
The The 

Learning Learning With Errors With Errors 

ProblemProblemProblemProblem

Oded RegevOded Regev

Tel Aviv UniversityTel Aviv UniversityTel Aviv UniversityTel Aviv University

(for more details, see survey prepared for CCC’(for more details, see survey prepared for CCC’20102010))

Paris, Paris, 20102010//55//2929



OrganizationOrganization



• A secret vector s in �17
4

• We are given an arbitrary number of equations, each 

correct up to ±1

Learning With Errors (LWE) ProblemLearning With Errors (LWE) Problem

correct up to ±1
• Can you find s?



LWE’s Claim to FameLWE’s Claim to Fame

� Known to be as hard as worst-case lattice 

problems, which are believed to be problems, which are believed to be 

exponentially hard (even against quantum 

computers)

� Extremely versatile

� Basis for provably secure � Basis for provably secure 

and efficient cryptographic 

constructions



LWE’s OriginsLWE’s Origins

� The problem was first defined in [R05]

Already (very) implicit in the first work on � Already (very) implicit in the first work on 

lattice-based public key cryptography 

[AjtaiDwork97] (and slightly more explicit in 

[R03])

� See the survey paper for more details



LWE LWE –– More PreciselyMore Precisely

• There is a secret vector s in �
q
n

• An oracle (who knows s) generates a uniform vector a in �
q
n

and noise e∈ distributed normally with standard deviation and noise e∈� distributed normally with standard deviation 

αq.
• The oracle outputs (a, b=〈〈〈〈a,s〉〉〉〉+e mod q)
• This procedure is repeated with the same s and fresh a and e
• Our task is to find s
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LWE LWE –– Parameters: n, q, Parameters: n, q, αα
• The main parameter is n, the dimension
• The modulus q is typically poly(n)

• Choosing exponential q increases size of input and makes 
applications much less efficient (but hardness is somewhat applications much less efficient (but hardness is somewhat 

better understood)

• (The case q=2 is known as Learning Parity with Noise (LPN))

• The noise element e is chosen from a normal distribution 
with standard deviation αq: q=113

α=0.05

• The security proof requires αq>√n
• The noise parameter α is typically 1/poly(n)

• The number of equations does not really matter



AlgorithmsAlgorithms



Algorithm Algorithm 11: More Luck Than Sense: More Luck Than Sense

•Ask for equations until seeing several “s1≈…”. 
E.g.,

•This allows us to deduce s1 and we can do the 
same for the other coordinates

•Running time and number of equations is 
2O(nlogn)



Algorithm Algorithm 22: Maximum Likelihood: Maximum Likelihood

•Easy to show: After about O(n) equations, the 
secret s is the only assignment that secret s is the only assignment that 

approximately satisfies the equations (hence 

LWE is well defined)

•Hence we can find s by trying all possible qn

assignmentsassignments

•We obtain an algorithm with running time 

qn=2O(nlogn) using only O(n) equations



Algorithm Algorithm 33: : [BlumKalaiWasserman’[BlumKalaiWasserman’0303]]

• Running time and number of equations is 2O(n)

• Best known algorithm for LWE (with usual setting of 

parameters)parameters)

• Idea: 
• First, find a small set S of equations (say, |S|=n) such that 

ΣSai=(1,0,…,0). Do this by partitioning the n coordinates 

into logn blocks of size n/logn and construct S recursively by 

finding collisions in blocksfinding collisions in blocks

• The sum of these equations gives a guess for s1 that is quite 
good



Algorithm Algorithm 44: : [AroraGe’[AroraGe’1010]]

•Running time and number of equations is 
2O((αq)

2)2

• So for αq<√n, this gives a sub-exponential 
algorithm

• Interestingly, the LWE hardness proof [R05] requires 

αq>√n; only now we ‘know’ why!αq>√n; only now we ‘know’ why!
• Idea: apply a polynomial that zeroes the noise, and 
solve by linearization



VersatilityVersatility



LWE is VersatileLWE is Versatile

�Search to decision reduction

�Worst-case to average-case reduction (i.e., secret can be �Worst-case to average-case reduction (i.e., secret can be 

uniformly chosen)

� The secret can be chosen from a normal distribution itself 

[ApplebaumCashPeikertSahai09], or from a weak random 

source [GoldwasserKalaiPeikertVaikuntanathan10]

� The normal error distribution is ‘LWE complete’

� The number of samples does not matter



Decision LWE ProblemDecision LWE Problem
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What We Want to ConstructWhat We Want to Construct
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Search LWE < Decision LWESearch LWE < Decision LWE

• Idea: Use the Decision oracle to figure out the coordinates of s one 
at a time

1. If g is right, then we are 

• Let g∈�
q
be our guess for the first 

coordinate of s

• Repeat the following:

• Receive LWE pair (a,b)

sending a distribution from 

World 1

2. If g is wrong, then we are 

sending a distribution from 

World 2 (here we use that q 

is prime)8

3

37132 1· + = 13

• Pick random r in �
q

• Send (a+(r,0,…,0), b+rg) to the decision oracle:

13+rg37132+r

• We will find the right g after 

at most q attempts

• Use the same idea to recover 
all coefficients of s one at a 

time
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Worst Case to Average CaseWorst Case to Average Case
• We are given an oracle that distinguishes World 1 from World 2 for 

a non-negligible fraction of secrets s∈�
q
n

• Our goal is to distinguish the two worlds for all secrets s 

• Choose t∈ n uniformly 1. If our input is from World 1 • Choose t∈�
q
n uniformly

• Repeat the following:
• Receive LWE pair (a,b)

1. If our input is from World 1 

with secret s,  then our 

output is from World 1 with 

secret s+t

2. If out input is from World 2 

then our output is also from 

World 2
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• Send sample (a,b+〈〈〈〈a,t〉〉〉〉)  to the oracle:
13+

〈〈〈〈a,t〉〉〉〉37132

• Since s+t is uniform in �
q
n , we 

will distinguish the two cases 

with non-negligible 

probability (over t)
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Simple CryptosystemSimple Cryptosystem



Public Key Encryption Based on LWEPublic Key Encryption Based on LWE

s

Secret Key: s in �
q
n

Public Key: A in �
q
m×n ,  b=As+e

(where m=2n·logq)
A + e = b

(where m=2n·logq)

r r

To encrypt a single bit z∈{0,1}:   Pick r in {0,1}m and send (rA, r·b+z·q/2)

+ 0r

A

r

b

+ 0

q/2

,



Proof of Semantic SecurityProof of Semantic Security
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1. The public key is 

pseudo-random: 

based on LWE

2. If A,b is truly random, then the distribution 

of (rA, r·b) (over r chosen from {0,1}m) is 

statistically extremely close to uniform so 

decryption is impossible



Other ApplicationsOther Applications
� Public Key Encryption [R05, KawachiTanakaXagawa07, 

PeikertVaikuntanathanWaters08]

� CCA-Secure PKE [PeikertWaters08, Peikert09]

� Identity-Based Encryption [GentryPeikertVaikuntanathan08]

� Oblivious Transfer [PeikertVaikuntanathanWaters08]

� Circular-Secure Encryption [ApplebaumCashPeikertSahai09]

� Leakage Resilient Encryption [AkaviaGoldwasserVaikunathan09, 
DodisGoldwasserKalaiPeikertVaikuntanathan10, 
GoldwasserKalaiPeikertVaikuntanathan10]

� Hierarchical Identity-Based Encryption [CashHofheinzKiltzPeikert09, 
AgrawalBonehBoyen09]

� Learning Theory [KlivansSherstov06]

� And more…



HardnessHardness



HardnessHardness

•The best known algorithms run in exponential 
timetime

• Even quantum algorithms don’t do any better

•LWE is an extension of LPN, a central problem 

in learning theory and coding theory (decoding 

from random linear codes)from random linear codes)



HardnessHardness

• More importantly, LWE is as hard as worst-case 

lattice problems [R05, Peikert09]lattice problems [R05, Peikert09]

• More precisely, 

• For q=2O(n), as hard as GapSVP [Peikert09]

• For q=poly(n),

• As hard as GapSVP given a somewhat • As hard as GapSVP given a somewhat 

short basis [Peikert09]

• As hard as GapSVP and SIVP using a 

quantum reduction [R05]



The SIS problemThe SIS problem
� The “Small Integer Solution” problem is a ‘dual’ problem to 

LWE:

� Given a1,a2,… uniformly chosen from �q
n , find a subset of 

them that sums to zerothem that sums to zero

� SIS is used for ‘minicrypt’ constructions, such as:

� One-way functions [Ajtai96]

� Collision resistant hash functions [GoldreichGoldwasserHalevi96]

� Digital signatures [GentryPeikertVaikuntanathan'08, 

CashHofheinzKiltzPeikert09]

� Identification schemes [MicciancioVadhan03, 

Lyubashevsky08, KawachiTanakaXagawa08]

� The hardness of SIS is well understood [MicciancioR04]:

� For any q>poly(n) solving SIS implies a solution to standard 

lattice problems such as SIVP and GapSVP



Hardness of LWEHardness of LWE

• We will present the hardness results of LWE 
[R05, Peikert09] including simplifications due to 
[LyubashevskyMicciancio09][LyubashevskyMicciancio09]

• Recently, [StehléSteinfeldTanakaXagawa09]
gave an interesting alternative hardness proof 
by a (quantum) reduction from the SIS problem

• Unfortunately leads to qualitatively weaker 
results

• We will not describe it here



LatticesLattices

• For vectors v1,…,vn in R
n we define the lattice 

generated by them as 

ΛΛΛΛ={a1v1+…+anvn | ai integers}

v1 v2

2v1
v1+v2 2v2

2v2-v1

ΛΛΛΛ={a1v1+…+anvn | ai integers}
• We call v1,…,vn a basis of ΛΛΛΛ

• The dual lattice of Λ is
ΛΛΛΛ* = { x∈Rn | ∀ y∈∈∈∈ΛΛΛΛ, 〈〈〈〈x,y〉〉〉〉 ∈ ���� }

0

2v2-2v1

ΛΛΛΛ* = { x∈R | ∀ y∈∈∈∈ΛΛΛΛ, 〈〈〈〈x,y〉〉〉〉 ∈ ���� }

• For instance, (����n)*= ����n



Discrete Gaussian DistributionDiscrete Gaussian Distribution

• For r>0, the distribution DΛ,r assigns mass 
proportional to e-||x/r||

2
to each point x∈Λ

• Points sampled from DΛ,r are lattice vectors of norm • Points sampled from DΛ,r are lattice vectors of norm 
roughly r√n

DΛ,2 DΛ,1



• ‘Algebraic’ lattice problems are easy; ‘geometric’ 
problems are hard

• Shortest Vector Problem (GapSVPγγγγ): given a lattice 
Λ, approximate length of shortest (nonzero) 

Computational Problems on LatticesComputational Problems on Lattices

Λ, approximate length of shortest (nonzero) 
vector λ1(Λ) to within γ

v2

v1

• Another lattice problem: SIVPγ. Asks to find n short 
linearly independent lattice vectors.

0

3v2-4v1



•• Conjecture:Conjecture: for any for any γγ=poly(n), =poly(n), GapSVPGapSVPγγ is hardis hard

–– Best known algorithms run in time Best known algorithms run in time 22n n 

Lattice Problems Are HardLattice Problems Are Hard

–– Best known algorithms run in time Best known algorithms run in time 22
[AjtaiKumarSivakumar[AjtaiKumarSivakumar0101, MicciancioVoulgaris, MicciancioVoulgaris1010]]

–– Quantum computation doesn’t seem to helpQuantum computation doesn’t seem to help

–– On the other hand, not believed to be NPOn the other hand, not believed to be NP--hard hard 
[GoldreichGoldwasser[GoldreichGoldwasser0000, AharonovR, AharonovR0404]]



Bounded Distance Decoding (BDD)Bounded Distance Decoding (BDD)

• BDDd: given a lattice Λ and a point x within distance 
d of Λ, find the nearest lattice point



• The following was shown in [AharonovR04, 
LiuLyubashevskyMicciancio06]:

Solving BDD using Gaussian SamplesSolving BDD using Gaussian Samples

• Proposition:

– Assume we have a polynomial number of samples 
from DΛ*,r for some lattice ΛΛΛΛ and a not too small r>0. 

– Then we can solve BDD on ΛΛΛΛ to within distance 1/r



• The core of the LWE hardness result is the following:

• Proposition [R05]:

– Assume we have access to an oracle that solves LWE with 

Core LWE Hardness StatementCore LWE Hardness Statement

– Assume we have access to an oracle that solves LWE with 

modulus q and error parameter α. 

– Assume we also have a polynomial number of samples from 

DΛ*,r for some lattice ΛΛΛΛ and a not too small r>0.

– Then we can solve BDD on ΛΛΛΛ to within distance αq/r

• This is already some kind of hardness result: without the 
LWE oracle, the best known algorithms for 

solving the above task require exponential 

time, assuming αq≥√n.



• [Peikert09] showed a reduction from GapSVP to solving 
BDD to within distance λ1(Λ)/poly(n)

• Hence, if αq/r≥≥≥≥ λ1(Λ)/poly(n) (i.e., r≥q·poly(n)/λ1(Λ)) 
then we get a solution to the standard lattice problem 

Getting a Cleaner Statement (Getting a Cleaner Statement (11//22))

then we get a solution to the standard lattice problem 
GapSVP

• But how do we obtain samples from DΛ*,r?

• [GentryPeikertVaikuntanathan08] showed that such 
samples can be obtained from a basis with vectors of 
length rlength r
– So using the [LLL82] algorithm (that efficiently produces a 

basis of length 2n/λ1(Λ)), we get hardness of LWE with q=2O(n) 

based on GapSVP

– For polynomial q, we get hardness based on GapSVP given a 

somewhat short basis



• [Peikert09] showed a reduction from GapSVP to solving 
BDD to within distance λ1(Λ)/poly(n)

• Since sampling from DΛ*,r for r=2
n/λ1(Λ) can be done 

Getting a Cleaner Statement (Getting a Cleaner Statement (11//22))

• Since sampling from DΛ*,r for r=2 /λ1(Λ) can be done 
efficiently, we obtain hardness of LWE for exponential 
moduli q

• Alternatively, we can use the sampler in 
[GentryPeikertVaikuntanathan08] to show hardness of [GentryPeikertVaikuntanathan08] to show hardness of 
LWE with polynomial moduli q based the assumption 
that GapSVP is hard even given a somewhat short 
vector



• Alternatively, [R05] showed a quantum reduction from 
sampling DΛ*,√n/d  to solving BDD in Λ with distance d.

• Assume αq≥2√n, and combine 

Getting a Cleaner Statement (Getting a Cleaner Statement (22//22))

with the core proposition:

Samples from D Λ*,r

Solution to BDDΛ,αq/r

Samples from D Λ*,r/2

Samples from D Λ*,r/4 

Solution to BDDΛ, 2αq/r

Solution to BDDΛ, 4αq/r
...



Proof of Core Proposition (Proof of Core Proposition (11//22))
• For simplicity, assume ΛΛΛΛ=����n (and ignore the fact that this lattice is ‘easy’)

• We are given:

– An oracle that solves LWE with modulus q and parameter α
– Samples from D����n,r����n,r

• Our input is a point x∈�n within distance αq/r of some unknown 
v∈����n

• Our goal is to output v

• We will show how to generate LWE samples with secret s=(v 

mod q)

• Using the LWE oracle, we can find v mod q; this allows to find v • Using the LWE oracle, we can find v mod q; this allows to find v 

itself using a straightforward reduction

• Summarizing:

– Given: samples from D����n,r

– Input: a point x∈�n within distance αq/r of some unknown v∈����n

– Goal: generate LWE samples with secret s=(v mod q)



• This is done as follows: 

– Take a sample y from D����n,r

– Output the pair

Proof of Core Proposition (Proof of Core Proposition (22//22))

– Output the pair

(a = y mod q,  b = 〈y,x〉 mod q) ∈ �
q
n ×�

q

• Analysis:

– Since r is not too small, a is uniformly distributed in �
q
n

– Now condition on any fixed value of a, and let’s analyze the distribution 
of b.

– y is distributed as a discrete Gaussian on q�n+a– y is distributed as a discrete Gaussian on q� +a

– If  x=v, then b is exactly 〈a,s〉, so we get LWE samples with no error

– Otherwise, we get an error term of the form 〈y,x-v〉. Since x-v is a fixed 
vector of norm <αq/r, and y is Gaussian of norm r, this inner product is 
normal with standard deviation <αq.



LWE over RingsLWE over Rings



Some Inefficiencies of Some Inefficiencies of 

LWELWE--Based SchemesBased Schemes

s
r r + z

A
s

+ e = b A b

public key is O(n2) encryption of 1 bit requires O(n2) (or 

O(n)) operations



Source of InefficiencySource of Inefficiency
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Main QuestionMain Question
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•How do we define multiplication so that the resulting distribution is 
pseudorandom? (Coordinate-wise multiplication is not secure)

• Answer: Define it as multiplication in a polynomial ring
• Similar ideas used in the heuristic design of NTRU 
[HoffsteinPipherSilverman98], and in compact one-way 

functions [Micciancio02, PeikertRosen06, 

LyubashevskyMicciancio06,…].



The The RingRing--LWE LWE ProblemProblem

• Let R be the ring �q[x]/〈x
n+1〉

a s e bq

• The secret s is now an element in R

• The elements a are chosen uniformly 

from R

• The coefficients of the noise 

polynomial e are chosen as small independent normal vars
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RingRing--LWE LWE –– Known ResultsKnown Results
• [LyubashevskyPeikertR10] show that Ring-LWE is as hard as 

(quantumly) solving the standard lattice problem SIVP (on 

ideal lattices)

• The proof is by adapting [R05]‘s proof to rings; only the classical • The proof is by adapting [R05]‘s proof to rings; only the classical 
part needs to be changed

• A qualitatively weaker result was independently shown by [Stehlé
SteinfeldTanakaXagawa09] using different techniques of 
independent interest.

• [LPR10] also show that decision Ring-LWE is as hard as 

(search) Ring-LWE(search) Ring-LWE

• Proof is quite non-trivial!

• Finally [LPR10] show how this can be used to construct very 

efficient cryptographic applications

• More details in the survey paper!



Open QuestionsOpen Questions

� Obtain the ultimate hardness result for LWE (as for SIS)

� $500 prize

� Hardness of LPN?

Or is LPN easier?� Or is LPN easier?

� $250 prize

� Understand practical parameters of LWE [RückertSchneider10]

� More algorithms for LWE

� Further cryptographic applications of LWE

� Direct construction of efficient pseudorandom functionsDirect construction of efficient pseudorandom functions

� Fully homomorphic encryption scheme (perhaps based on ring-LWE)?

� ‘Upgrade’ all existing constructions to ring-LWE

� Reduction from LWE to classical problems, similar to what was 

done in [Feige02] 


