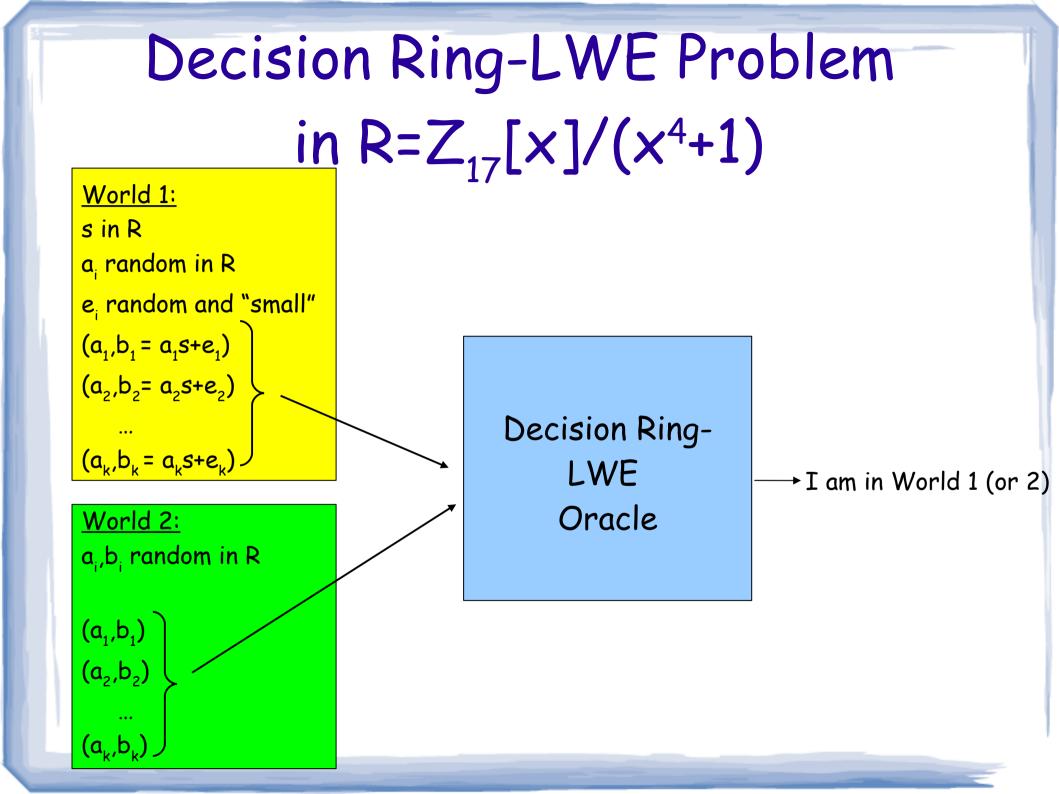
s can be small or random in R (it's equivalent [ACPS '09])

Decision Ring-LWE

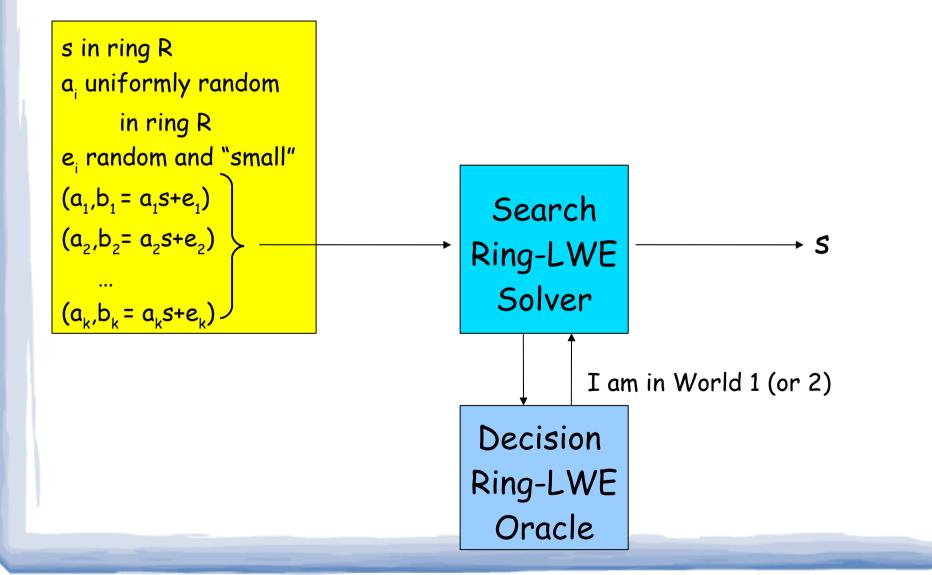
- Ring $R=Z_q[x]/(x^n+1)$
- Given:



Question: Does there exist an s and "small" e₁, ..., e_k such that
 t_i=g_is+e_i or are all t_i uniformly random in R?

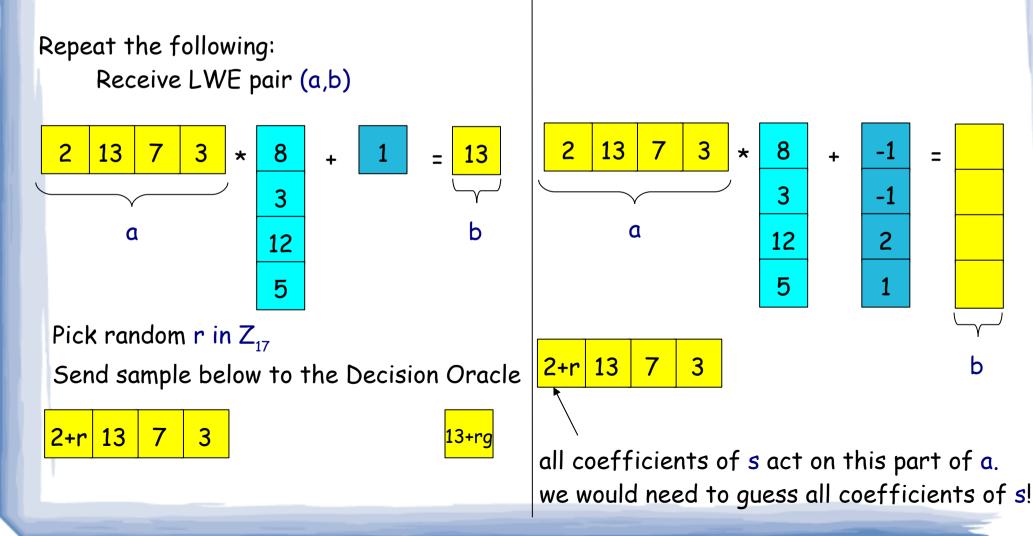


What We Want to Construct



Why Does the Search-to-Decision Reduction for LWE not Work?

Let g be our guess for the first coefficient of s



Reducing Search Ring-LWE to Decision Ring-LWE

The Ring $R=Z_{17}[x]/(x^4+1)$

- $x^{4}+1 = (x-2)(x-8)(x+2)(x+8) \mod 17$
 - $= (x-2)(x-2^3)(x-2^5)(x-2^7) \mod 17$
- Every polynomial z in R has a unique "Chinese Remainder" representation (z(2), z(8), z(-2), z(-8))
- For any c in Z_{17} such that c⁴+1=0, and two polynomials z, z' in R

$$- z(c)+z'(c) = (z+z')(c)$$

- z(c)*z'(c) = (z*z')(c)

(because z^*z' in R is $z^*z' + y^*(x^4+1)$ in $Z_{17}[x]$, so

 $z^{*}z'(c) = (z^{*}z')(c) + y^{*}(c^{4}+1) = (z^{*}z')(c)$

Operations in R

"Chinese remainder" representation of sum and product

- $z+z' \rightarrow (z(2)+z'(2), z(8)+z'(8), z(-2)+z'(-2), z(-8)+z'(-8)$
- $z^*z' \rightarrow (z(2)^*z'(2), z(8)^*z'(8), z(-2)^*z'(-2), z(-8)^*z'(-8))$

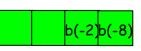
Representation of Elements in $R=Z_{17}[x]/(x^4+1)$

> $(x^{4}+1) = (x-2)(x-2^{3})(x-2^{5})(x-2^{7}) \mod 17$ = (x-2)(x-8)(x+2)(x+8)

Represent polynomials z(x) as (z(2), z(8), z(-2), z(-8))

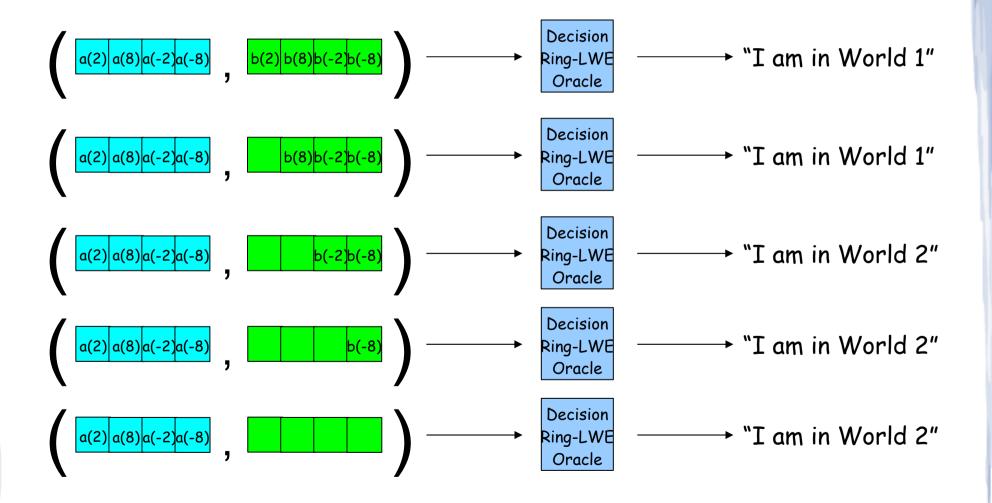
$$\rightarrow (a(x),b(x)) = \left(\frac{a(2)a(8)a(-2)a(-8)}{a(2)a(-8)}, \frac{b(2)b(8)b(-2)b(-8)}{a(2)b(-8)} \right)$$

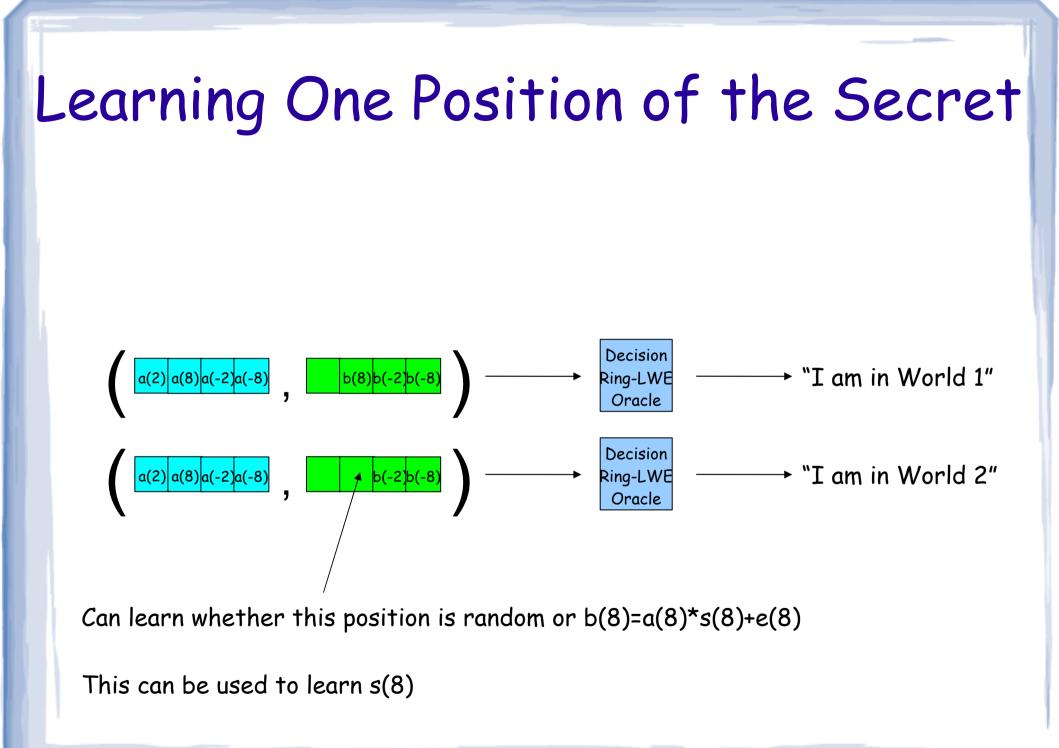
Notation:



means that the coefficients that should be b(2) and b(8) are instead uniformly random

Learning One Position of the Secret





Learning One Position of the Secret

Let g in Z_{17} be our guess for s(8) (there are 17 possibilities) We will use the decision Ring-LWE oracle to test the guess

a(2) a(8)a(-2)a(-8) , b(2) b(8)b(-2)b(-8) Make the first position uniformly random in Z_{17} a(2) a(8) a(-2) a(-8) b(8) b(-2) b(-8) Pick random r in Z_{17} Send to the decision oracle b(8)+gr b(-2) b(-8) a(2) a(8)+r a(-2) a(-8) If g=s(8), then (a(8)+r)*s(8)+e(8)=b(8)+gr (Oracle will say "World 1") If $g \neq s(8)$, then b(8)+gr is uniformly random in Z_{17} (Oracle will say "World 2")

Learning the Other Positions

• We can use the decision oracle to learn s(8)

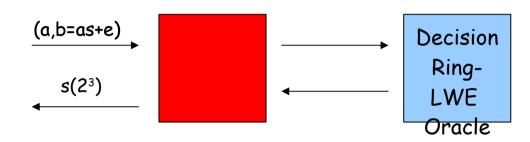
How do we learn s(2),s(-2), and s(-8)?

Idea: Permute the input to the oracle
 Make the oracle give us s'(8) for a different, but related, secret s'.

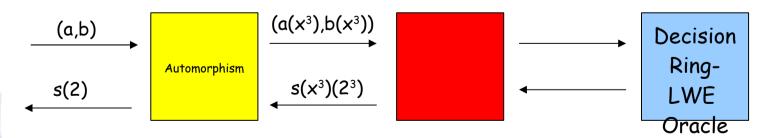
From s'(8) we can recover s(2) (and s(-2) and s(-8))

Learning the Other Positions

We get samples (a(x), a(x)s(x)+e(x))We give samples (a(x), a(x)s(x)+e(x)) to the oracle and get $s(2^3)$



We get samples (a(x), a(x)s(x)+e(x))What if we give samples $(a(x^3), a(x^3)s(x^3)+e(x^3))$ to the oracle?

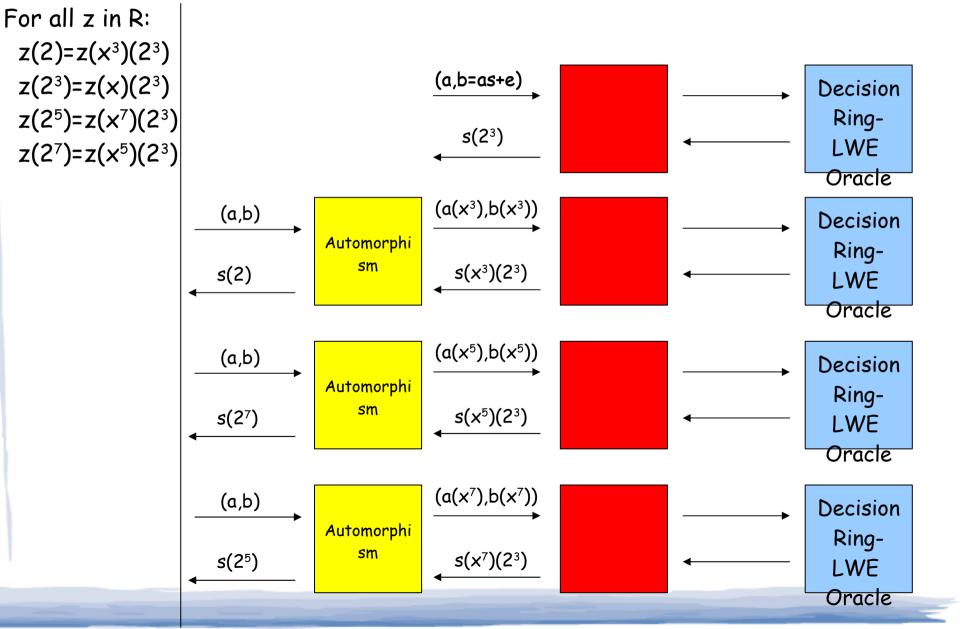


Assuming that $(a(x^3), a(x^3)s(x^3)+e(x^3))$ has the right distribution, the oracle will work and return $s(x^3)(2^3) = s(2^9)=s(2)$.

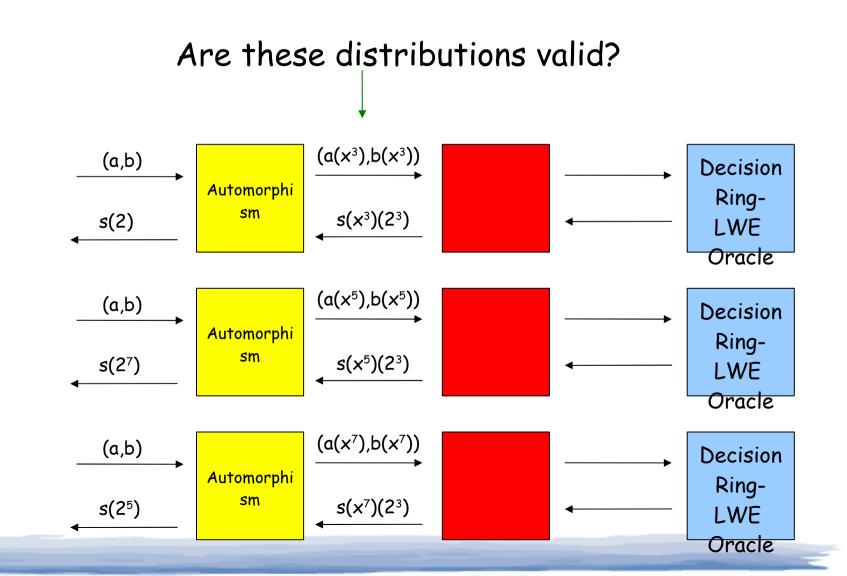
Automorphisms of R $x^{4}+1 = (x-2)(x-2^{3})(x-2^{5})(x-2^{7}) \mod 17$

		2	2 ³	2 ⁵	2 ⁷	← evaluated
	z(x)	z(2)	z(2³)	z(25)	z(2 ⁷)	а†
	z(x ³)	z(2³)	z(2)	z(2 ⁷)	z(2⁵)	
	z(x ⁵)	z(2 ⁵)	z(2 ⁷)	z(2)	z(2³)	
	z(x ⁷)	z(2 ⁷)	z(2 ⁵)	z(2³)	z(2)	
	Î					
ро	lynomial					

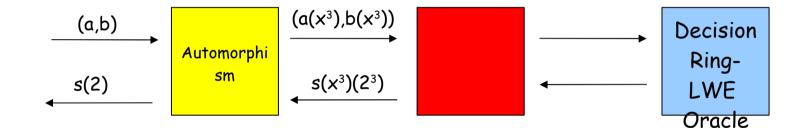
Learning all of s



An Important Technicality



An Important Technicality



If a(x) is uniform, $a(x^3)$ is uniform $b(x^3)=a(x^3)s(x^3)+e(x^3)$

> $e(x^3)$ and $e(x^5)$ and $e(x^7)$ should come from the same distribution as e(x)

Error Distribution Under Automorphisms

 $e(x) = e_0 + e_1 x + e_2 x^2 + e_3 x^3$ $e(x^3) = e_0 + e_1 x^3 + e_2 x^6 + e_3 x^9 = e_0 + e_3 x - e_2 x^2 + e_1 x^3$ $e(x^5) = e_0 + e_1 x^5 + e_2 x^{10} + e_3 x^{15} = e_0 - e_1 x + e_2 x^2 - e_3 x^3$ $e(x^7) = e_0 + e_1 x^7 + e_2 x^{14} + e_3 x^{21} = e_0 - e_3 x - e_2 x^2 - e_1 x^3$

If coefficients of e(x) have distribution D with mean O, then so do coefficients of $e(x^3)$, $e(x^5)$, $e(x^7)$!!

Using algebraic number theory, we can generalize to polynomials other than $x^n + 1$ (cyclotomic polynomials)

Summary

- Search Ring-LWE is as hard as solving certain lattice problems in the worst case (with quantum) (also see [SSTX '10])
- Decision Ring-LWE in cyclotomic rings is as hard as Search Ring-LWE
- Allows for much more efficient cryptographic constructions than regular LWE

Thank You!