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Learning With Errors (LWE) Problem

e A secret vectorsin 75

* We are given an arbitrary number of equations, each
correct up to *1
e Can you find s?

1451+ 155>+ 553+ 25,8 (mod 17)
1351+ 14s5,+ 1453+ 6Ss4=16(mod 17)
651 +10s,+ 1353+ 1s4=3 (mod1l7)
10514+ 4s,+ 1253+ 16s4~12(mod 17)
951 55> 053 6549 (mod17)
351+ 6S>+ 4s3+ bspx>~16(mod 17)
6s1+ 7524+ 16s3+ 2543 (mod1l7)




LWE’s Claim to Fame

v" Known to be as hard as worst-case lattice
problems, which are believed to be
exponentially hard (even against quantum
computers)

v' Extremely versatile

v Basis for provably secure
and efficient cryptographic
constructions



LWE’s Origins

The problem was first defined in [RO5]

Already (very) implicit in the first work on
lattice-based public key cryptography

[AjtaiDwork9o7] (and slightly more explicit in
[RO3])

See the survey paper for more details



LWE — More Precisely

* There is a secret vector s in Zg

e An oracle (who knows s) generates a uniform vector a in Zg

and noise ecZ distributed normally with standard deviation
od.
* The oracle outputs (a, b=(a,s)+e mod q)
* This procedure is repeated with the same s and fresh a and e
e Qur task is to find s
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LWE — Parameters: n, q, o

 The main parameter is n, the dimension

* The modulus q is typically poly(n)

* Choosing exponential q increases size of input and makes
applications much less efficient (but hardness is somewhat
better understood)

e (The case g=2 is known as Learning Parity with Noise (LPN))

* The noise element e is chosen from a normal distribution
with standard deviation o.q: oo Q=M3
| a=0.05 - -
e The security proof requires o.g>Vn T ——

* The noise parameter o is typically 1/poly(n)

* The number of equations does not really matter



Algorithms



Algorithm 1: More Luck Than Sense

* Ask for equations until seeing several “s.~...”.

E.g., -
151 +0s2+0s3+0s4~8 (mod 17)

151 +05,4+053+0s4x7 (mod 17)
151 +0s,+0s53+0s28 (mod 17)

* This allows us to deduce s, and we can do the
same for the other coordinates

* Running time and number of equations is
20(n|ogn)



Algorithm 2: Maximum Likelihood

e Easy to show: After about O(n) equations, the
secret s is the only assignment that
approximately satisfies the equations (hence
LWE is well defined)

* Hence we can find s by trying all possible g"
assignments

e We obtain an algorithm with running time
gn=20lean) ysing only O(n) equations



Algorithm 3: [BlumKalaiWasserman’03]

* Running time and number of equations is 20
e Best known algorithm for LWE (with usual setting of
parameters)

e [dea:

e First, find a small set S of equations (say, |S|=n) such that
2sa:=(1,0,...,0). Do this by partitioning the n coordinates
into logn blocks of size n/logn and construct S recursively by
finding collisions in blocks

* The sum of these equations gives a guess for s, that is quite
good



Algorithm 4: [AroraGe’10]

* Running time and number of equations is
50((0a)?)

*So for ocq<\/n, this gives a sub-exponential

algorithm

¢ Interestingly, the LWE hardness proof [RO5] requires
ag>Vn; only now we ‘know’ why!

e |dea: apply a polynomial that zeroes the noise, and
solve by linearization



Versatility



LWE is Versatile

v Search to decision reduction

v’ Worst-case to average-case reduction (i.e., secret can be
uniformly chosen)

The secret can be chosen from a normal distribution itself
[ApplebaumCashPeikertSahaio9], or from a weak random
source [GoldwasserKalaiPeikertVaikuntanathaniO]

The normal error distribution is ‘LWE complete’

The number of samples does not matter



Decision LWE Problem

s fixed in Zg

a uniform in Zg
e, random normal
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What We Want to Construct

s fixed in Zg
a uniform in Zg
e random normal

(01' b1 = c'15"'e1) Search

P ee) 4 —|  LwE -5}

(o, b, =azste) Solver
y

l ‘ | am in World 1 (or 2)

Decision
LWE
Oracle




Search LWE < Decision LWE

e |[dea: Use the Decision oracle to figure out the coordinates of s one

at a time

o Let gezZ, be our guess for the first

coordinate of s

* Repeat the following:
* Receive LWE pair (a,b)
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e Send (a+(r,0....,0), b+rg) to the decision oracle:

‘2+r‘13 7

3

13+rg

1. If g is right, then we are
sending a distribution from
World 1

2. If g is wrong, then we are
sending a distribution from
World 2 (here we use that g
is prime)

» We will find the right g after
at most g attempts

e Use the same idea to recover
all coefficients of s one at a
time



Worst Case to Average Case

 We are given an oracle that distinguishes World 1 from World 2 for

a non-negligible fraction of secrets sezg

e Our goal is to distinguish the two worlds for a//secrets s

e Choose teZy uniformly

* Repeat the following:
e Receive LWE pair (a,b)
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e Send sample (a,b+(q,t)) to the oracle:

BE

7

3

13+
(at)

1. If our input is from World 1
with secret s, then our
output is from World 1 with
secret s+t

2. If out input is from World 2
then our output is also from
World 2

* Since s+t is uniform in 23, we
will distinguish the two cases
with non-negligible
probability (over t)



Simple Cryptosystem



Public Key Encryption Based on LWE

Secret Key: s in Zg
S Public Key: A in Z7", b=Ast+e
(where m=2n-logq)

To encrypt a single bit z€{0,1}: Pick r in {0,1}™ and send (rA, r-b+z-q/2)

| : | | : yop
al2




Proof of Semantic Security

1. The public key is
pseudo-random:
based on LWE

) [ r | +|Z|
S
A + | =Ib| A b
| r |
A 0| A |o
\ v _J

2. If A,b is truly random, then the distribution
of (rA, r-b) (over r chosen from {O,1}™) is
statistically extremely close to uniform so
decryption is impossible



Other Applications

Public Key Encryption [RO5, KawachiTanakaXagawa07,
PeikertVaikuntanathanWaters08]

CCA-Secure PKE [PeikertWaters08, Peikert09]
Identity-Based Encryption [GentryPeikertVaikuntanathan08]
Oblivious Transfer [PeikertVaikuntanathan\WatersO8]
Circular-Secure Encryption [ ApplebaumCashPeikertSahaio9g]

Leakage Resilient Encryption [AkaviaGoldwasserVaikunathano9,
DodisGoldwasserKalaiPeikertVaikuntanathani1o,
GoldwasserKalaiPeikertVaikuntanathan10]

Hierarchical Identity-Based Encryption [CashHofheinzKiltzPeikerto9,
AgrawalBonehBoyen09]

Learning Theory [KlivansSherstov06]

And more...



Hardness



Hardness

* The best known algorithms run in exponential
time
e Even quantum algorithms don'’t do any better
* LWE is an extension of LPN, a central problem
in learning theory and coding theory (decoding
from random linear codes)



Hardness

e More importantly, LWE is as hard as worst-case
lattice problems [RO5, Peikert09]
e More precisely,
e For g=2°M, as hard as GapSVP [Peikert09]
* For g=poly(n),
e As hard as GapSVP given a somewhat
short basis [Peikert09]
e As hard as GapSVP and SIVP using a
quantum reduction [RO5]



The SIS problem

The “Small Integer Solution” problem is a ‘dual’ problem to
LWE:

Given a,,,,... uniformly chosen from z7, find a subset of
them that sums to zero

SIS is used for ‘minicrypt’ constructions, such as:
One-way functions [Ajtaios]
Collision resistant hash functions [GoldreichGoldwasserHalevioé]

Digital signatures [GentryPeikert\VVaikuntanathan'os,
CashHofheinzKiltzPeikert09]

I[dentification schemes [Micciancio\VVadhano03,
Lyubashevsky08, KawachiTanakaXagawaO8]

The hardness of SIS is well understood [MicciancioR04]:

For any g>poly(n) solving SIS implies a solution to standard
lattice problems such as SIVP and GapSVP



Hardness of LWE

e We will present the hardness results of LWE
[RO5, Peikert09] including simplifications due to
[LyubashevskyMicciancio09]

e Recently, [StehléSteinfeldTanakaXagawa09]
gave an interesting alternative hardness proof
by a (quantum) reduction from the SIS problem

¢ Unfortunately leads to qualitatively weaker
results

e We will not describe it here



Lattices

For vectors v,,...,v_ in R" we define the lattice

n

generated by them as

={a,v,;+..+ta v_| a.integers}
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The dual lattice of A is
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Discrete Gaussian Distribution

For r>0, the distribution D, . assigns mass
proportional to e */rl* to each point xe A

Points sampled from D, . are lattice vectors of norm
roughly rVn
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Computational Problems on Lattices

o ‘Algebraic’ lattice problems are easy; ‘geometric’
problems are hard

e Shortest Vector Problem (GapSVPY): given a lattice
A, approximate length of shortest (nonzero)
vector A,(A) to withiny @ ® ® — .

¢ Another lattice problem: SIVPy. Asks to find n short
linearly independent lattice vectors.



Lattice Problems Are Hard

e Conjecture: for any y=poly(n), GapSVP, is hard

— Best known algorithms run in time 2"
[AjtaiKumarSivakumaro1, MicciancioVoulgarisiO]

— Quantum computation doesn’t seem to help

— On the other hand, not believed to be NP-hard
[GoldreichGoldwasser00, AharonovR04]



Bounded Distance Decoding (BDD)

o ) @ ® @
@ S S QQ @
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® O © @ @
® O @ @ @

e BDD, given a lattice A and a point x within distance
d of A, find the nearest lattice point



Solving BDD using Gaussian Samples

e The following was shown in [AharonovR04,
LiuLyubashevskyMicciancioO6]:

e Proposition:

— Assume we have a polynomial number of samples
from D,., for some lattice A and a not too small r>0.

— Then we can solve BDD on A to within distance 1/r



Core LWE Hardness Statement

e The core of the LWE hardness result is the following:

e Proposition [RO5]:

— Assume we have access to an oracle that solves LWE with
modulus g and error parameter o.

— Assume we also have a polynomial number of samples from
D,., for some lattice A and a not too small r>0.

— Then we can solve BDD on A to within distance ag/r

e This is already some kind of hardness result: without the
LWE oracle, the best known algorithms for

solving the above task require exponential
time, assuming och\/n.



Getting a Cleaner Statement (1/2)

o [Peikert09] showed a reduction from GapSVP to solving
BDD to within distance A,(A)/poly(n)

e Hence, if ag/r> A,(A)/poly(n) (i.e., r>g-poly(n)/A,(A))
then we get a solution to the standard lattice problem
GapSVP

¢ But how do we obtain samples from D,.?

o [GentryPeikertVaikuntanathan08] showed that such
samples can be obtained from a basis with vectors of
length r

— So using the [LLL82] algorithm (that efficiently produces a
basis of length 2"/ (A)), we get hardness of LWE with q=20®
based on GapSVP

— For polynomial g, we get hardness based on GapSVP given a
somewhat short basis



Getting a Cleaner Statement (1/2)

o [Peikert09] showed a reduction from GapSVP to solving
BDD to within distance A,(A)/poly(n)

e Since sampling from D . for r=2"/A,(A) can be done
efficiently, we obtain hardness of LWE for exponential
moduli q

e Alternatively, we can use the sampler in
[GentryPeikertVaikuntanathan08] to show hardness of
LWE with polynomial moduli q based the assumption
that GapSVP is hard even given a somewhat short
vector



Getting a Cleaner Statement (2/2)

e Alternatively, [RO5] showed a quantum reduction from
sampling D . ;4 to solving BDD in A with distance d.

e Assume agq>2Vn, and combine
with the core proposition:

—~

Samples from D ., ‘\ \.
-| Solution to BDD

A,oq/r
Samples from D ., I\
* Solution to BDD, , .

Samples from D ., ‘\

Solution to BDD, , .

x°°



Proof of Core Proposition (1/2)

For simplicity, assume A=Z" (and ignore the fact that this lattice is ‘easy’)

We are given:
— An oracle that solves LWE with modulus g and parameter o
— Samples from D,
Our input is a point xeR" within distance a.g/r of some unknown

veZn

Our goal is to output v

We will show how to generate LWE samples with secret s=(v
mod q)

Using the LWE oracle, we can find v mod g; this allows to find v
itself using a straightforward reduction
Summarizing:

— Given: samples from D,

— Input: a point xeR" within distance aq/r of some unknown vez"

— Goal: generate LWE samples with secret s=(v mod q)



Proof of Core Proposition (2/2)

e This is done as follows:

— Take a sample y from D,

Output the pair
(a=ymodq, b= |_<y,x>_| mod q) € ZgXZ,,

e Analysis:

Since r is not too small, a is uniformly distributed in Zg

Now condition on any fixed value of a, and let’s analyze the distribution
of b.

y is distributed as a discrete Gaussian on qZ"+a
If x=v, then b is exactly (qa,s), so we get LWE samples with no error

Otherwise, we get an error term of the form (y,x-v). Since x-v is a fixed
vector of norm <og/r, and y is Gaussian of norm r, this inner product is
normal with standard deviation <aq.



LWE over Rings



Some Inefficiencies of

LWE-Based Schemes
| L | | L 1M+ (2]
S
A + le| = bl A

public key is O(n?)

encryption of 1 bit requires O(n?) (or
O(n)) operations



2 113

Source of Inefficiency

* EI = EI e Getting just one extra random-

looking number requires n
random numbers!

e Wishful thinking: get n random numbers and produce

O(n) pseudo-random numbers in “one shot”

1




Main Question

2 8 1
13 3 -1
—— A — + — - —
714112 2
3 5 -1

* How do we define multiplication so that the resulting distribution is
pseudorandom? (Coordinate-wise multiplication is not secure)

e Answer: Define it as multiplication in a polynomial ring
» Similar ideas used in the heuristic design of NTRU
[HoffsteinPipherSilverman98], and in compact one-way
functions [Micciancio02, PeikertRosen06,
LyubashevskyMicciancio06,...].



The Ring-LWE Problem

Let R be the ring Z [x]/(x"+)
The secret s is now an element in R
The elements a are chosen uniformly

fromR

The coefficients of the noise

e
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polynomial e are chosen as small independent normal vars

(a, b, = ast+e)
(a,, b= aste)

(o, b, =azste)

Ring-LWE

Solver




Ring-LWE — Known Results

e [LyubashevskyPeikertR10] show that Ring-LWE is as hard as

(quantumly) solving the standard lattice problem SIVP (on
ideal lattices)

 The proof is by adapting [RO5]‘s proof to rings; only the classical
part needs to be changed

e A quadlitatively weaker result was independently shown by [Stehlé
SteinfeldTanakaXagawa09] using different techniques of
independent interest.

 [LPR10] also show that decision Ring-LWE is as hard as
(search) Ring-LWE

Proof is quite non-trivial!

e Finally [LPR10] show how this can be used to construct very
efficient cryptographic applications

e More details in the survey paper!



Open Questions

Obtain the ultimate hardness result for LWE (as for SIS)
$500 prize
Hardness of LPN?
Or is LPN easier?
$250 prize
Understand practical parameters of LWE [RiickertSchneiderio]
More algorithms for LWE
Further cryptographic applications of LWE

Direct construction of efficient pseudorandom functions
Fully homomorphic encryption scheme (perhaps based on ring-LWE)?

‘Upgrade’ all existing constructions to ring-LWE

Reduction from LWE to classical problems, similar to what was
done in [Feige02]



